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Objective: The recovery of body composition after weight loss is characterized by an

accelerated rate of fat recovery (preferential catch-up fat) resulting partly from an adaptive

suppression of thermogenesis. Although the skeletal muscle has been implicated as an

effector site for such thrifty (energy conservation) metabolism driving catch-up fat, the

underlying mechanisms remain to be elucidated. We test here the hypothesis that this

thrifty metabolism driving catch-up fat could reside in a reduced rate of protein turnover

(an energetically costly “futile” cycle) and in altered local thyroid hormone metabolism in

skeletal muscle.

Methods: Using a validated rat model of semistarvation-refeeding in which catch-up

fat is driven solely by suppressed thermogenesis, we measured after 1 week of

refeeding in refed and control animals the following: (i) in-vivo rates of protein synthesis

in hindlimb skeletal muscles using the flooding dose technique of 13C-labeled valine

incorporation in muscle protein, (ii) ex-vivo muscle assay of net formation of thyroid

hormone tri-iodothyronine (T3) from precursor hormone thyroxine (T4), and (iii) protein

expression of skeletal muscle deiodinases (type 1, 2, and 3).

Results: We show that after 1 week of calorie-controlled refeeding, the fractional

protein synthesis rate was lower in skeletal muscles of refed animals than in controls

(by 30–35%, p < 0.01) despite no between-group differences in the rate of skeletal

muscle growth or whole-body protein deposition—thereby underscoring concomitant

reductions in both protein synthesis and protein degradation rates in skeletal muscles of

refed animals compared to controls. These differences in skeletal muscle protein turnover

during catch-up fat were found to be independent of muscle type and fiber composition,

and were associated with a slower net formation of muscle T3 from precursor hormone

T4, together with increases in muscle protein expression of deiodinases which convert

T4 and T3 to inactive forms.
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Conclusions: These results suggest that diminished skeletal muscle protein turnover,

together with altered local muscle metabolism of thyroid hormones leading to diminished

intracellular T3 availability, are features of the thrifty metabolism that drives the rapid

restoration of the fat reserves during weight regain after caloric restriction.

Keywords: thermogenesis, obesity, catch-up growth, thrifty metabolism, caloric restriction, deiodinase

INTRODUCTION

The recovery of body weight after substantial weight loss or
diminished growth rate is accompanied by a high efficiency of
fat deposition (1–7). This in part results from an adaptive
suppression of thermogenesis which contributes to the
preferential catch-up fat phenomenon (8) whereby body fat
is recovered at a disproportionately faster rate than that of lean
body mass. Such thrifty (energy conservation) metabolism for
preferential catch-up fat probably had evolutionary survival
value as it contributes to the rapid restoration of survival
capacity conferred by the rapid recovery of the fat reserves in
preparation for the next period of food scarcity. Nowadays,
however, it is contributing to the “metabolic adaptation” that
facilitates obesity recidivism after therapeutic slimming (9), and
has also been implicated as a component of the “imprinted”
thrifty phenotype in the link between early growth perturbations,
excessive fat deposition during subsequent catch-up growth and
later development of obesity and cardiometabolic diseases (10).

The effector mechanisms underlying this thrifty metabolism
driving catch-up fat remain elusive. However, as the skeletal
muscle is a major site for thermogenesis, glucose utilization
and lipid oxidation, the possibility arises that a reduction in
thermogenesis in this tissue could result in the redirection of
spared fuel toward fat storage in adipose tissue (8). Which
thermogenic effectors in skeletal muscle are suppressed to spare
energy for catch-up fat are, however, far from being understood.
A role for the uncoupling protein homologs UCP2 and UCP3—
which have been proposed as potential uncouplers of oxidative
phosphorylation (11)—is unlikely on the basis that their patterns
of expressions in skeletal muscle do not fit with diminished
thermogenesis in response to starvation and refeeding (12).
By contrast, a number of findings suggest a role for altered
peripheral action of the main active thyroid hormone, tri-
iodothyronine (T3) for which skeletal muscle is a major target
(13–15). Indeed, the circulating levels of T3, which is well-known
to be diminished during caloric restriction, tend to remain lower
(albeit marginally) in refed animals than in controls during the
phase of catch-up fat (16, 17). More recently, it was shown that
the net local synthesis of T3 in the gastrocnemius muscle, which
is diminished during semistarvation, persists during the dynamic
phase of catch-up fat, and is associated with several features of
diminished intracellular availability of T3, in particular delayed
contraction-relaxation kinetics and increased proportion of slow
at the expense of fast muscle fibers (18). Taken together, these
alterations in thyroid hormone-dependent properties of skeletal
muscle constitute mechanisms that could underlie diminished
skeletal muscle thermogenesis during weight loss and which

persist during weight regain for the purpose of accelerating
fat recovery.

As protein synthesis and protein turnover (an energetically
costly substrate cycling) is also under the control of thyroid
hormones, with protein turnover in skeletal muscle estimated to
contribute to as much as 20% of whole body protein turnover
(19–23), we investigated here (i) the extent to which the processes
of protein synthesis and protein turnover may be diminished
during the dynamic phase of catch-up fat in various muscle types
varying widely in fiber composition, and (ii) their associations
with altered skeletal muscle thyroid hormone metabolism and
changes in the levels of the deiodinases (DIO1, DIO2, and
DIO3) that modulate the local metabolism and intracellular
availability of T3.

MATERIALS AND METHODS

Animals
Sprague-Dawley male rats (Elevage Janvier, Le Genest-Saint-
Isle, France), 6 weeks-old, were adapted to room and cage
environments for 5–7 days prior to the start of each experiment.
They were caged singly in a controlled room (22 ± 1◦C)
with a 12-h light-dark cycle, and maintained on a commercial
pelleted chow diet (Provimi-Kliba SA, Kaiseraugst, Switzerland)
consisting, by energy, of 24% protein, 66% carbohydrate, and
10% fat, and had free access to tap water. Animals were
maintained in accordance with the regulations and guidelines of
the Department of Medicine, University of Fribourg, for the care
and use of laboratory animals; all experimental procedures were
performed under conditions approved by the Ethical Committee
of the State of Fribourg Veterinary Office.

Experimental Design
Experiments were performed according to our previously
reported design of semistarvation-refeeding that established a rat
model for studying adjustments in energy expenditure specific
for accelerating fat deposition during refeeding (3, 4, 16, 17). In
all experiments, the semistarved rats were caloric restricted at
50% of ad libitum energy intake for 2 weeks, after which they
were refed for periods of either 1 or 2 weeks, and comparisons
made with control rats having similar body weight at the onset
of refeeding. Both refed and control groups were provided with
(and consumed) the same amount of a semisynthetic diet, which
corresponded to that consumed during spontaneous food intake
on pelleted chow; the details of composition of this semisynthetic
(low-fat) diet and assessments of metabolizable energy (ME)
intake have been reported previously (4).
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Body Composition Analysis
After the animals were killed by decapitation, the whole carcasses
were dried to a constant weight in an oven maintained at 70◦C
and were subsequently homogenized for analysis of total fat
content by the Soxhlet extraction method (24). The dry fat-free
mass (dry FFM) was determined by subtracting total body fat
and body water content from body weight, and the protein mass
was calculated as follow: Protein mass (g) = dry FFM (g)∗0.8; as
detailed previously (4).

Energy Balance and Energetic Efficiency
Calculations
Energy balance measurements were conducted during refeeding
by the comparative carcass technique over periods during which
ME intake was monitored continuously, and energy expenditure
over 2 weeks was determined as the difference between energy
gain and ME intake. Body energy gain, fat gain, and protein
gain during the 2 weeks of refeeding were obtained as the
difference between the final and initial values (with the latter
values estimated from values obtained from the group killed at
the onset of refeeding). Total body energy content, and 1Body
energy can be calculated from a general formula relating the total
energy value of the carcass, energy derived from fat, and energy
derived from protein (4).

Determination of Protein Turnover in-vivo
Tracer Administration
Protein synthesis rate was measured by incorporation of a
stable isotope in the form of labeled amino acid (13C-valine)
into the protein pool using the flooding dose method (25–27).
Reagents were obtained from Sigma Chemical (St Louis, MO,
USA) and L-[13C]-valine (99 atom percent excess) was obtained
from Eurisotop France (Saint-Aubin, France). Muscle protein
synthesis rates were assessed in hindlimb skeletal muscles by
using the flooding-dose method. Food was removed early in the
morning (07:00 h). At 6–7 h later, i.e., in the postabsorptive phase,
rats were injected subcutaneously with L-[13C]-valine [300 µmol
(100 g body)−1]. Fifty minutes after the injection of L-[13C]-
valine (incorporation time), the animals were sacrificed, and
skeletal muscles (gastrocnemius, soleus, tibialis anterior) were
quickly excised, weighed, frozen in liquid nitrogen and stored
at −80◦C until further analyses. The contralateral muscles were
also dissected intact, blotted and weighed, and frozen in liquid
nitrogen for later total protein determination by the method
of Lowry (28).

Analytical Method
Muscle samples (50mg) were homogenized in an ice-cold
buffer using Polytron homogenizer (PT1200C, Kinematica,
Switzerland). After precipitation of the homogenate,
centrifugations, and protein hydrolysis, amino acids were
derivatized, and measurements of L-[13C]-valine enrichment in
hydrolyzed proteins were performed by gas chromatography-
combustion-isotope ratio mass spectrometry (Gas system,
Fisons Instruments, VG isotech, Middlewich, UK). L-[13C]-
valine enrichments in tissue fluid were assessed using gas
chromatography-mass spectrometer (GC-MS) (HP5890,

Hewlett-Packard, Paris, France) and used as precursor pool
enrichment for the calculations of the fractional synthesis rates.

Calculations of Fractional Synthesis Rate (Ksyn)
This is calculated as previously described (25, 26). Basal
subgroups (n = 4) are used for the determination of natural
isotopic abundance in proteins in the muscles, as follows:
Fractional synthetic rate (Ksyn) = (Ei × 100)/(Ep × t), where
Ei represents the enrichment as atom percentage excess of [13C]
derived from valine in muscle proteins at time t (minus basal
enrichment); Ep is the mean enrichment in the precursor pool
(tissue fluid L-[13C]-valine); t is the incorporation time (from
time of tracer injection to sacrifice) expressed per day; data on
Ksyn are expressed as percentage per day (%/d).

Calculations of Fractional Growth Rate (Kgrowth)
For each tissue, Kgrowth (expressed as %/d) is determined as the
average Kgrowth over 48 h immediately before the measurement
of protein synthesis as described by Samuels et al. (29), and is
calculated as follows:

Kgrowth = (1body mass/1t) × (1tissue protein mass/1body
mass)× (100/tissue protein mass), where
(i) (1body mass/1t) is the body growth rate of individual

animals during the 48 h before measurement of protein
synthesis,

(ii) (1tissue protein mass/1body mass) is the x-coefficient of a
linear regression of tissue protein mass against body weight
of all animals in the same treatment group, and

(iii) tissue protein mass is the mass of protein in the individual
dissected tissues from each animal when synthesis is
measured.

Calculations of fractional degradation rate (Kdeg)
For each individual rat muscle, Kdeg is obtained by subtracting

Kgrowth from Ksyn;

i.e., Kdeg (%/d) = Ksyn (%/d)—Kgrowth (%/d).

Inherent in this calculation that provides an estimate of protein
degradation are the following assumptions: (i) over the days
interval at which the growth of the rat was measured, the
growth of the protein mass in the muscle was proportional to
that of the whole body, and (ii) the rate of muscle protein
synthesis measured over 50min (incorporation time period
between injection of L-[13C]-valine and animal sacrifice), is
similar to the average rate for the days period over which time
the growth rate is measured. These assumptions have been
validated in actively growing rats (30–32), and this method of
in-vivo determination of protein turnover in skeletal muscle has
been utilized under a variety of nutritional and environmental
conditions (29–36).

Net T3 Neogenesis Assay
The kinetics of thyroid hormone metabolism in skeletal muscle
were assessed in vitro as described previously (18), using
the method of Kaplan and Utiger (37) by incubating muscle
homogenates in Tris buffer at 37◦C. The T3 neogenesis reaction
was started by adding T4 (1.3µM) dissolved in PBS containing
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0.25% BSA. Aliquots of the homogenate were removed after 0,
5, 10, 15, and 30min, the reaction was stopped by adding 95%
ethanol, and the samples were stored at 4◦C until assayed for
thyroid hormone content using T3/T4 enzyme immunoassay
kits (from Diagnostic System Laboratories, Webster,
Texas, USA).

Protein Extraction and Western Blotting
The expression levels of skeletal muscle DIO proteins were
determined by Western blots according to standard procedures
described in details elsewhere (38, 39). Hindlimb skeletal
muscles (gastrocnemius, soleus, and tibialis anterior) were
harvested and immediately put in liquid nitrogen. Frozen
tissues (30mg) were rapidly weighed and homogenized in
liquid nitrogen. Muscle proteins were extracted in 9 volumes
of Guba-Straub buffer (300mM NaCl, 100mM NaH2PO4,
10mM Na2HPO4, 10mM Na4P2O7, 1mM MgCl2, 10mM
EDTA (pH 6.5) containing 0.1% 2-mercaptoethanol and 0.2%
protease and phosphatase inhibitor cocktail. After incubation for
45min at 4◦C, samples were sonicated for 10 s, Triton X-100
(Applichem, Axon Lab AG, Le Mont-sur-Lausanne, Switzerland)
was added to a final concentration of 1% and extracts were
centrifuged at 12,000 g for 15min at 4◦C. The supernatants were
collected, and protein content was determined using Bradford
method (BioRad, California, USA). Extracts were first diluted
in Guba-Straub buffer before the addition of Laemmli buffer
at a final concentration of 3 mg/mL before being used for
immunoblotting. Thirty micro gram of protein extract was
separated by SDS-PAGE and blotted on PVDF membranes.
Membranes were incubated first with primary antibodies (details
in Table 1), and then secondary antibody LI-COR anti-rabbit
(dilution 1/15,000) or anti-goat (dilution 1/15,000) were used
to detect bands. The signals were visualized and quantified with
the use of Odyssey Infrared Imaging System (Li-Cor Biosciences,
Bad Homburg, Germany), and normalized with Ponceau Red.
Validation of the antibodies used for detecting and quantifying
DIO1, DIO2, and DIO3 has been detailed as supplementary
material in a previous report (18). For each DIOs, between-
group comparisons were performed separately at each of the
following two time-points: (i) at the end of semistarvation
(SS group) vs. the controls (Css group) and (ii) after 7 days
of refeeding (RF group) vs. their controls (CRF group). Each
between-group comparison (SS vs. Css or RF vs. CRF) for a given
muscle was thus made on the same gel and under the same
conditions (sample preparation, exposure conditions toward
antibodies, etc.).

Data Analysis and Statistics
All data are presented as means± SE. Unpaired t-test was used to
assess the effects of semistarvation (semistarved vs. control rats)
and refeeding (refed vs. control rats) on the various parameters;
statistical significance of differences are indicated as follows: ∗p
< 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001. The statistical treatment of data
was performed using the computer software STATISTIX, version
8.0 (Analytical Software, St. Paul, MN).

TABLE 1 | Primary antibodies and specific conditions used for analysis of DIO

protein levels.

DIO1 DIO2 DIO3

Supplier Proteintech

Europe

Santa-Cruz

biotechnology

Novus biological

Catalog number 11790-1-AP sc-98716 NBP1-05767

Dilution used 1/1,000 1/200 1/1,000

Blocking buffer BSA Milk Milk

Gel 0.8mm 0.8mm 0.8 mm

Stacking 4% 4% 4 %

Resolving 12% 12% 12 %

Running 50V for 30min 50V for 30min 50V for 30 min

conditions 150V for 2h 150V for 2h 150V for 2h

Transfer conditions 400mA for 1 h

30

400mA for 1 h 30 400mA for 1 h 30

RESULTS

Body Weight and Body Composition
The results on body weight and body composition are shown in
Figures 1A–D. As previously reported (3, 4), the refed animals
gained body fat faster than the controls during both week 1 and
2 of isocaloric refeeding (Figure 1B), whereas the gain in lean
(protein) mass was not different (Figure 1D). The data on energy
balance, body energy gain and total energy expenditure, shown in
Figure 1E (as bar charts) indicate that over the 2-week period of
refeeding, the total energy expenditure was lower in refed animals
than in the controls (−14%, p < 0.001); the latter underlying the
phenomenon of energy conservation directed at accelerating fat
deposition during weight recovery.

Skeletal Muscle Protein Synthesis and
Protein Turnover
The results of fractional synthesis rate (Ksyn) of proteins assessed
in vivo in the hindlimb skeletal muscles are shown in Figure 2A.
Ksyn was significantly lower in all three skeletal muscles from
refed animals than from controls, namely by 33% (p < 0.001) in
the gastrocnemius, by 28% (p < 0.001) in the soleus, and by 31%
(p < 0.001) in the tibialis anterior. By contrast, in all 3 skeletal
muscles studied, there was no difference in the fractional growth
rate (Kgrowth) between the refed and control groups (Figure 2B).
From the data on Ksyn and Kgrowth, the calculated fractional
protein degradation rate (Kdeg) was found to be significantly
lower in the refed than the control animals in all three muscles
(Figure 2C). Thus, in the absence of between-group differences
in fractional growth rate, the lower fractional protein synthesis as
well as degradation rates in the refed animals than in the controls
suggest that the refed animals show diminished rate of protein
turnover in all the three muscles studied during the phase of
catch-up fat.

Net T3 Neogenesis
The data on the rate of net T3 neogenesis, assessed ex vivo in
extracts of the gastrocnemius, soleus and tibialis anterior muscles
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FIGURE 1 | Body weight (A), body water (B), body fat (C), and body protein (D) at the end of semistarvation (day 0 of refeeding) and at week 1 and week 2 of

refeeding; the refed are shown in black lines and the control animals in gray (broken) lines. The bar charts (E) show the data on energy balance (energy intake, energy

gain and energy expenditure) over the entire 2-week refeeding period for the refed and control groups. The values are mean ± SE (n = 6). Statistical significance of

differences are indicated as follows: **p < 0.01; ***p < 0.001.

from rats at the end of semistarvation (SS group) and their
controls (CSS), as well as and after 7 days of refeeding (RF7 group)
and their controls (CRF7), are presented in Figure 3. The de novo
net T3 synthesis was found to be significantly lower in muscles
of semistarved rats than in controls, namely by −22, −17, and
−14% in gastrocnemius, soleus and tibialis anterior, respectively
(p < 0.001). After 7 days of refeeding, it was still significantly
lower in all three muscles from refed rats than in the controls
(by about−10%, p < 0.01) in all the muscle types.

Deiodinases Protein Expression
As net T3 neogenesis is the outcome of T3 synthesis from T4
(through deiodinization catalyzed primarily by DIO2) and T3

degradation (by DIO3 and to a lesser extent by DIO1) (40),
we investigated the expression of these deiodinases in all three
muscles. The results showing the abundance of the deiodinase
proteins (DIO1, DIO2, DIO3) at the end of semistarvation and
after 1 week of refeeding are shown in Figure 4. For DIO1
(panel A), it was more abundant in the tibialis anterior of both
semistarved (SS) and refed (RF) rats relative to their respective
controls (by about 75%, p < 0.01), and to a lesser extent in
the gastrocnemius muscle, namely about +25% in SS rats (non-
significant) and about +60% in RF rats (p < 0.05). DIO1
abundance in the soleus muscle was not different in SS or RF
rats relative to their respective controls. For DIO2 (Figure 4B),
there was a significant difference in its abundance only in the
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FIGURE 2 | Fractional rates of (A) protein synthesis (Ksyn), (B) protein growth (Kgrowth ), and (C) protein degradation (Kdeg) in the Gastrocnemius, Soleus and Tibialis

anterior muscles of rats after 7 days of refeeding in refed and control groups. The values are mean ± SE (n = 6–7). Statistical significance of differences are indicated

as follows: **p < 0.01; ***p < 0.001.

gastrocnemius muscle of SS rats than in controls (lower by
35%, p < 0.05), but not in the RF rats relative to controls.
Furthermore, the abundance of DIO2 in the two other muscles
(soleus and tibialis anterior) was not different in SS and RF
rats relative to their respective controls. By contrast, DIO3
(panel C) was more abundant in all three muscles from the
SS than in the controls, namely by 2.2- and 2.5-fold higher in
gastrocnemius and tibialis anterior, respectively, and by about
60% higher in soleus. Although less pronounced than during
semistarvation, the abundance of DIO3 in all three skeletal
muscles after 1 week of refeeding was also higher in refed animals
than in controls: namely+53,+35, and+63% in gastrocnemius,
soleus, and tibialis anterior, respectively, with the difference
being statistically significant in the gastrocnemius and soleus
muscles (p < 0.05).

DISCUSSION

The results presented here suggest a role for diminished
protein turnover in skeletal muscle, associated with altered
muscle thyroid hormone metabolism resulting in diminished T3
availability, in the high efficiency with which body fat is recovered
after substantial body fat depletion.

Diminished Rate of Protein Synthesis and
Turnover
Using the stable isotope flooding dose technique of incorporation
of 13C-labeled valine in protein for in-vivo measurements of
protein synthesis in skeletal muscle, the fractional protein
synthesis rate (Ksyn) is shown to be lower in skeletal muscle of
refed animals than in controls assessed on day 7 of refeeding,
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FIGURE 3 | Net T3 formation from its T4 precursor in Gastrocnemius, Soleus

and Tibialis anterior muscles from (i) rats semistarved (SS) for 14 days and

their controls (CSS), and (ii) rats refed for 7 days (RF7) and their controls

(CRF7). The values are mean ±SE (n = 6). Statistical significance of differences

are indicated as follows: **p < 0.01; ***p < 0.001.

i.e., at about mid-point in the dynamic phase of catch-up fat.
The lower muscle Ksyn in refed animals was observed in all three
hindlimb skeletal muscles studied, namely the gastrocnemius

which is predominantly fast-oxidative glycolytic, soleus which is
predominantly slow-oxidative and the tibialis anterior which is
predominantly glycolytic, thereby suggesting that the lower Ksyn

during catch-up fat occurs independently of skeletal muscle fiber
composition. As the rate of skeletal muscle growth (Kgrowth) was
similar in refed and control animals (in line with similar rates
in total body protein deposition), it follows that the reduced
rate of muscle protein synthesis is accompanied by reduced rate
of muscle protein degradation (Kdeg), thereby underscoring a
role for diminished protein turnover in skeletal muscle in the
suppressed thermogenesis that drives catch-up fat.

Diminished skeletal muscle Ksyn in the postabsorptive state
has previously been shown in obese humans (41) and in ratsmade
obese on a high-fat high-sucrose diet (26), and is considered
to reside in impaired amino acid incorporation into proteins
attributed to lipid infiltration and insulin resistance in the skeletal
muscle (42). These authors have proposed that the mechanisms
underlying such reductions in muscle protein synthesis may
reside in an inhibitory effect of lipid derivative species on insulin
signaling which would result in diminished protein translation,
and that insulin resistance in skeletal muscle not only impairs
glucose metabolism but also protein metabolism (42). Although
skeletal muscle insulin resistance has been shown to be an early
event that is sustained throughout the dynamic phase of catch-up
fat in our rat model (43, 44), the lower Ksyn in skeletal muscle is
reported here at a time-point of refeeding (day 7) when (i) skeletal
muscle lipid content was not found to be higher in muscles from
refed animals than in controls (17, 43), and also (ii) when total
and regional body fat content of the refed animals had not yet
exceeded those of controls (17, 43, 44). Furthermore, the findings
here of diminished Ksyn in all muscle types varying widely in
fiber composition during catch-up fat contrast with past reports
of muscle fiber-type dependency of the lower Ksyn observed in
obese rats, namely only in glycolytic muscles but not in the
soleus (slow-oxidative) muscle of diet-induced obese rats (26),
or only in red oxidative fibers and not in white glycolytic fibers
of the gastrocnemius of the genetic (leptin receptor deficient)
obese Zucker rats (45). Taken together, therefore, the lower Ksyn

observed here in skeletal muscle during catch-up fat is unlikely
to be a consequence of excess whole body, regional or lipid
infiltration in skeletal muscle, but rather reflects a diminished rate
of substrate cycling between protein synthesis and degradation
(i.e., reduced protein turnover) for the purpose of sparing energy
for catch-up fat.

Altered Skeletal Muscle Thyroid Hormone
Metabolism
As the thyroid hormone T3 is known to play an important
role in the control of basal metabolism and thermogenesis (13–
15), we have in past studies examined the extent to which the
well-known reduction in circulating levels of T3 during caloric
restriction is restored during refeeding in the rat model of catch-
up fat (16, 17). In particular, we found that while the blood
concentrations of TSH, T4 and T3 are all markedly lower at
the end of caloric restriction, refeeding resulted in differences in
their restoration kinetics. Indeed, whereas plasma TSH and T4
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FIGURE 4 | Protein expression of the deiodinases: (A) DIO1, (B) DIO2, and (C) DIO3 in Gastrocnemius (GA), Soleus and Tibialis anterior (TA) muscles from (i) rats

semistarved (SS) for 14 days and their controls (CSS), and (ii) rats refed for 7 days (RF7) and their controls (CRF7). The values are mean ±SE (n = 4). Statistical

significance of differences are indicated as follows: *p < 0.05; **p < 0.01.

were completely restored to control levels by day 5 of refeeding,
plasma T3 remained lower, albeit marginally, in the refed animals
than in controls up to day 10 day of refeeding (16), and
could hence contribute to the diminished thermogenesis driving
catch-up fat.

However, circulating levels of thyroid hormones may
not necessarily reflect tissue thyroid hormone levels as the
bioavailability at the tissue and cellular level is dependent
upon local thyroid hormone metabolism (14, 15, 40). The net
formation of T3 from T4 (i.e., net T3 neogenesis) is to a
large extent controlled by an interplay of deiodinase enzymes
that catalyze activation or inactivation of T4 and T3. In the
skeletal muscle, the conversion of T4 into the active hormone
T3 is believed to be primarily catalyzed by DIO2 and the
inactivation of T4 and T3 to be catalyzed by DIO3 (and
possibly also by DIO1) to rT3 and T2 (3,3′diiodothyronine)
(40). In a recent study from our laboratory (18) investigating
possible alterations in thyroid hormone metabolism in skeletal
muscle during catch-up fat, it was reported that the in-vitro
kinetics of T3 generation in the T4-incubated gastrocnemius

muscle of semistarved and refed rats are significantly lower than
in their respective controls. Explanations based upon altered
deiodinase activities were reinforced by the findings that the
protein expression DIO2 was reduced while that of DIO3 was
increased in this hindlimb muscle both during caloric restriction
and refeeding (18).

In the present study, we have extended these investigations
to other muscle types varying widely in fiber composition.
Using the same in-vitro kinetic assay of T3 generated by T4 in
incubated skeletal muscle, we show that the reduction in net
T3 neogenesis in muscle during semistarvation and refeeding is
observed not only in the gastrocnemius muscle, but also in the
soleus and tibialis anterior, thereby suggesting that the reduction
in muscle T3 availability during caloric restriction and persisting
during the catch-up fat phase occurs independently of skeletal
muscle fiber composition, and may involve the whole skeletal
muscle mass. By contrast, alterations in the abundance of the
three deiodinases are found to vary according to muscle type.
In response to semistarvation and after 1 week of refeeding,
DIO2 which is considered to be primarily responsible for T3
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production from T4 in skeletal muscle was less abundant in the
gastrocnemius muscle, but not in the soleus or tibialis anterior.
The abundance of DIO1 (which may limit T3 availability by
diverting T4 and T3 to inactive rT3 and T2) was higher in
the gastrocnemius and tibialis anterior but not in the soleus.
The most striking feature in the analysis of these data on
deiodinases is the robust upregulation of DIO3 observed in
all 3 muscle types during semistarvation, which persisted after
1 week of refeeding in two of these 3 muscles, namely in
the gastrocnemius and soleus. Interestingly, the abundance
of DIO1 in the tibialis anterior, which was increased during
semistarvation, also persisted during refeeding (+70% relative
to controls, p < 001). Thus, during refeeding, in the absence of
a robust increase in the abundance of the T3 inactivator DIO3
in the tibialis anterior, the increased DIO1 in this muscle may
assume a greater importance thanDIO3 upregulation in reducing
T3 availability. Taken together, our results suggest that the lower
net T3 neogenesis in all three muscles of varied fiber composition
studied during semistarvation and catch-up fat seems to reside
primarily in the upregulation of the thyroid hormone inactivating
enzymes DIO1 and/or DIO3 (i.e., deiodinases that catalyze the
conversion of T4 and T3 to biologically inactive rT3 and T2)
rather than in the downregulation of the thyroid hormone
activating enzyme DIO2 which catalyzes the conversion of T4 to
T3. A better understanding of how the muscle-type dependent
changes in these DIOs are co-ordinated to result in diminished
T3 availability during semistarvation and refeeding will need to
be addressed in future studies involving the use of sensitive assays
to detect the changes in the activity of these three deiodinases in
rat skeletal muscle.

Whatever, the mechanisms controlling the upregulation of
the T3 inactivating deiodinase enzymes in the various skeletal
muscle types, our findings here indicate that, the kinetics
of T3 generation in skeletal muscle homogenates incubated
with T4 were lower in semistarved and refed rats. This
underscores the possibility that a lower T3 availability in
skeletal muscle during semistarvation and refeeding could

be contributed not only from a lower plasma T3 level (16,
17), but also from altered muscle deiodinase activities. Given
the role of T3 in controlling many inter-related aspects of
skeletal muscle energetics that include the maintenance of
ionic equilibrium through Na/K ATPase, calcium cycling, fiber
composition, contraction-relaxation kinetics, protein synthesis,
and protein turnover, the relative hypothyroidism in skeletal
muscle during semistarvation and persisting during refeeding
may thus contribute to the suppression of thermogenesis during
caloric restriction and subsequent high efficiency for catch-up fat.

CONCLUSION

The results presented here suggest that diminished skeletal
muscle protein turnover, together with altered local muscle
metabolism of thyroid hormones leading to diminished
intracellular T3 availability, are features of the thrifty metabolism
that drive the rapid restoration of the fat reserves during weight
regain after caloric restriction.
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