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In fish models, seasonal change in feeding is under the influence of water temperature.

However, the effects of temperature on appetite control can vary among fish species and

the mechanisms involved have not been fully characterized. Using goldfish (Carassius

auratus) as a model, seasonal changes in feeding behavior and food intake were

examined in cyprinid species. In our study, foraging activity and food consumption in

goldfish were found to be reduced with positive correlation to the gradual drop in water

temperature occurring during the transition from summer (28.4 ± 2.2◦C) to winter (15.1

± 2.6◦C). In goldfish with a 4-week acclimation at 28◦C, their foraging activity and

food consumption were notably higher than their counterparts with similar acclimation at

15◦C. When compared to the group at 28◦C during summer, the attenuation in feeding

responses at 15◦C during the winter also occurred with parallel rises of leptin I and

II mRNA levels in the liver. Meanwhile, a drop in orexin mRNA along with concurrent

elevations of CCK, MCH, POMC, CART, and leptin receptor (LepR) transcript expression

could be noted in brain areas involved in feeding control. In short-term study, goldfish

acclimated at 28◦C were exposed to 15◦C for 24 h and the treatment was effective in

reducing foraging activity and food intake. The opposite was true in reciprocal experiment

with a rise in water temperature to 28◦C for goldfish acclimated at 15◦C. In parallel

time-course study with lowering of water temperature from 28 to 15◦C, short-term

exposure (6–12 h) of goldfish to 15◦C could also increase leptin I and II mRNA levels

in the liver. Similar to our seasonality study, transcript level of orexin was reduced along

with up-regulation of CCK, MCH, POMC, CART, and LepR gene expression in different

brain areas. Our results, as a whole, suggest that temperature-driven regulation of leptin

output from the liver in conjunction with parallel modulations of orexigenic/anorexigenic

signals and leptin responsiveness in the brain may contribute to the seasonal changes

of feeding behavior and food intake observed in goldfish.

Keywords: appetite control, feeding behavior, temperature change, leptin and leptin receptor, orexigenic factors,

anorexigenic factors, goldfish
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INTRODUCTION

Temperature change in the environment is a key factor known
to affect energy metabolism (1) and body growth in animals (2),
and these modulatory effects are partly mediated via regulation
of food intake (3). In fish models, circannual rhythm of feeding
pattern and food intake has been reported, which is under
the influence of environmental cues including seasonal change
in water temperature (4). However, the effects of temperature
on feeding can be quite variable in different fish species. In
general, a rise in water temperature tends to increase food
intake, e.g., in salmon (Salmo salar) (5), cod (Gadus morhua)
(6), and flounder (Pleuronectes americanus) (7), which can be
attributed to the metabolic demand of enhanced body growth
caused by activation of the GH/IGF-I axis observed at high
temperature (especially during summer) (8–10). Nevertheless,
an increase in water temperature can also induce voluntary
anorexia in fish species, e.g., in Atlantic salmon (Salmo salar),
and the phenomenon may be caused by a drop in the peripheral
stimulator for feeding, namely ghrelin, in systemic circulation
(11). Although central expression of orexigenic/anorexigenic
signals modified by temperature change has been documented
in fish models, e.g., up-regulation of ghrelin in the brain of
Chinese perch (Siniperca chuatsi) by temperature rise (12) and
elevation of CART expression in the hypothalamus of Atlantic
cod (Gadus morhua) by low temperature (6), a recent study in
Arctic charr (Salvelinus alpinus) has revealed that the seasonal
changes of NPY, AgRP, POMC, CART, and leptin expressed in
brain areas involved in feeding control did not correlate with
the annual cycle of feeding reported in the species (13). To
date, no consensus has been reached regarding the functional
role of orexigenic/anorexigenic signals within the central nervous
system (CNS) in the circannual rhythm of feeding observed in
fish species.

To unveil the mechanisms underlying temperature
modulation of feeding in fish models and their functional
implications in seasonal variations in feeding behavior and food
intake, goldfish was used as the animal model for our study
as (i) it is a representative of cyprinid species, the members of
which are commercial fish with high market values in Asian
countries, and (ii) the background information for feeding
behaviors and appetite control are well-documented in the
species (7). In the present study, we sought to address the
questions on: (i) Whether the goldfish displays a seasonal
change in feeding dependent on water temperature which can
be reflected by alterations in feeding behavior and food intake?
(ii) Can these feeding responses be induced by short-term
and/or long-term manipulation of water temperature? (iii)
Can the feeding responses caused by temperature change be
explained by parallel modifications of orexigenic/anorexigenic
signals expressed in the CNS or in periphery tissues (e.g., in the

Abbreviations: AgRP, Agouti-Related Peptide; α-MSH, Alpha Melanocyte-

Stimulating Hormone; CART, Cocaine- and Amphetamine-Regulated Transcript;

CCK, Cholecystokinin; MCH, Melanin-Concentrating Hormone; NPY,

Neuropeptide Y; POMC, Proopiomelanocortin; LepR, Leptin Receptor; CNS,

Central Nervous System.

liver)? Using goldfish adapted to water temperature at different
times of the year but maintained under a constant photoperiod,
different types of feeding behaviors and food consumption were
monitored over an 8-month period covering the transition from
summer to winter and correlated to the corresponding change
in water temperature. To confirm that the differences in feeding
responses observed between the summer and winter months
indeed were caused by temperature change, long-term and
short-term exposure of goldfish to the “summer temperature”
(28◦C) and “winter temperature” (15◦C) were performed to test
if the treatment could mimic the seasonal changes in feeding. To
elucidate the mechanisms for feeding control by temperature,
parallel measurements of leptin I and II mRNA expression in the
liver and transcript levels of NPY, AgRP, orexin, CART, POMC,
CCK, MCH, and leptin receptor (LepR) in selected brain areas
were also conducted. The results of our study have provided
new information on the mechanisms for feeding control by
temperature change in the environment which may contribute
to the seasonal cycle of food intake observed in goldfish.

MATERIALS AND METHODS

Animal Maintenance and Preparation Prior
to Experiments
Goldfish (Carassius auratus) with body weight of 28–34 g were
acquired from local pet stores and maintained at 20 ± 2◦C
in well-aerated 700 L tanks (a total of ∼300 fish with 50–60
fish/tank in ×5 circular tanks with a diameter of 120 cm and
water depth of 60 cm) under a 12-h dark:12-h light photoperiod
with regular replacement of water at a rate of ∼10% total
volume every 48 h using a Gardena R© C1060 automatic irrigation
system (Gardena, Ulm, Germany). To minimize the influence
of reproductive status on feeding, mixed sexes of goldfish
during sexual regression were used in our studies. For seasonal
change in feeding responses (including food consumption and
different types of feeding behaviors), the fish were housed in
200 L tanks (with 20–25 fish/tank in ×4 replica tanks with
the dimension of 73 × 60 × 60 cm) in a separate room
open to the outside via ventilation vents (to allow for seasonal
change in water temperature) but maintained under the same
photoperiod setting. For monitoring of feeding responses in
our seasonality study and long-term/short-term acclimation
experiments to summer (28◦C)/winter temperature (15◦C), the
fish were housed in 20 L “observation tanks” (2 fish/tank with
the dimension of 35 × 25 × 20 cm and up to ×8 replica
tanks per group for individual experiments) with temperature
maintained (± 1◦C) by a submerged heater and cooling
coil linked with a PolyScience R© thermal controller (Preston
Industries Inc., Niles, IL). To study the feeding responses after
temperature acclimation, goldfish were entrained for 14 days
with a “one-meal-per-day” feeding schedule (14) (with food
provision of 2% BW/fish at 10:00 a.m. using an automatic
feeder) prior to the scoring of feeding behaviors/measurement
of food intake. For the studies on target gene expression,
goldfish were sacrificed by anesthesia with 50 mg/L MS222
(Sigma-Aldrich, St. Louis, MO) followed by spinosectomy
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according to the procedures approved by the Committee for
Animal Use for Research and Teaching at the University of the
Hong Kong.

Seasonal Change in Feeding and Its
Correlation With Water Temperature
Seasonal changes in feeding behavior and food consumption
were monitored in goldfish over a period of 8 months (Jul,
2016–Feb, 2017) covering the transition from summer to winter
under a 12-h dark:12-h light photoperiod. The period from July

to Sept of 2016 covered the summer months with an average
water temperature at 28.4 ± 2.2◦C, from Sept to Nov of 2016
covered the autumn months with water temperature at 24.0
± 1.7◦C, from Nov to Dec of 2016 covered the early-mid
phase of winter with water temperature at 20.4 ± 3.5◦C, and
Jan–Feb of 2017 covered the peak phase of winter with water
temperature at 15.1 ± 2.6◦C. After a 14-day entrainment of
“one-meal-per-day” feeding schedule, feeding behaviors and food
consumption were measured as described previously (14). In
this case, different patterns of feeding behaviors were recorded

TABLE 1 | Primer sequences and PCR conditions for real-time PCR assays.

Gene target/GenBank accession no PCR condition: Cycle Tm Product size

Upstream & downstream primer sequences Denaturing Annealing Extension Detection

β-ACTIN/AB039726

5′-CTGGTATCGTGATGGACTCT-3′ 94◦C 56◦C 72◦C 87◦C ×35 91◦C 285 bp

5′-AGCTCATAGCTCTTCTCCAG-3′ 30 s 30 s 30 s 20 s

EF-Iα/AB056104

5′-GATTGTTGCTGGTGGTGTTG-3′ 94◦C 52◦C 72◦C 87◦C ×35 89◦C 216 bp

5′-GCAGGGTTGTAGCCGATTT-3′ 30 s 30 s 30 s 20 s

LEPTIN I/FJ534535

5′-TCCAAAGCTCCTCATAGG-3′ 94◦C 50◦C 72◦C 86◦C ×45 89◦C 270 bp

5′-TGGTGGGTGGCGTTTTCC-3′ 30 s 30 s 30 s 20 s

LEPTIN II/FJ854572

5′-TATCGTGGACACCCTAACTAC-3′ 94◦C 50◦C 72◦C 85◦C ×45 89◦C 224 bp

5′-GGTCTAAAGCCAAGAACCCTAA-3′ 30 s 30 s 30 s 20 s

LEPTIN RECEPTOR/EU911005

5′-CTGGCTTGAAGGTGAACGGAC-3′ 94◦C 65◦C 72◦C 78◦C ×45 87◦C 156 bp

5′-TTGGGTGACAGTGCAGTAGTC-3′ 30 s 30 s 30 s 20 s

CART/AF288810

5′-CCAAAGGACCCGAATCTGA-3′ 94◦C 64◦C 72◦C 72◦C ×35 90◦C 171 bp

5′-TTTGCCGATTCTTGACCCT-3′ 30 s 30 s 30 s 20 s

CCK/CAU70865

5′-CCGCAGTCTCAGAAGATGGG-3′ 94◦C 64◦C 72◦C 87◦C ×35 91◦C 197 bp

5′-GGAGGGGCTTCTGCGATA-3′ 30 s 30 s 30 s 20 s

MCH/AM403730

5′-AGGCTTGAGCGAGAACTTGG-3′ 94◦C 64◦C 72◦C 86◦C ×35 91◦C 272 bp

5′-CCCAGAAGACCTACACCTCCC-3′ 30 s 30 s 30 s 20 s

POMC/AJ431209

5′-AAGCGCTCCTACTCCATGGA-3′ 94◦C 60◦C 72◦C 83◦C ×35 85◦C 282 bp

5′-CTCGTCCCAGGACTTCATGAA-3′ 30 s 30 s 30 s 20 s

NPY/M87297

5′-GTAGTGTTGCGGGTAGCGA-3′ 94◦C 64◦C 72◦C 88◦C ×35 92◦C 234 bp

5′-CAGACACCCCGACCCAAG-3′ 30 s 30 s 30 s 20 s

OREXIN/DQ923590

5′-GCAGAGCTGCTCATTGTTGACGTT-3′ 94◦C 64◦C 72◦C 84◦C ×35 82◦C 286 bp

5′-AACCTTGTGATTACCTCAGGAGT-3′ 30 s 30 s 30 s 20 s

AGRP/AJ555492

5′-TGGCATCACATCCAAACCT-3′ 94◦C 64◦C 72◦C 82◦C ×35 88◦C 230 bp

5′-CAGGTGATGACCCAAGCAG-3′ 30 s 30 s 30 s 20 s

APELIN/FJ755698

5′-GAGCATAGCAAAGAGCTGGA-3′ 94◦C 64◦C 72◦C 89◦C ×35 94◦C 340 bp

5′-GCTGAGGATGAGTGGCTTGT-3′ 30 s 30 s 30 s 20 s
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for 2 h using a KPsec VD 714 Surveillance System (Avtech)
after introduction of food pellets (TetraMin GmBH, Germany;
with ∼47% crude protein, ∼10% crude oils & fat, ∼6% crude
fiber and supplements of vitamins and minerals). By the end
of the 2-h period, the remains of unconsumed pellets were
collected and routinely dried in a 45◦C oven for 3–4 days until
a constant mass had been acquired. After correction for the
loss of soluble components in food pellets (∼0.15% by weight),
the mass difference of the remains vs. the amount added at the
beginning (∼2% BW/fish) was used as an index for food intake.
Based on the video recorded, the cumulative counts of three
types of feeding behaviors observed in goldfish, namely complete
feeding/surface foraging, incomplete feeding/food spitting and
bottom feeding/bottom foraging, were scored manually in a
single-blind manner by the parameters defined by Volkoff and
Peter (15). Briefly, complete feeding was defined as the feeding
act of engulfing food pellets on water surface in a single
foraging movement. Incomplete feeding, in contrast, referred
to the “food rejection act” of regurgitation/spitting of food
pellet without swallowing. Unlike complete feeding occurred on
the water surface, bottom feeding was defined as the feeding
act to pick up food pellets/debris sunk to the bottom. In the
present study, the data for food intake were also correlated
with water temperature in individual experiments conducted
at different times of the year using Pearson product-moment
correlation analysis.

FIGURE 1 | Profile of temperature change during the short-term acclimation of

goldfish from summer temperature (28◦C) to winter temperature (15◦C).

Goldfish were maintained in 28◦C water for 4 weeks during the summer

(Jun–July, 2017) prior to the activation of the cooling system linked to the

water tank to gradually reduce the water temperature to 15◦C (as indicated by

the inverted triangle). The cooling system could allow for a gradual drop in

water temperature from 28 to 15◦C within 6 h without the need of transferring

the fish during the experiment. Without activating the cooling system (as

shown in upper panel), water temperature was maintained at 28◦C without

noticeable change over a 24-h period.

Feeding Changes With Long-Term
Acclimation to Summer and Winter
Temperature
To confirm that seasonal variations in feeding observed were
caused by temperature change in the environment, goldfish
maintained at 20◦C during the autumn period (Sep–Oct, 2017)
were divided into two groups and subjected to long-term
acclimation for 4 weeks in water tanks maintained at summer
temperature (28◦C) and winter temperature (15◦C), respectively.
During the period, the fish were trained with “one-meal-per-day”
feeding at 28/15◦C and used for the scoring of feeding behaviors
and food consumption as described in the preceding section. To
examine the mechanisms involved in temperature regulation of
feeding behavior and food intake, parallel experiments were also
performed to study the effects of a 4-week acclimation at 28◦C
during the summer (July–Aug, 2016) and 15◦C during the winter
(Jan–Feb, 2017) on transcript expression of feeding regulators
identified in the liver and brain areas involved in feeding control
in fish models, including the telencephalon, hypothalamus
and optic tectum (7). The long-term acclimation at respective
temperatures for the two seasons was conducted to minimize
the effect of daily fluctuations of water temperature on target
gene expression. After acclimation to the respective temperature,
the liver and target brain areas were excised and total RNA and
genomic DNA were extracted with Trizol (Invitrogen) according
to the instructions of the manufacturer. DNA contents in
individual samples were quantified by OD260/280 reading and the
data obtained were then used for subsequent data normalization
for target gene expression. The RNA samples prepared were
digested with DNase I, reversely transcribed by Superscript
II (Invitrogen), and subjected to real-time PCR for transcript
measurement of target regulators for feeding in goldfish using
a RotorGene-Q qPCR System (Qiagen) with a Lightcycler R© 480
SYBR Green I Master Kit (Roche) (16). PCR reactions were
conducted with primers and PCR conditions for different gene
targets as shown in Table 1. In our study, parallel measurements
of β actin and elongation factor Iα (EF-Iα) gene expression were
also conducted to serve as internal controls.

Feeding Responses and Gene Expression
Induced by Short-Term Temperature
Change
To study the short-term responses induced by temperature
change, goldfish trained with “one-meal-per-day” feeding and
acclimated at 28◦C were transferred to water tanks at 15◦C
for 24 h. Parallel transfer of goldfish to water tanks at 28◦C
was used as a control treatment. After 24-h exposure to
temperature drop, feeding experiment was initiated (at 28◦C
for control and 15◦C for treatment) to monitor the effects
of acute temperature change on feeding behaviors and food
consumption as described previously. To test for the reversibility
of temperature effect, reciprocal experiment was also performed
by transferring goldfish acclimated at 15◦C to water tanks at 28◦C
for 24 h. In this case, parallel transfer to water tanks at 15◦C

was used as the control group. To establish the time-course of

target gene expression for feeding regulators associated with the
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short-term temperature change, goldfish acclimated at 28◦C was

housed in water tanks linked with the thermal controlling unit
to allow for a gradual drop of water temperature to 15◦C in 6 h
without disturbing the fish (Figure 1). After that, the fish was
maintained at 15◦C until the end of the 24-h period. For the
control treatment, fish were housed in water tanks at 28◦C with
no temperature change over the same period. In our study, the
liver as well as selected brain areas including the telencephalon,
hypothalamus and optic tectum were harvested from individual
fish at 24 and 12 h before and at 0, 6, 12, and 24 h after the
initiation of temperature drop to 15◦C. Total RNA and DNA
were extracted from these samples with Trizol and RT samples
prepared were then used for real-time PCR measurement of
target gene expression as described in the preceding section.

Data Transformation and Statistical
Analysis
For measurement of feeding behaviors, cumulative counts for
different types of feeding behaviors were scored every 10min
continuously over a period of 2 h. Food consumption over the
2-h period was normalized as the mass of food pellets taken
by the fish over 60min and used as an index for food intake
after thermal acclimation. For real-time PCR of target gene
expression, standard curves constructed with serial dilutions of
plasmid DNA carrying the ORF/amplicons for target genes with
a dynamic range of ≥105, amplification efficiency ≥98% and
correlation coefficient ≥0.95 were used for data calibration with
RotorGene Q-Rex software (Qiagen). To adjust for variations
in the amount of tissues used in RNA extraction, raw data

FIGURE 2 | Seasonal changes of feeding behaviors and food intake in goldfish during the transition from summer to winter. (A) Seasonal changes of complete

feeding/surface foraging, incomplete feeding/food spitting and bottom feeding/bottom foraging during the transition from the summer (Jul–Aug, 2016), autumn

(Sep–Oct, 2016), early-mid phase of the winter (Nov–Dec, 2016) to the peak phase of the winter (Jan–Feb, 2017). (B) Seasonal change of food consumption related

to the temperature drop in the environment during the same period. (C) Positive correlation of the gradual decline in food intake observed during the transition from

summer to winter months as shown in (B) with the parallel drop in water temperature as revealed by Pearson product-moment regression analysis. Data presented,

including feeding behaviors, food consumption and water temperature are expressed as mean ± SEM (n = 14–16). Feeding behaviors were scored over a period of

2 h and the data of feeding counts obtained during the summer, autumn and early-mid phase of the winter were compared with the corresponding data of the same

time point from the group scored during the peak phase of the winter using Student’s t-test. For food intake occurred during the same period, the data for food

consumption from different groups were analyzed by one-way ANOVA followed by Tukey post-hoc test. Differences between treatment groups were considered as

significant at p < 0.05.

Frontiers in Endocrinology | www.frontiersin.org 5 March 2019 | Volume 10 | Article 133

https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles


Chen et al. Temperature Control of Feeding in Goldfish

FIGURE 3 | Long-term acclimation to the summer temperature (28◦C) and

winter temperature (15◦C) on feeding behaviors and food consumption in

goldfish. Goldfish acclimated to 20◦C during the autumn months (Sep–Oct,

2017) were maintained for 4 weeks in 28 and 15◦C water tanks respectively

prior to the measurement of (A) feeding behaviors and (B) food consumption.

In this experiment, the feeding counts for the three types of feeding behaviors,

namely complete feeding, incomplete feeding and bottom feeding, as well as

(Continued)

FIGURE 3 | the food intake occurred during the same period were compared

between the two groups using Student’s t-test. Data presented are expressed

as mean ± SEM (n = 12) and the difference between the two groups was

considered as significant at p < 0.05 (*p < 0.05 and ***p < 0.001).

for transcript expression (in femtomole mRNA detected) were
expressed as a ratio of genomic DNA (per µg DNA) detected
in the same sample. Since the internal controls for β actin and
EF-Iα did not show significant difference after long-term/short-
term acclimation, the normalized data were presented directly
or transformed as a percentage of mean values in the reference
control. For the data obtained from seasonality study or
experiments with 4-week/24-h acclimation to summer/ winter
temperature (with temperature change as the variable), statistical
analysis with Student’s t-test or one-way ANOVA followed by
Tukey post-hoc test was performed. For the time-course study
on gene expression with temperature drop from 28 to 15◦C
(with time and temperature change as two variables), the data
were analyzed by two-way ANOVA prior to Tukey test. In both
cases, data presented are expressed as mean ± SEM (n = 10–
16) and differences between treatment groups were considered
as significant at p < 0.05.

RESULTS

Seasonal Change in Feeding and Its
Correlation With Water Temperature
In goldfish subjected to seasonal change in temperature during
the transition from summer to winter, except for a lack
in response for incomplete feeding/food spitting activity, the
cumulative counts for feeding behaviors, including complete
feeding/surface foraging and bottom feeding/ bottom foraging,
were found to be reduced gradually from the summer (Jul–Aug,
2016), autumn (Sept–Oct, 2016), early-mid phase of the winter
(Nov–Dec, 2016) to the peak phase of winter (Jan–Feb, 2017)
(Figure 2A). During the same period, water temperature was
reduced from 28.4± 2.2◦C in summer to 15.1± 2.6◦C during the
peak phase of winter with a gradual drop in food consumption
(Figure 2B). In the same study, Pearson’s analysis also revealed a
positive correlation between the drop in water temperature and
the gradual decline in food consumption during the progression
from summer to winter period (Figure 2C).

Long-Term Thermal Acclimation on
Feeding and Gene Expression of Feeding
Regulators
To test if temperature change can serve as the cause for seasonal
variations in feeding, long-term acclimation of goldfish for 4
weeks to either summer (28◦C) or winter temperature (15◦C)
were performed. In this case, the cumulative counts for complete
feeding/surface foraging and bottom feeding/bottom foraging in
the group acclimated at 28◦C were found to be notably higher
than the group maintained at 15◦C (Figure 3A). Similar to the
results of seasonal change in feeding behaviors, the counts for
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FIGURE 4 | Transcript expression of orexigenic and anorexigenic factors in the liver and brain areas involved in feeding control in goldfish during the summer and

winter months. To avoid the variability of daily fluctuation in water temperature, goldfish were maintained for 4 weeks at 28◦C during the summer (July–Aug, 2016) and

at 15◦C during the winter (Jan–Feb, 2017). After that, the liver and brain areas, including the telencephalon, hypothalamus and optic tectum, were harvested and used

for RNA isolation. RT samples were then prepared and used for real-time PCR for the respective gene targets. In this experiment, parallel measurement of β actin and

EF-Iα mRNA expression were also conducted to serve as the internal control. Data presented (mean ± SEM, n = 12) were compared with Student’s t-test and the

difference between the two groups was considered as significant at p < 0.05 (*p < 0.05, **p < 0.01 and ***p < 0.001).

incomplete feeding/food spitting were not affected by variation
in water temperature. When compared to the group at 28◦C, a
parallel drop in food consumption was also noted with thermal
acclimation to 15◦C (Figure 3B), which was in agreement with
the decline in foraging activity occurring both at the surface and
bottom levels.

In parallel study using goldfish acclimated at 28◦C during
the summer as a reference control, acclimation of the fish to
15◦C during the winter did not alter transcript expression of β

actin and EF-Iα in the liver as well as in brain areas including
the telencephalon, hypothalamus and optic tectum (Figure 4). In
the telencephalon, however, parallel rises in LepR, CART, CCK
and POMC mRNA levels were noted with no significant changes
in transcript expression for leptin I, leptin II, NPY, orexin and
apelin (Figure 4A). A similar pattern of transcript expression was
also observed in the hypothalamus except that 15◦C acclimation
during winter did not alter CART expression but induced an
elevation in MCH with a concurrent drop in orexin mRNA
level (Figure 4B). In the optic tectum, unlike the responses in
telencephalon/hypothalamus, except for the rise in LepR mRNA,
significant changes in transcript expression for the other target
genes examined were not apparent (Figure 4C). In the same

study, interestingly, acclimation at 15◦C during the winter was
effective in increasing leptin I and II mRNA levels in the liver but
with no concurrent change in LepR gene expression at the hepatic
level (Figure 4D).

Short-Term Thermal Acclimation on
Feeding and Gene Expression of Feeding
Regulators
As shown in Figure 5A, a notable reduction in the counts for
complete feeding/surface foraging and bottom feeding/bottom
foraging was observed following a 24-h exposure to 15◦C water
in goldfish previously acclimated at 28◦C, while the opposite
was true with parallel transfer of goldfish acclimated at 15◦C
to 28◦C water for 24 h in the reciprocal experiment. Consistent
with the results for long-term acclimation, short-term changes in
water temperature (from 28 to 15◦C/from 15 to 28◦C for 24 h)
were not effective in altering incomplete feeding/food spitting
activity. Of note, modifications in foraging activity were also
reflected by corresponding changes in food intake. In this case,
food consumption was reduced in 28◦C fish after transfer to

15◦C water but increased in 15◦C fish after transfer to 28◦C

water (Figure 5B). In contrast, parallel transfer of goldfish to
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FIGURE 5 | Short-term acclimation to the summer temperature (28◦C) and

winter temperature (15◦C) on feeding behaviors and food consumption in

goldfish. Goldfish acclimated to 20◦C during the autumn months (Sep–Oct,

2017) were maintained for 4 weeks in 28 and 15◦C water tanks, respectively.

After that, the fish acclimated to 28◦C were transferred to water tanks at 15◦C

for 24 h. In reciprocal experiment, the fish acclimated to 15◦C were transferred

to water tanks at 28◦C during the same period. As control treatment, parallel

experiments without transferring the fish or with parallel transfer into water

tanks with the same acclimation temperature (i.e., from 28 to 28◦C/from 15 to

(Continued)

FIGURE 5 | 15◦C) were also conducted. Following the short-term exposure to

temperature change, measurement of different types of feeding behaviors (A)

and food intake (B) were performed according to the standard protocols. The

data obtained (mean ± SEM, n = 10–12) were analyzed with one-way ANOVA

followed by Tukey post-hoc test. Difference between groups was considered

as significant at p < 0.05 (***p < 0.001).

water tanks with “acclimated temperature” (i.e., 28◦C to 28◦C
and 15◦C to 15◦C) did not trigger any noticeable changes
in feeding behaviors/food intake, indicating that the feeding
responses observed were not caused by handling stress during
the experiment.

To shed light on the mechanisms for feeding control by

short-term temperature change, a time-course experiment was
conducted in goldfish acclimated at 28◦C with a gradual drop

of water temperature from 28◦C to 15◦C. In our system, water

temperature could be reduced to 15◦C within the first 6 h
after initiation of temperature change (Figure 1). Similar to our

seasonality study, short-term exposure to 15◦C could trigger

differential changes in transcript expression of feeding regulators
in the liver as well as in different brain areas. In the telencephalon,
CART, CCK, POMC and LepR mRNA levels were found to
be elevated in a time-dependent manner with no significant
changes in β actin, NPY, orexin, leptin I and leptin II gene
expression (Figure 6). The pattern of transcript expression in the
hypothalamus, including the rises in CCK, POMC, and LepR
gene expression, was comparable with that of the telencephalon.
Interestingly, a drop in orexin mRNA with a parallel rise in
MCH transcript level were also noted, which were absent in
the telencephalon (Figure 7). In the optic tectum, except for
the rise in LepR mRNA, no significant changes were observed
regarding the gene expression for β actin, NPY, orexin, CART,
CCK, MCH, leptin I, leptin II, and LepR (Figure 8). In the same
study, however, leptin I and II mRNA levels were found to be
elevated in the liver but without parallel change in β actin and
LepR gene expression (Figure 9).

DISCUSSION

In poikilotherms, especially in fish species, body functions
including somatic growth (8, 9, 17), reproduction (18, 19),
metabolism (20), locomotor activity (21), stress responses (22),
embryonic development (23), and immune functions (24) are
known to be sensitive to temperature change. In fish models,
circannual cycle in feeding pattern/food intake has been reported
and can be associated with seasonal changes in water temperature
and photoperiod (4). In general, elevation in feeding can be
noted in fish species during the spring/summer months with
higher temperature (25). This is at variance with the case in non-
hibernating homeotherms, e.g., domesticated cats, with increased
feeding in the late autumn/winter (26), which may be related
to the elevated metabolic demand for thermogenesis at low
temperature. The seasonal change in feeding observed in fish
species is also in agreement with the results of previous studies
showing that food intake can be reduced by low temperature,
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FIGURE 6 | Transcript expression of orexigenic and anorexigenic factors within the telencephalon of goldfish with short-term exposure to winter temperature (15◦C).

Water temperature for goldfish acclimated at 28◦C was gradually reduced to 15◦C over a 24-h period using a cooling system linked with the water tank. The

telencephalon was harvested from individual fish at different time points before and after the activation of the cooling system (as indicated by gray triangle). Total RNA

was isolated, reversely transcribed and used for real-time PCR for respective gene targets, including (A) β actin, (B) NPY, (C) Orexin, (D) CART, (E) CCK, (F) POMC,

(G) leptin I, and (H) leptin II and (I) leptin receptor. Parallel experiment with goldfish maintained at 28◦C water without activation of the cooling system was used as the

control treatment. Similar to the previous study on seasonality of orexigenic/anorexigenic signals, transcript expression of β actin was used as the internal control. For

our time course study, the data obtained (mean ± SEM, n = 12) were analyzed using two-way ANOVA followed by Tukey test. Difference between groups was

considered as significant at p < 0.05 (*p < 0.05, **p < 0.01, and ***p < 0.001).

e.g., in catfish (Ictalurus punctatus) (27), halibut (Hippoglossus
hippoglossus) (28), sickleback (Gasterosteus aculeatus) (29),
turbot (Scophthalmus maximus) (30), and tench (Tinca tinca)
(31). However, species-specific variations in feeding responses do
exist in fish models. For examples, high temperature is known to
induce voluntary anorexia in Atlantic salmon (Salmo salar) (11)
and summer fasting can also be observed in some cold water fish,
e.g., in cunner (Tautogolabrus adspersus) (32), suggesting that the
“temperature effect” on feeding can be quite different between
warm water and cold water species.

To confirm that seasonal change in feeding do exist in goldfish,
a cyprinid species known to be well-adapted to a wide range of
water temperature, its feeding behavior and food consumption
weremonitored over a period of 8months covering the transition
from summer to winter. In our study, a gradual decline in
foraging behavior (both surface and bottom foraging) was noted
during the progression from summer to winter with a parallel

drop in water temperature. The decline in foraging activity also
occurred with parallel reduction in food intake, which was found
to have a positive correlation with the attenuation in water
temperature during the same period, suggesting that the seasonal
change in environmental temperature may contribute to the
observed differences in feeding responses between the summer
and winter months. In goldfish, regulation of food consumption
can be achieved by alteration of foraging activity in water
surface/at bottom level with concurrent modification in food
spitting activity, e.g., after treatment with NPY (33) or spexin
(14). However, food spitting activity did not exhibit significant
changes in our seasonality study or parallel experiments with
long-term/short-term acclimation to different temperatures and
the involvement of this food rejection behavior in the seasonal
cycle of feeding is rather unlikely. In our study, using the
fish acclimated to summer temperature (28◦C) as a reference,
long-term and short-term acclimation to winter temperature
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FIGURE 7 | Transcript expression of orexigenic and anorexigenic factors within the hypothalamus of goldfish with short-term exposure to winter temperature (15◦C).

Water temperature for goldfish acclimated at 28◦C was gradually reduced to 15◦C over a 24-h period using a cooling system linked with the water tank. The

hypothalamus was harvested from individual fish at different time points before and after the activation of the cooling system (as indicated by gray triangle). Total RNA

was isolated, reversely transcribed and used for real-time PCR for respective gene targets, including (A) β actin, (B) NPY, (C) Orexin, (D) CCK, (E) MCH, (F) POMC,

(G) leptin I, and (H) leptin II and (I) leptin receptor. Parallel experiment with fish maintained at 28◦C water without activation of the cooling system was used as the

control treatment. For our time course study, the data obtained (mean ± SEM, n = 12) were analyzed with two-way ANOVA followed by Tukey test. Difference

between groups was considered as significant at p < 0.05 (*p < 0.05, **p < 0.01, and ***p < 0.001).

(15◦C) were both effective in mimicking the decrease in foraging
activity and food intake observed during the seasonal change
from summer to winter. The results of short-term acclimation
(from 28 to 15◦C and from 15 to 28◦C) also reveal that the
changes in feeding responses were highly reversible and rapid
modifications in feeding behavior/food intake could be noted
within 24 h exposure to temperature change. Our findings are
highly comparable with the previous study in salmon parr
showing that a short-term cold stress (>4 h) was sufficient to
induce a rapid drop in food intake (34) and provide evidence that
temperature change in the environment can trigger the seasonal
cycle of feeding in goldfish, presumably via a rapid modulation in
feeding behavior/foraging activity.

In homeotherms, including birds and mammals, modification
of food intake by thermal stress (1, 35) is typically associated
with corresponding changes in orexigenic/anorexigenic signals
in the brain as well as in peripheral tissues (e.g., GI tract
and adipose tissue) (2, 3, 36). In mammals (e.g., rat), the

central effects of thermal regulation are commonly accepted
to be mediated by the temperature-sensitive neurons within
the hypothalamus (37), presumably via activation of thermo-
TRP ion channels (38). In bony fish, the functional roles
of orexigenic factors including NPY (33), orexin (39), AgRP
(40), apelin (41), and ghrelin (42) and anorexigenic factors
including CCK (43), CART (44), αMSH (45), MCH (46),
and leptin (47) in appetite control are well-documented, but
not much information is available for their regulation by
temperature change. At present, only four studies have been
reported on this topic in fish models. These include the previous
studies showing up-regulation of CART in the hypothalamus
of Atlantic cod (Gadus morhua) at low temperature (6) and
reduction in hypothalamic levels of ghrelin receptor and NPY
in salmon (Salmo salar) with parallel drops in plasma ghrelin
at high temperature (11). Recently, two other reports have
been published demonstrating that ghrelin and CCK expression
in the brain could be elevated by high temperature in perch
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FIGURE 8 | Transcript expression of orexigenic and anorexigenic factors within the optic tectum of goldfish with short-term exposure to winter temperature (15◦C).

Water temperature for goldfish acclimated at 28◦C was gradually reduced to 15◦C over a 24-h period using a cooling system linked with the water tank. The optic

tectum was harvested from individual fish at different time points before and after the activation of the cooling system (as indicated by gray triangle). Total RNA was

isolated, reversely transcribed and used for real-time PCR for respective gene targets, including (A) β actin, (B) NPY, (C) Orexin, (D) CART, (E) CCK, (F) MCH, (G)

leptin I, and (H) leptin II and (I) leptin receptor. Parallel experiment with goldfish maintained at 28◦C water without activation of the cooling system was used as the

control treatment. For our time course study, the data obtained (mean ± SEM, n = 12) were analyzed with two-way ANOVA followed by Tukey test. Difference

between groups was considered as significant at p < 0.05 (*p < 0.05, **p < 0.01, and ***p < 0.001).

(Siniperca chuatsi) (12) and seahorse (Hippocampus erectus)
(48), respectively. Unfortunately, the results from these studies
are still limited and a common consensus has not been
reached for temperature control of feeding based on the feeding
regulators examined. In fish models, seasonal variations in
central expression of orexigenic/ anorexigenic signals has been
reported, e.g., for ghrelin (49), leptin (50), CCK (51), and
NPY (52). Therefore, it would be tempting to speculate that
their regulation by temperature can mediate the circannual
cycle of food intake. However, the idea was not supported
by the recent study in Arctic charr (Salvelinus alpinus), in
which the seasonal patterns of NPY, AgRP, POMC, CART,
and leptin expression in brain areas involved in appetite
control did not match with its circannual rhythm of feeding
(13). To date, the functional link between seasonal cycle
of feeding and thermal regulation of orexigenic/anorexigenic
signals in the fish brain remains unclear and further studies are
highly warranted.

To shed light on the role of orexigenic/anorexigenic signals
in seasonal change of feeding in cyprinid species, long-term
acclimation of goldfish during the summer at 28◦C and during
the winter at 15◦C were also conducted. In fish models, e.g.,
salmon (Salmo salar) (53), common carp (Cyprinus carpio) (54),
and more recently in goldfish (Carassius auratus) (47), two
forms of leptin, namely leptin I and II, have been identified,
which are believed to be the result of fish-specific/3R whole
genome duplication (55). Unlike mammals with leptin expressed
mainly in adipose tissue, leptin is expressed at high levels
in the liver of fish species (54–56) and exerts its effect as a
satiety factor by regulating central expression of NPY, POMC
and/or CCK, e.g., in goldfish (Carassius auratus) (57) and trout
(Oncorhynchus mykiss) (58). When compared with its “summer
counterpart” at 28◦C, goldfish at 15◦C during the winter was
found to have notable elevations in leptin I and II mRNA levels
in the liver with parallel rises of LepR gene expression in the
telencephalon, hypothalamus and optic tectum, which are the
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FIGURE 9 | Transcript expression of leptin and leptin receptor in the liver of

goldfish with short-term exposure to winter temperature (15◦C). Water

temperature for goldfish acclimated at 28◦C was reduced to 15◦C over a 24-h

period using a cooling system linked with the water tank. The liver was

harvested from individual fish at different time points before and after the

activation of the cooling system (as indicated by gray triangle). Total RNA was

isolated, reversely transcribed and used for real-time PCR for respective gene

targets, including (A) β actin, (B) leptin I, (C) leptin II and (D) leptin receptor.

Parallel experiment with goldfish maintained at 28◦C water without activation

of the cooling system was used as the control treatment. For our time course

study, the data obtained (mean ± SEM, n = 12) were analyzed with two-way

ANOVA followed by Tukey test. Difference between groups was considered as

significant at p < 0.05 (*p < 0.05, **p < 0.01, and ***p < 0.001).

major brain areas in goldfish involved in appetite control (7).
Although the functional roles of NPY, AgRP, orexin, and apelin
as orexigenic factors in fish models are well-documented (59)
and their stimulatory effects on feeding have also been confirmed
in goldfish (33, 41, 60), except for the drop in orexin mRNA
occurring in the hypothalamus at 15◦C, noticeable changes in
gene expression for these feeding stimulators were not observed
in the brain areas examined. In the same study, 15◦C acclimation
during the winter was found to up-regulate central expression
of anorexigenic factors, including the transcript expression of
CCK, CART, and POMC in the telencephalon and CCK, MCH,
and POMC in the hypothalamus. In contrast, significant changes
of leptin I, leptin II, CCK, CART, MCH, and POMC signals
were not apparent in the optic tectum. A similar pattern of
transcript expression observed in our seasonality study was also
noted in our time-course experiment with a gradual drop of
water temperature to 15◦C within 6 h in goldfish acclimated at
28◦C. In this case, similar to the rapid responses of foraging/food
intake with short-term thermal acclimation, notable changes of
transcript expression for leptin I and II in the liver as well
as LepR and other feeding regulators expressed in different
brain areas were also observed within 6–12 h exposure to
temperature change and maintained up to 24 h during the
course of the experiment. These results, as a whole, suggest
that the reduction in foraging activity and food intake in
goldfish caused by the seasonal change in water temperature
may be mediated by the rises of leptin I and II signals in
the liver with parallel enhancement in leptin sensitivity via
LepR up-regulation in brain areas involved in feeding control.
Meanwhile, central regulation of orexigenic/anorexigenic signals
can also occur, with a down-regulation of orexin in the
hypothalamus along with parallel rises of CCK, CART,MCH, and
POMC expression in the telencephalon/hypothalamus. In our
study, the orexigenic/anorexigenic factors expressed in the optic
tectum did not exhibit seasonal change/noticeable responses to
temperature drop. Presumably, this brain area is not a major site
within the CNS for temperature sensing or thermal responses
in goldfish.

In summary, we have confirmed that seasonal change of

feeding with a parallel reduction in foraging activity and food

intake do exist in goldfish as a result of temperature drop
during the transition from summer to winter period. These

feeding responses can occur rapidly and are highly reversible
with respect to temperature change, and may involve the

leptin output from the liver with differential modifications of
orexigenic/anorexigenic signals and leptin responsiveness in

brain areas for appetite control. To our knowledge, our study

represents the first report on (i) thermal regulation of leptin
expression in the liver and (ii) involvement of leptin/LepR system

in seasonal change of feeding induced by temperature drop in a
fish model. Although our studies have provided new insights on
the mechanisms for seasonal change of feeding in fish species,
the functional components for thermal detection, e.g., through
the thermal sensing neurons within the hypothalamus (37) or
vagus nerve network (61), have yet to be determined. Of note,
POMC expression induced by CCK (43) and CART expression
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induced by leptin (62) and MCH (63) have been reported in
goldfish, especially in brain areas responsible for feeding control,
and the possibility for functional interactions among different
feeding regulators in the seasonal cycle of feeding cannot be
excluded. Besides temperature change, photoperiod is another
environmental cue known to affect feeding in fish species (4).
Given that melatonin has been shown to inhibit food intake in
goldfish (64) and stimulate leptin expression in the liver (65) with
parallel changes of orexigenic/anorexigenic signals in the brain
of zebrafish (Danio rerio) (66), the functional interplay between
photoperiod and temperature via a “crosstalk” of melatonin with
other feeding regulators for sure can be an interesting topic to
follow up for the seasonal change of feeding in fish models.
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