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Cell-matrix interactions play important roles in pituitary development, physiology, and

pathogenesis. In other tissues, a family of non-collagenous proteins, termed SIBLINGs,

are known to contribute to cell-matrix interactions. Anterior pituitary gland expresses two

SIBLING genes, Dmp1 (dentin matrix protein-1) and Spp1 (secreted phosphoprotein-1)

encoding DMP1 and osteopontin proteins, respectively, but their expression pattern

and roles in pituitary functions have not been clarified. Here we provide novel evidence

supporting the conclusion that Spp1/osteopontin, like Dmp1/DMP1, are expressed in

gonadotrophs in a sex- and age-specific manner. Other anterior pituitary cell types do

not express these genes. In contrast to Dmp1, Spp1 expression is higher in males; in

females, the expression reaches the peak during the diestrus phase of estrous cycle.

In further contrast to Dmp1 and marker genes for gonadotrophs, the expression of

Spp1 is not regulated by gonadotropin-releasing hormone in vivo and in vitro. However,

Spp1 expression increases progressively after pituitary cell dispersion in both female

and male cultures. We may speculate that gonadotrophs signal to other pituitary cell

types about changes in the structure of pituitary cell-matrix network by osteopontin, a

function consistent with the role of this secretory protein in postnatal tissue remodeling,

extracellular matrix reorganization after injury, and tumorigenesis.

Keywords: pituitary, gonadotrophs, SIBLINGs, Spp1, osteopontin, Dmp1, GnRH, cell-matrix

INTRODUCTION

Cell—extracellular matrix (ECM) tridimensional network is critical for the proper functioning of
all tissues (1), including anterior pituitary gland (2). Individual components of ECM include two
main classes of macromolecules; proteoglycans and fibrous proteins (laminin, collagens, elastins,
and fibronectin) (3, 4). The effects of the ECM are mediated mainly by plasma membrane receptors
called integrins; individual components of ECM bind to different integrins, leading to activation
of multiple signaling pathways (5). In anterior pituitary, the presence of ECM molecules, like
collagens, laminin, and small leucine-rich proteoglycans, and cell types producing these proteins
have been identified (6–10). Pituitary cells also express integrins (11). There is increasing evidence
that ECM is critical for development and differentiation of the pituitary gland (12), for postnatal cell
migration and pituitary remodeling (13), and for hormone secretion (14, 15). As in other tissues,
ECMmolecules may also have important roles in pituitary tumorigenesis (16).
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In addition to proteoglycans and fibrous proteins, ECM
contains other proteins, including SIBLINGs (Small Integrin-
Binding Ligand, N-linked Glycophosphoproteins). SIBLINGs
are encoded by a family of five genes, comprising secreted
phosphoprotein 1 (Spp1), which encodes osteopontin (OPN),
integrin-binding sialoprotein, which encodes bone sialoprotein,
and dentin matrix protein 1 (Dmp1), dentin sialophosphoprotein
and matrix extracellular phosphoglycoprotein, which encode
proteins with the same name (17). SIBLINGs are soluble, secreted
proteins that can act as modulators of cell adhesion as well
as autocrine and paracrine ligands for ECM receptors. For
example, OPN activates a variety of integrin receptors as well
as CD44 receptor splice variants (18). The ligand activities of
SIBLINGs are modulated by post-translational modifications,
such as phosphorylation, glycosylation, proteolytic processing,
sulphation, and transglutaminase cross-linking (19, 20).

SIBLINGs were initially described as mineralized tissue-
associated genes (21). However, recent findings indicate that they
are more widely distributed, including normal ductal epithelia
in salivary gland (22) and kidney (23). Spp1/OPN were also
detected in central nervous system (24), where they may play a
role in neurodegenerative diseases, such as Alzheimer’s disease
(25), Parkinson’s disease (26), and multiple sclerosis (27, 28).
Dmp1/DMP1 was reported to be expressed in the brain, as well
as in the liver, muscle, pancreas and kidney (29). SIBLING gene
family is also expressed in various tumors (18, 30) and OPN was
suggested to be a valuable biomarker for diagnosing and treating
cancers (31).

Our recent RNA-sequence analysis revealed that Dmp1 and
Spp1, but no other SIBLING genes, were also expressed in
anterior pituitary cells (32). The expression of Dmp1 is restricted
to gonadotrophs, cells that produce luteinizing hormone (LH)
and follicle-stimulating hormone (FSH), and is stimulated by
gonadotropin-releasing hormone (GnRH) but not by other
hypothalamic releasing factors. GnRH-induced expression of this
gene is coupled with release of DMP1 in extracellular medium
through the regulated secretory pathway. In vivo, the sex-specific
pituitary Dmp1 expression is established during the peripubertal
period and is elevated after ovulation. GnRH induction of
Dmp1 is mediated by the protein kinase C signaling pathway
through ERK1/2 signaling pathway; in addition, the response
is facilitated by progesterone (32). It has also been shown that
Spp1 is expressed in gonadotrophs and that mRNA levels were
down regulated in anterior pituitary of lactating animals and by
injection of estradiol (33).

Here we summarize work on Spp1 expression in rat anterior
pituitary cells in vivo and in vitro. These include sexual
dimorphism in Spp1 expression during maturation, effects of
cell-matrix network destruction by cell dispersion procedure on
Spp1 expression, and evaluation of the role of GnRH receptors
(GnRHR) in the expression of this gene. We also studied the

Abbreviations: DMP1, dentin matrix protein 1; ECM, extracellular matrix;

FSH, follicle-stimulating hormone; GnRH, gonadotropin-releasing hormone;

GnRHR, GnRH receptor; LH, luteinizing hormone; OPN, osteopontin; SIBLINGs,

small integrin-binding ligand, N-linked glycophosphoproteins; Spp1, secreted

phosphoprotein 1.

expression pattern of OPN in prepubertal females and males and
cycling females as well as the cell type specificity in expression of
this protein. Finally, we compared Spp1 expression with Dmp1
expression in pituitary gonadotrophs.

METHODS

Animals
Experiments were performed with female and male Sprague
Dawley rats obtained from Taconic Farms (Germantown, NY).
Animals were housed under constant conditions of temperature
and humidity, with light on between 6 a.m. and 8 p.m. All
experiments were repeated at least three times and were approved
by the NICHD Animal Care and Use Committee (16-041).

Ontogeny of Spp1/OPN Expression
Experiments were performed with 2 days to 12 weeks old female
and male rats. In some postpubertal females, a vaginal smear was
taken of adult females to obtain information about the estrous
cycle stage. Vaginal material was stained by a 0.1% aqueous
solution of methylene blue and examined under a microscope.
Animals were euthanized via asphyxiation with CO2 and whole
pituitary or anterior pituitary glands were removed and used for
histological preparations or RNA extraction as described below.

Anterior Pituitary Cell Culture
For in vitro experiments, 4- or 7-week-old female and male
rats were euthanized in the morning. After decapitation
anterior pituitary glands were removed and pituitary cells were
mechanically dispersed after trypsin and EDTA treatments as
previously described (34). Dispersed cells were seeded on poly-
D-lysine coated 24-well plates, 1.5 million per well. Plated cells
were initially cultured in medium 199 containing Earle’s salts,
sodium bicarbonate, penicillin (100 units per ml), streptomycin
(100 µg per ml) and 10% heat-inactivated horse serum (Life
Technologies, Grand Island, NY). If not otherwise specified,
experiments were performed with cells cultured overnight,
washed and bathed in medium 199 with Hank’s salt and
containing 0.1% BSA. At the end of experiments, attached cells
were scraped for RNA extraction.

In Vivo Treatments
Four- or seven-week-old female and male rats were injected
once intraperitoneally with a GnRHR agonist, buserelin acetate
(5 µg/0.4 ml/per animal) from Sigma (St. Louis, MO) or PBS
(0.4 ml/per animal). Euthanasia was performed 3, 6, or 9 h
after intraperitoneal injections. After decapitation, blood was
collected, and serum was separated and stored at −80◦C for
LH concentration measurement. The whole anterior pituitaries
were collected in RNA later stabilization solution (Thermo Fisher
Scientific, Waltham, MA) for RNA extraction.

qRT-PCR Analysis
Total RNA was extracted from individual anterior pituitary
glands and primary cultures of anterior pituitary cells using
RNeasy Plus Mini Kit (Qiagen, Valencia, CA). RNA was
reverse transcribed with a Transcriptor First Stand cDNA
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Synthesis Kit (Roche Applied Sciences, Indianapolis, IN).
Quantitative RT-PCR was performed using Applied Biosystems
pre-designed Taq-Man Gene Expression Assays for rats using
the LightCycler R© TaqMan R© Master Mix and the LightCycler
2.0 Real-time PCR system (Roche Applied Science). Target
gene expression levels were determined by the comparative
2∧(-delta C(T)) quantification method using Gapdh as the
reference gene, which was previously established to be a suitable
reference gene for the anterior pituitary tissue (35). Applied
Biosystems predesigned TaqMan Gene Expression Assays were
used: Dmp1: Rn01450122_m1, Spp1 (Rn00681031_m1), Gnrhr
(Rn00578981_m1), and Gapdh: Rn01462662_g1.

Immunohistochemical Analysis
Whole pituitaries were quickly and carefully isolated and fixed in
Bouin’s solution for 48 h. Tissue was then embedded in paraffin
and cut in coronal plane. Five µm thick sections were mounted
on glass slides and processed for immunohistochemistry as
previously described (36, 37). Briefly, after deparaffinization,
antigen retrieval in citrate buffer (0.01M, pH 6) was performed.
Monoclonal OPN antibody (The Developmental Studies
Hybridoma Bank, Iowa City, IA) in 1:400 dilution was applied
overnight at 4◦C. Secondary donkey anti-mouse-HRP (Santa
Cruz Biotechnology, Dallas, TX) was then applied at 1:200
dilution for 2 h, and visualization was afterwards performed
with diaminobenzidine tetrahydrochloride (Vector Laboratories,
Burlingame, CA). Slides were mounted with DPX (Sigma, St.
Louis, MO) and sections examined under an Olympus BX61
microscope. For double immunofluorescence studies, after
incubation of sections with the OPN antibody, secondary
Alexa Fluor donkey-anti-mouse 488 (Thermo Fisher Scientific,
Waltham, MA) was applied at 1:400 dilution for 2 h. Sections
were then incubated for 2 h with rabbit-anti rat LH or guinea
pig-anti FSH (1:500 dilution) obtained from Dr. A. F. Parlow
(National Institute of Diabetes and Digestive and Kidney
Diseases, National Hormone and Peptide Program, Torrance,
CA). Following the incubation with donkey-anti rabbit or
donkey-anti guinea pig 555 Alexa Fluor secondary antibodies
(1:400 dilution) slides were mounted with Mowiol based
mounting medium and examined under inverted Zeiss LSM 510
confocal microscope. Triple immunofluorescence labeling was
done as described above using Alexa Fluor Dyes: donkey-anti
rabbit 488, donkey-anti guinea pig 555, and donkey-anti mouse
647 (Thermo Fisher Scientific, Waltham, MA), and the sections
were examined under Leica TCS SP5 II confocal microscope.

Statistics
All numerical values in the text are reported as the mean
± SEM from one of at least three similar in vivo or
in vitro experiments. KaleidaGraph Program (Synergy Software,
Reading, Pennsylvania) was used for all calculation and
graph presentation. Significant differences between means were
determined by a Student’s t-test or an ANOVA accompanied
with the post hoc Student-Newman-Keuls test as well as
for regression/correlation analyses and calculation of the half
time of decay in gene expression. P-values of <0.05 were
considered significant.

RESULTS

Spp1 Is Expressed in Anterior Pituitary of
Developing Animals in a
Sex-Specific Manner
The Spp1 expression was investigated in male and female anterior
pituitary tissue from 2 days to 12 weeks old rats (Figure 1A).
During this period, the gene was expressed in both sexes
and the mRNA expression varied between 5 and 70% of the
expression of Gapdh, a housekeeping gene. Pituitaries obtained
from animals up to 3 weeks of age showed no sex difference
in the expression of Spp1. From week four onward, however,
the sex-specific expression pattern was established. First, Spp1
levels were always significantly higher inmale pituitaries. Second,
there were differences in terms of timing needed to reach the
peak in mRNA expression. In males, there was a progressive
increase in Spp1 expression, reaching the peak value at 5 weeks of
age, with ∼13-fold increase in expression when compared to the
second day of age. This was followed by a progressive decrease
in gene expression during peripubertal and postpubertal periods.
In females, however, the first peak in expression was reached
during infantile period, with an ∼3-fold increase compared to
the second day of age. This was followed by a gradual decline
during the juvenile, peripubertal and postpubertal age, with
a secondary transient increase in expression at the age of 8
weeks (Figure 1A).

In both female and male rats, the developmental profiles of
Spp1 were highly comparable to profiles of major gonadotroph-
specific (hereafter marker) genes, Gnrhr, Lhb, and Fshb, as
well as to the gonadotroph/thyrotroph-specific gene Cga
(35). This prompted us to examine the relationship between
Spp1 expression vs. marker gene expression during sexual
maturation. This was done using a linear correlation analysis
and the Pearson r-coefficient as an indicator of significance
of correlation. Scatter data points for Gnrhr vs. Spp1 in
developing males (Figure 1B) and females (Figure 1C),
had a linear tendency, with the r value significant in
both cases.

Furthermore, Spp1 expression correlated well with the
expression of Lhb, Fshb, and Cga in males (Figures 2A–C). There
was also correlation between Spp1 vs. Cga in females (Figure 2F),
with comparable r-coefficient values in females and males, as
well as between Spp1 and Lhb expression (Figure 2D), but with
lower r-coefficient in females when compared withmales. Finally,
the r-coefficient value was not significant when Spp1 expression
was compared with Fshb expression in females (Figure 2E). The
data points from prepubertal females (shown in gray) and in
postpubertal females (shown in white) suggest that correlation
was attenuated in postpubertal animals.

To clarify how the estrous cycle influences gene expression,
we examined Lhb, Fshb, Cga, and Spp1 expression in pituitaries
from proestrus, estrus, and combined diestrus-1 (metestrus)
and diestrus-2 animals. The expression of Lhb, Fshb, and Cga
was highest in diestrus animals and lowest in estrus animals
(Figure 2G). The pattern of Spp1 expression during of estrous
cycle was different: the smallest was during proestrus (2.84 ±

0.70, n = 14), followed by estrus (7.50 ± 0.89, n = 8; P < 0.01
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FIGURE 1 | The expression pattern of Spp1 mRNA in anterior pituitary of developing rats is comparable to Gnrhr expression. (A) The sex-specific developmental

profiles of Spp1 expression. White circles: females; black circles: males. In postpubertal females, the mean values are derived from regularly cycling animals in

proestrus, estrus, and diestrus 1 and 2 stages of the cycle. (B,C) The expression of Spp1 correlates with expression of Gnrhr, a gonadotroph marker gene, in male

(B) and female (C) pituitaries. Data points shown are mean ± SEM values from 6 to 37 animals per group, relative to Gapdh (set as 100%). Correlation and linear

regression analyses and statistical evaluation are described in Material and Methods; r, coefficient of correlation. The mean ± SEM values for Gnrhr are derived from

(38). Asterisks indicate significant differences between pairs (A); the p values for r coefficient are shown on top of panels (B,C). Gray circles, prepubertal females;

white circle, postpubertal females (C).

FIGURE 2 | The expression of Spp1 correlates with expression of other gonadotroph marker genes in a sex-specific manner in anterior pituitary tissue from

developing rats. Correlation between Spp1 vs. Lhb (A,D), Fshb (B,E), and Cga (C,F) expression. Data points for Lhb, Fshb, and Cga are derived from (35). n.s.,

non-significant. Gray circles, prepubertal females; white circles, postpubertal females. (G) The expression of gonadotroph marker genes and Spp1 in postpubertal

females during estrous cycle: P, proestrus; E, estrus; D, diestrus-1 (metestrus) + diestrus-2.
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FIGURE 3 | The sex-specific expression pattern of osteopontin (OPN) in the

anterior pituitary tissue from prepubertal female and male rats. Male tissue

sections contained greater number of labeled cells which were more

homogenously distributed, when compared to female pituitary tissue. Scale

bar of 200µm applies to both images.

vs. proestrus) and the largest was during the diestrus (17.36 ±

1.89, n= 15; P < 0.01 vs. proestrus).
In contrast to gonadotroph marker genes, no correlation was

observed between Spp1 expression vs. expression of Pomc, a
marker gene for corticotrophs and melanotrophs, Tshb, a marker
gene for thyrotrophs, Gh1, a marker gene for somatotrophs, and
Prl, a marker gene for lactotrophs (data not shown).

These results suggest that Spp1 is expressed in pituitary gland
in a sex-specific manner and that expression of this gene during
development is synchronized with expression of gonadotroph
signature genes, a finding consistent with a hypothesis that this
gene is active only in gonadotrophs. However, the expression of
Spp1 is regulated differently than the expression of gonadotroph
marker genes during the estrous cycle.

In vivo OPN Is Specifically Expressed in
Pituitary Gonadotrophs
To clarify this hypothesis, we performed an
immunohistochemical analysis of pituitary tissue using
antibodies specific for OPN, a protein encoded by Spp1, LHβ,
and FSHβ. This analysis confirmed that OPN was also present in
both female and male pituitary cells during sexual maturation.
Figure 3 shows OPN-positive cells in female and male pituitaries
from prepubertal animals, with more positive cells observed
in male pituitaries. In parallel to mRNA expression, OPN-
positive cells were also visible in peripubertal and postpubertal
anterior pituitaries from both sexes and with greater number of
labeled cells in male tissue sections (data not shown). Finally,
double immunohistochemical labeling indicated that all OPN-
positive cells in males and females were also LHβ positive,
i.e., that Spp1/OPN are specifically expressed in LHβ-positive
gonadotrophs (Figure 4). Finally, triple immunohistochemical
labeling indicated that most of the OPN positive cells in males
were positive for both LHβ and FSHβ (Figure 5).

However, OPN labeling was not visible in all gonadotrophs
(Figures 4, 5), suggesting that in vivo expression of OPN was
bellow detection by immunohistochemistry in a fraction of
these cells. In parallel to Spp1 expression during estrous cycle

(Figure 2G), greater number of OPN-positive gonadotrophs
could be observed in diestrus when compared to other stages
of the estrous cycle. Furthermore, OPN-positive gonadotrophs
were more intensely labeled in diestrus (Figure 6). Finally, the
difference in the expression of gonadotroph marker genes and
Spp1 during estrous cycle suggest that Spp1 expression was
probably independent of the status of GnRH secretion.

Basal Spp1 Expression Is Upregulated in
Cultured Pituitary Cells
Next, we investigated the expression of basal Spp1 in primary
pituitary cell cultures. After cell dispersion, the Spp1 expression
progressively increased as a function of time in both female
and male pituitary cell cultures. The upregulation of Spp1
expression persisted over several days; Figure 7A illustrates the
time course of upregulation of Spp1 expression during the first 3
days of culturing in medium 199 containing 10% horse serum.
Similar growth profiles in Spp1 expression were observed in
cells cultured in medium 199 containing fetal calf serum (data
not shown). In cells cultured in serum-free and 0.1% BSA-
containing medium, the growth in gene expression was not
abolished and the rate of expression was only slightly attenuated.
For example, in cells from 7-week old females cultured overnight
in horse-serum containing medium or 0.1% BSA-containing
medium, the expression of Spp1 was 53.21 ± 2.52 and 43.88
± 3.26, respectively. In contrast to Spp1, the expression of
Gnrhr decreased progressively with culturing time [Figure 7B
and (38)]. This indicates that loss of pulsatile GnRH stimulation
and tridimensional pituitary structure has opposite effect on
expression of Spp1 and gonadotroph marker genes.

The Spp1 expression in pituitary cells cultured in poly-D-
lysine coated wells for 48 h was 112 ± 24, while in collagen-
coated wells was 134 ± 36, both relative to Gapdh expression (n
= 6). However, the rate in Spp1 expression decreased in female
pituitary cells cultured in horse serum- and BSA-containing
medium when media were replaced with fresh medium once
or twice during 72 h incubation (Figure 7C). In contrast, the
decay inGnrhr expression was not affected by washing procedure
(Figure 7D). These observations are consistent with a hypothesis
that an autocrine or paracrine factor, other than GnRH (39),
stimulates Spp1 expression.

Spp1 mRNA Expression Is Not Regulated
by GnRH
To evaluate effects of GnRH on Spp1 mRNA expression more
directly, we performed two types of experiments, in vitro and
in vivo. Figure 8 summarizes experiments done with pituitary
cells derived from 4-week old females and males. Treatment
of 20 h-old cultures of these cells with 10 nM GnRH during
8 h incubation did not affect Spp1 expression (Figure 8A). In
contrast, the expression of a sister gene Dmp1 increased in
a time-dependent manner, with a peak in response after 4 h
of incubation (Figure 8B). The expression of Gnrhr was also
stimulated by GnRH in both pituitary cultures, from females and
males (Figure 8C).
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FIGURE 4 | OPN expression in the adult pituitary tissue is sex-specific and restricted to gonadotrophs. Immunofluorescence staining for OPN and LHβ in the anterior

pituitary tissue from adult female (top) and male (bottom) rats. Scale bar of 20µm applies to all images.

FIGURE 5 | Triple immunofluorescence labeling for OPN (green), FSHβ (red), and LHβ (blue) in adult male rat pituitary tissue. Low magnification images (upper row)

show that all OPN-positive cells were also LHβ-positive; most of the OPN-positive cells are both FSHβ and LHβ-positive. However, OPN was not visible in all

gonadotrophs. Scale bar: 100µm. High -magnification of triple immunofluorescence labeling for OPN, FSHβ and LHβ (bottom row) shows a cluster of gonadotroph

cells, most of which show immunoreactivity for all three markers. Scale bar: 10µm.

The results of in vivo experiments with 4-week-old female
and male rats were summarized in Figure 9. Animals were
intraperitoneally injected with saline solution (solvent) or 5 µg
of buserelin acetate, a GnRHR agonist. Animals were sacrificed
3, 6, and 9 h after injection, blood was collected for serum LH
measurements and pituitary glands were removed for qRT-PCR

analysis. LH measurements confirmed that stimulus secretion
coupling was operative under these experimental conditions
(data not shown). We also observed a progressive Dmp1
expression of comparable levels to those observed in cultured
pituitary cells (Figure 9A). However, buserelin acetate treatment
did not affect Spp1 expression (Figure 9B).
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FIGURE 6 | Estrous cycle influences OPN expression in the pituitary tissue. Gonadotrophs were more intensively labeled in diestrus (D), when compared to proestrus

(P) and estrus (E). Scale bar = 20µm applies to all images.

We also performed two in vitro experiments using pituitary
cells from 7-week-old female rats. In the first experiment, cells
were cultured overnight in GnRH-free medium, and after that for
2–60 h in the presence and absence of 10 nM GnRH. Under these
conditions, GnRH-induced expression of Dmp1 (Figure 10A,
top), with kinetics comparable to that we reported earlier,
with a peak in response observed after 6 h GnRH application,
followed by a decay to levels that were on the edge of detection
by qRT-PCR (32). The subsequent application of GnRH was
inefficient, indicating that decay in Dmp1 expression is not due

to degradation of GnRH but reflects desensitization of response
(data not shown). In contrast, during 60 h of incubation, there
was a progressive increase in Spp1 expression in both controls

and 10 nM GnRH-treated cells, but no significant differences

between treated and untreated cells at the same time points
(Figure 10A, bottom).

In the second experiment, pituitary cells were initially

cultured for 96 h without GnRH, followed by washing and
addition of fresh medium supplemented with 10 nM GnRH.

Under these conditions, we also observed a time-dependent
induction of Dmp1 expression by GnRH (Figure 10B, top),
indicating that GnRH-induced intracellular signaling and
stimulus transcriptional coupling were still operative. However,
the expression of Spp1was comparable in all groups (Figure 10B,
bottom). In vivo injected buserelin acetate to 7-week old females

also stimulated Dmp1 expression and did not affect Spp1
expression (Figure 10C).

In vitro experiments were also done with pituitary cultures
from 2-, 3-, 6-, 8-, 9-, and 12-week old animals and no change
in Spp1 expression was observed in GnRH (10 nM)-treated cells
(data not shown), further supporting the view that GnRH does
not regulate Spp1 expression. We also treated cultured cells with
100 nM thyrotropin-releasing hormone, 100 nM corticotropin-
releasing hormone, 100 nM somatostatin-28, 1µM dopamine,
1µM oxytocin, 1µM PACAP28, 1µM endothelin-1, 25 ng/ml
activin, 100 ng/ml IGF, 10 ng/ml EGF, and 2 ng//ml TGFβ1 for
6 h. None of these treatments affected Spp1 expression in vitro
(data not shown).

DISCUSSION

The expression of OPN mRNA in pituitary gonadotrophs has
been reported previously (33). Here we provide further evidence
that Spp1 is expressed in gonadotrophs but not in other pituitary
cell types. First, the developmental pattern of Spp1/OPN is sex-
specific and comparable to that observed for Lhb, Fshb, andGnrhr
(35), the well-established marker genes for gonadotrophs (40).
Second, there was no correlation between Spp1 vs. Gh1, Prl,
Tshb, and Pomc, the marker genes for somatotrophs, lactotrophs,
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FIGURE 7 | Culturing of dispersed pituitary cells stimulates Spp1 expression. (A) The time course of basal Spp1 expression in cultured pituitary cells. Cells were

derived from 7-week-old female and male rats. Zero indicates Spp1 expression levels immediately after cell dispersion. Cells were cultured in medium 199 containing

horse serum. (B) Opposite effects of dispersion and culturing of pituitary cells from females on Spp1 and Gnrhr expression. In (A) and (B), cells were continuously

cultured in medium 199 containing horse serum without replacement of old medium with fresh. (C,D) Effects of replacement of culturing medium on rate of basal

Spp1 (C) and Gnrhr (D) expression. Old media were replaced with fresh media after 12, 36, and 60 h incubation and cells were collected for mRNA extraction

immediately after dispersion, and 24, 48, and 72 h after dispersion.

FIGURE 8 | The lack of an ability of GnRH to stimulate Spp1 expression in cultured anterior pituitary cells. Experiments were performed with cells from 4-week-old

females and males. Cells were cultured overnight in medium 199 containing horse serum, which was replaced with BSA-containing medium 199 supplemented with

10 nM GnRH in the morning, cultured for 0 to 8 h, and mRNA was extracted for measurement of Spp1 (A), Dmp1 (B), and Gnrhr (C) expression.
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FIGURE 9 | The lack of an effect of GnRHR agonist injection in vivo on Spp1

mRNA expression in anterior pituitary gland. Prepubertal (4-week-old) female

and male rats were injected with buserelin acetate, a GnRHR agonist (5

µg/0.4ml per animal or solvent (0.4ml PBS) intraperitoneally. Three, 6 or 9 h

after injection, anterior pituitary glands were removed and qRT-PCR analysis

for Dmp1 (A), Spp1 (B), and Gapdh was performed; asterisks indicate

significant differences vs. the corresponding solvent injected animals; p < 0.05

or higher.

thyrotrophs, and corticotrophs, respectively. Third, immuno-
histochemical analysis showed the expression of OPN only in
LHβ- and LHβ/FSHβ- positive cells. Our recent single cell RNA-
sequence also showed the expression of Spp1 in gonadotrophs
only (NCBI Sequence Read Archive accession SRP151788). Thus,
Spp1 is an additional gonadotroph-specific gene.

The expression of gonadotroph-marker genes, such as Lhb,
Fshb, and Gnrhr, is regulated by GnRH (41). Previously
we also showed that pulsatile GnRH application facilitated
expression of numerous genes, including Fshb, Cga, and Gnrhr,
but not Spp1 (32). Here we show that both in vitro and
in vivo activations of GnRHR were ineffective in induction
of Spp1. We also show that Spp1 expression varies during
estrous cycle, with the pattern not comparable to endogenous
GnRH release. Activation of other G protein-coupled receptors
expressed in gonadotrophs was also ineffective. In other tissues,
the expression of OPN is up-regulated by numerous growth
and differentiation factors, including transforming growth
factor-β superfamily, bone morphogenic proteins, epidermal
growth factors, platelet-derived growth factor, and inflammatory
cytokines. Also, steroids, retinoic acid, glucocorticosteroids, and
1.25-dihydroxyvitamin D3 increase OPN expression (42). In our
experiments, IGF, EGF, TGFβ1, and activin were ineffective.

We established previously that Dmp1 is a gonadotroph-
specific gene within cells of anterior pituitary gland (32).
However, the expression of these two SIBLING genes in

gonadotrophs varies. Both genes are expressed in vivo in a sex-
specific manner, but the expression of Spp1 was always higher
in males and Dmp1 was always better expressed in females. In
postpubertal females, the expression of Spp1 was largest during
the diestrus stage of estrous cycle, whereas the expression of
Dmp1 was most prominent during the late proestrus. In further
contrast to Spp1, the expression of Dmp1 in vivo and in vitro was
regulated by GnRHR; continuous GnRH application caused a
transient stimulation of Dmp1 expression followed by prolonged
desensitization. Thus, although Dmp1 is a sister gene of Spp1, it
follows the expression pattern of Lhb, Fshb, and Gnrhr (32, 41).

The role of pituitary gonadotrophs in reproduction is well-
established.Work with expression of SIBLINGs in pituitary gland
indicates that gonadotrophs may have an additional cell-type
specific function in anterior pituitary gland. At the present time,
this function is unknown. Based on functions of OPN and DMP1
in other tissues, we may speculate that these proteins contribute
to the proper organization of the cell-ECM tridimensional
network, the former in GnRHR-dependent manner and the latter
in a GnRHR-independent manner. The work on development of
pituitary gland has indicated that, at birth, the pituitary cell types
are roughly organized into layers with gonadotrophs being the
most ventral (43). However, by adulthood spatial organization
of the cell types appears more random (44). It has also been
proposed that layering of pituitary cell types at birth could be
required to establish networks of specific cell types, rather than
a relationship with the timing of cell cycle exit (45). Thus, it
is reasonable to speculate the potential role of these proteins in
postnatal organization of pituitary.

We also present evidence, for the first time, that Spp1
expression increased progressively after pituitary cell dispersion
in both female and male cultures, reaching 30–40-fold increase
in mRNA levels within 3 days. Such response suggests that
OPN signals to other pituitary cell types for changes in cell-
matrix network structure. Spp1 is also upregulated as early as
6 h after skin wounding and healing was altered in mice lacking
a functional Spp1. This and some additional analyses led the
authors to conclude that OPN has a role in tissue remodeling and
during matrix reorganization after injury (46). In general, OPN
has been shown to promote attachment and spreading of a variety
of cell types through its glycine-arginine-glycine-aspartate-serine
cell binding domain, i.e., OPN can be classified as an adhesive
protein (47). Thus, OPN may represent an initial signal for
reconstruction of tridimensional structure of pituitary gland.

Consistent with this hypothesis, it has been shown that
rat anterior pituitary cells in vitro can partly reconstruct the
topographic nature of the pituitary gland, which includes few
junctional complexes between hormone-producing cells (48).
More recently, the same group reported about reassembly of
anterior pituitary organization by hanging drop cell culture.
Specifically, the authors reported that the topographic affinities of
hormone-producing cells were maintained, that folliculostellate
cells were interconnected with typical cytoplasmic protrusions to
form tridimensional network, with the major ECM components,
collagens and laminin, being deposited and distributed around
the cells (49). It has also been reported that gonadotrophs can
signal to the lactotrophs through the release of a paracrine
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FIGURE 10 | The lack of an effect of GnRHR activation on Spp1 expression in vitro (A,B) and in vivo (C). Experiments were performed with 7-week-old females. (A)

Pituitary cells were cultured overnight in medium 199 containing horse serum, washed in the morning, and cultured in medium 199 supplemented with BSA with or

without 10 nM GnRH for 0–60 h prior to the end of experiments, and samples were analyzed for Dmp1 (top) and Spp1 (bottom) mRNA expression. (B) 96 h old cell

cultures were treated as described in (A), up to 48 h, and samples were analyzed for Dmp1 (top) and Spp1 (bottom) mRNA expression. (C) Animals were injected with

buserelin acetate or solvent as described above. Gray bars and circles, GnRH/buserelin acetate-treated cells/animals; white bars and circles, solvent-treated

cells/animals.

humoral factor distinct from LH and FSH and in a GnRH-
independent manner (50). Further studies indicated that a
common alpha subunit of pituitary gonadotropins accounts
for influence of gonadotrophs on lactotroph functions (51–53).
We may speculate that OPN is another protein released by
gonadotrophs, which contributes to the crosstalk among anterior
pituitary cells.

Dispersion of pituitary cells could be considered as the stress
situation for pituitary tissue. In general, OPN plays a role in
immune regulation and stress responses (54). It has also a role
in mediating oxidative stress (55), mechanical stress (56), and
cellular stress (57). OPN also plays a significant role in the
regulation of the hypothalamus-pituitary-adrenal axis hormones
in animals exposed to chronic restraint stress (58). Cancer also
reflects the loss of tissue organization and aberrant behavior of
the cellular components and tumors have been likened to wounds
that fail to heal (4). Not surprising, elevated OPN expression
has been detected in numerous tumors (59–61). Elevated OPN
levels were also detected in silent corticotroph adenomas and
non-functioning gonadotroph adenomas (62). OPN expression
is inhibitable on the levels of gene transcription and the RNA
message, and its protein ligand activity can be blocked with
antibodies or synthetic peptides, which led to idea to consider
OPN as a candidate target for cancer therapy (63).

For understanding the signaling function of OPN in intact
pituitary gland, dispersed pituitary cells, and pituitary tumors,
it is critical to identify OPN receptors and cell types expressing

these receptors. In general, OPN binds to several integrins,
including αv(β1, β3, or β5), and (α4, α5, α8, or α9)β1, and is a
ligand for CD44 receptor splice variants, specifically v6 and/or v7
possibly in conjunction with a β1 integrin (63). It is also known
that exogenous addition of OPN to OPN-/- osteoclasts increased
the surface expression of CD44 (64). The expression of αvβ3
integrin was reported in immortalized GH3 lacto-somatotrophs
(65). It has also been reported that cultured rat anterior pituitary
cells expressed the β1 integrin subunit (11) as well as that integrin
β1 signaling is required for the proliferation of folliculostellate
cells in rat anterior pituitary gland under the influence of ECM
(66). To our best knowledge, at the present time no data exist
describing the expression of Cd44 and its protein in normal
mammalian anterior pituitary cells.

In summary, here we provide further evidence for the
expression of Spp1 and Dmp1 in pituitary gonadotrophs, but
not other pituitary cell types, in an age-, sex-, and estrous cycle
stage-specific manner. Two genes also differ in regulation of their
expression; Dmp1 expression is regulated by GnRH, whereas
Spp1 expression increases progressively in culturing pituitary
cells in a GnRH-independent manner, presumably in response to
an unidentified paracrine factor. Further work should be focused
on secretion of these two proteins by gonadotrophs under
different experimental paradigms, characterization of integrin
and CD44 receptors within the secretory and non-secretory
anterior pituitary cells and their signaling pathways, and function
in pituitary gland.
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