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Numerous epidemiological, clinical, and animal studies showed that cardiac function

and manifestation of cardiovascular diseases (CVDs) are different between males and

females. The underlying reasons for these sex differences are definitely multifactorial, but

major evidence points to a causal role of the sex steroid hormone 17β-estradiol (E2) and

its receptors (ER) in the physiology and pathophysiology of the heart. Interestingly, it has

been shown that cardiac calcium (Ca2+) ion channels and mitochondrial function are

regulated in a sex-specific manner. Accurate mitochondrial function and Ca2+ signaling

are of utmost importance for adequate heart function and crucial to maintaining the

cardiovascular health. Due to the highly sensitive nature of these processes in the

heart, this review article highlights the current knowledge regarding sex dimorphisms

in the heart implicating the importance of E2 and ERs in the regulation of cardiac

mitochondrial function and Ca2+ ion channels, thus the contractility. In particular, we

provide an overview of in-vitro and in-vivo studies using either E2 deficiency; ER

deficiency or selective ER activation, which suggest that E2 and ERs are strongly

involved in these processes. In this context, this review also discusses the divergent

E2-responses resulting from the activation of different ER subtypes in these processes.

Detailed understanding of the E2 and ER-mediated molecular and cellular mechanisms

in the heart under physiological and pathological conditions may help to design more

specifically targeted drugs for the management of CVDs in men and women.

Keywords: estrogen, estrogen receptor, G-protein-coupled estrogen receptor, cardiomyocytes, sex difference,

cardiac mitochondrial function, cardiac Ca2+ ion channel

INTRODUCTION

Cardiovascular Diseases (CVDs) are one of the top age-associated chronic diseases with
growing importance due to the dramatic increase in life expectancy (1) and are the leading cause of
mortality in men and women worldwide (2). In the vast majority of CVDs, there are well described
sex differences in the incidence, pathophysiology, and outcomes of diseases (3). As result of these
observations, research over the last few decades has focused on the contribution of sex steroid
hormones, specifically 17β-estradiol (E2), on the cardiovascular system and mechanistic pathways
in the diseased heart.
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Calcium (Ca2+) is a key player in the regulation of myocardial
contraction and the deregulation of Ca2+ signaling due to the
alteration of Ca2+ ion channels function in cardiomyocytes is
highly associated with the development of cardiac diseases, such
as heart failure (4). Just like Ca2+, mitochondria play an essential
role in the regulation of energy metabolism of the heart, and
defects of mitochondrial function also lead to the development
and progression of cardiovascular diseases (5, 6). This review
article provides an overview of the current knowledge regarding
the sex differences in cardiac health and disease with the focus
on the sexually dimorphic effects of E2 and estrogen receptors
(ERs) in the regulation of cardiomyocyte’s Ca2+ ion channels and
mitochondrial function.

THE ROLE OF 17β-ESTRADIOL IN THE
HEART

Epidemiological data suggest that premenopausal women are
protected from the incidence of CVDs as well as from resulting
morbidity and mortality compared with age-matched men, but
that this protection is lost after menopause (7–9). This led to the
generally accepted conclusion that the sex hormone E2 protects
against CVDs in women (10). However, recent large-scale clinical
trials revealed conflicting data about the effect of E2 on CVDs,
which is still a matter of intense debate. For example, several
observational studies such as the Nurse’s Health Study showed
that postmenopausal women with hormone replacement therapy
(HRT) have a lower rate of CVDs and cardiac death, compared
to women without HRT (11–14). In contrast, the Women
Health Initiative (WHI) and the Heart and Estrogen/Progestin
Replacement Study (HERS I and II) showed that HRT has no
obvious beneficial effect on CVDs, and may actually increase the
risk and events of CVDs in postmenopausal women (15–19).
The reasons for this paradox remain unclear and many potential
factors, such as the study design and subject characteristics,
the form of applied E2 (which type of E2, combination of
E2 with progestin), the dosage and pharmacokinetics of the
HRT used, and the statistical power to address cardiac risk
factors may contribute to the discrepant results and to the
adverse outcome of HRT (20–22). In addition, another reason
for the contradictory data could be the timing of HRT initiation.
Recent studies such as the Kronos Early Estrogen Prevention
Study (KEEPS) and the Early vs. Late Intervention Trial with
Estradiol (ELITE) addressed the question of the so-called “timing
hypothesis.” They showed significant beneficial cardiovascular
effects in women who initiated HRT in the early postmenopause
vs. late menopause period (19, 23, 24), indicating the importance
of the time point of HRT-application.

Modulatory effects of E2 on CVDs in men have also been
reported (25, 26). In men with E2 deficiency due to a mutation in
the cytochrome P450 aromatase gene (Cyp19a1), which catalyzes
the aromatization of androgens to E2, or E2 resistance, caused
by a point mutation in the ERα gene (ESR1), the following have
been reported: increased total cholesterol level, the development
of insulin resistance, impaired glucose tolerance, type 2 diabetes
mellitus, and impaired vasodilatation (27–31). These data suggest

that the physiological concentrations of E2 might reduce the
risk of CVDs in men. Indeed, men with abnormally low (≤13
pg/mL) and abnormally high (≥37 pg/mL) E2-levels have been
found to show the highest death rates from congestive heart
failure (32). By contrast, individuals with levels of E2 in the range
of 22–30 pg/mL had the least number of deaths over a 3-year
period. However, the precise role of E2 in men in CVDs remains
questionable (33).

ACTIONS OF 17β-ESTRADIOL AND
ESTROGEN RECEPTORS

E2 belongs together with Estrone (E1) and Estriol (E3) to
the group of sex steroids called Estrogens. Thereby, E2 is the
predominant and most biologically active form (34). Estrogens
have traditionally been associated with the female reproductive
development and function, but it is now well-established
that they also regulate male reproductive organs and play a
physiological role in multiple organs in both sexes (26). In
healthy premenopausal women, ovaries are the primary site of
E2 production, and in men, E2 is produced in small amounts by
the testes. E2 is also synthesized in a number of extragonadal
tissues, through the conversion of testosterone by cytochrome
p450 aromatase in both sexes, including bone, breast, adipose
tissue, and the brain (35). There is increasing evidence that the
aromatase is also expressed in the heart tissue and that E2 can also
be produced locally in cardiac cells (36–39), suggesting that local
cardiac E2 synthesis by aromatase plays a role in the E2-mediated
effects on CVDs.

The physiological effects of E2 are predominantly mediated
via estrogen receptor alpha (ERα) and beta (ERβ), which are
members of the nuclear receptor superfamily (Figure 1) (40).
Both receptors carry similar structural domains, however, they
differ in their DNA- and ligand-binding regions, which are
of crucial importance for their diverse transcriptional actions
(41). E2-activated ERs can act as ligand-induced transcription
factors inducing changes in transcription of E2 target genes,
a process referred to as genomic actions. Here the binding of
E2 to the ERs results in homo- or heterodimerization of ER
and their translocation into the nucleus of cells. The E2/ER
complex either binds to estrogen response elements (ERE) within
the promoter of target genes or regulates gene transcription by
interacting with other transcription factors, e.g., AP-1 and Sp1
(Figure 1I) (34, 42–44). Additionally, E2-bound ERs can also
activate multiple signal transduction pathways, e.g., mitogen-
activated protein kinases ERK1/2 and -p38 (ERK1/2-MAPK,
p38-MAPK) as well as phosphoinositide 3-kinase-serin/threonine-
specific kinase B (PI3K/AKT), which in turn phosphorylate ERs
(45–47) or other promoter bound transcription factors that
are involved in the regulation of E2-target gene expression
(Figure 1II) (48–51). Moreover, through non-genomic actions,
E2 rapidly mediates its effects by activation of ERs located
in or adjacent to the plasma membrane, which in turn can
activate different signal transduction cascades, such as PI3K/AKT
and MAPK, leading for example to cytosolic eNOS activation
(Figure 1III) (52, 53).
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FIGURE 1 | Schematic representation of 17β-Estradiol induced estrogen receptor-alpha, -beta, and G-protein-coupled estrogen receptor signaling. Genomic

pathway: (I) The E2/ER complex can bind to estrogen response elements (ERE) within the promoter of target genes or regulates gene transcription by interacting with

other transcription factors (TF), e.g., AP-1 and Sp1. (II) In addition, E2/ER activate signaling transduction pathways, leading to phosphorylation of ER or other bound

transcription factors modulating gene expression. In the non-genomic action: (III) E2-activated ER lead to rapid tissue responses via phosphorylation of cytosolic

signaling cascades. (IV) GPER predominantly mediates rapid, non-genomic E2 signaling by the involvement of several kinases, ion channels, and second

messengers. (V) GPER is also involved in gene expression regulation. (VI) E2 initiated cellular and mitochondrial ER/GPER genomic and non-genomic actions

modulate mitochondrial respiration, ATP production, and ROS formation (indicated by red arrows). E2, 17β-estradiol; ER, estrogen receptor alpha and beta ERE,

estrogen response element; TF, transcription factor; P, phosphorylation; GPER, G-protein-coupled estrogen receptor; Ca2+, calcium, PTP, permeability transition

pore; MAPK, mitogen-activated protein kinases; PI3K/AKT, phosphoinositide 3-kinase-serin/threonine-specific kinase B; eNOS: endothelial nitric oxide synthase.

ESTROGEN RECEPTORS IN THE HEART

Both ERs are localized in different cardiac cells such as
cardiomyocytes, endothelial cells, smooth muscle cells, and
cardiac fibroblasts in human hearts from both sexes (54, 55).
Studies in rodents also showed that both ER are expressed in
whole heart tissue frommales and females (36, 39, 56–58). Recent
observations from Pugach et al. showed that only ERα, but not
ERβ, is expressed in left ventricular heart tissue from mice and
isolated rat cardiomyocytes (59). However, there are several other
studies that not only showed the expression of both ERs in
cardiomyocytes of rodents but also their functional activity on
genomic and non-genomic levels (36, 60–67).

Recent reports showed that E2 can signal through a
third protein, the G-protein-coupled estrogen receptor (GPER),
formerly known as GPR30, a membrane receptor with seven
transmembrane spanning domains (68, 69). GPER is strongly
expressed in both male and female human and rat cardiac
tissue (70–73). Specifically, GPER is present in smooth muscle
cells (74, 75), endothelial cells (76), cardiac fibroblasts (77), and
cardiomyocytes (70). GPER has been implicated predominantly
in the rapid, non-genomic E2 signaling by the involvement of
several kinases, ion channels and second messengers in a wide
variety of cell types (Figure 1IV) (69, 78–80). However, effects
on gene expression, i.e., induction of c-fos, cyclin D2, Egr-1, and
Bcl-2 expression, have also been described (81–85).

ASSOCIATION OF GENETIC ALTERATIONS
AND POLYMORPHISMS OF THE
ESTROGEN RECEPTOR GENES AND
CARDIOVASCULAR DISEASE

Studies showed that mutations in the genes coding for ERα

and ERβ are associated with differences in heart morphology,
such as increased left ventricular mass and wall thickness (86,
87). Furthermore, single nucleotide polymorphisms (SNPs) in
both ERα and ERβ have been shown to be associated with
the susceptibility for CVDs. Most of the studies analyzing ERα

focused on two SNPs: c.454-397T>C (rs2234693) and c.454-
351A>G (rs9340799) located in the first intron of the ERα

gene and 46 bp apart from each other (88). In fact, the ERα

variant rs2234693 was linked to coronary heart disease among
Finnish men (89), whereas a study of a Dutch cohort showed
that ERα variants, rs2234693, and rs9340799, were associated
with increased risk of myocardial infarction (MI) and ischemic
heart disease (IHD) only in postmenopausal women, but not in
men (90). In contrast, in a prospective study in men and women
from the population based offspring cohort of the Framingham
Heart Study showed that individuals of both sexes carrying the
rs2234693 genotype have substantial increase in risk of MI (91).
The authors confirmed their findings in men in a latter study,
including 7,000 men in five cohorts from four countries (92).
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In contrast, other studies found no association between these
two SNPs or their haplotypes and MI or risk of CVD in either
women or men (88, 93–95). Additionally, the absence of ERα in
human vascular smooth muscle cells in premenopausal women
(96) or the reduced ERα expression, due to methylation of the
receptor with increasing age, is associated with the development
of atherosclerosis in the cardiovascular system (97).

For ERβ, the SNP variant rs1271572 was associated with
increased risk of MI in Spanish men (98), while Rexrode et al.
identified this ERβ variant to be associated with increased risk
of MI in women only (99). Additionally, this study showed the
linkage of another ERβ variant, the rs1256049, with reduced risk
of CVDs or MI in women (99).

The reasons for the inconsistency in data regarding the SNPs
within the genes of ERα and ERβ could be due to the limited
power within the studies, differences in methodology and study
population (93). Despite the inconsistent findings, together these
studies provide support for a relationship between ERα and ERβ

polymorphisms and the risk of CVDs in men and women. The
underlying mechanisms responsible for the phenotype associated
with these genetic variants are not yet known. It is recognized
that ER-SNPs can cause changes in E2-mediated downstream
gene expression and signaling, which can alter the effects of E2
on the heart (100) and may be one possible explanation for
the observed effects on the cardiovascular system. In contrast
to ERα and ERβ, there are no studies so far regarding the
association of polymorphisms within the GPER gene and cardiac
risk in humans.

THE ROLE OF ESTROGEN RECEPTORS IN
ANIMAL MODELS FOR HUMAN
CARDIOVASCULAR DISEASES

The physiology of E2-actions through its multiple receptors
is diverse and highly complex. The detailed understanding of
their effects and underlying molecular mechanisms are essential
for future therapeutic applications in humans. In order to
clarify remaining questions regarding the functions of each
individual receptor within the heart, different mousemodels with
a deficiency or overexpression of ERα, ERβ, and GPER have been
generated (101, 102).

ERα
At the basal level, male and female whole body ERα-
deficient (ERKO)-mice are obese and insulin resistant (103).
They also exhibit altered cardiac substrate preference with a
reduction in glucose uptake indicating that ERα is required
to maintain glucose utilization in the mouse heart (104).
However, ERKO-mice do not show any cardiac dysfunction
under physiological conditions. Following cardiac injuries, such
as ischemic-reperfusion (I/R) injury or induced chronic MI,
male and female ERKO-mice show increased cardiomyocyte
cell death, mitochondrial damage, marked coronary edema,
decreased coronary flow rate, and poorer functional recovery of
contractility (+dP/dt) and compliance (-dP/dt) in comparison
to wild type (WT)-mice (105, 106). These data suggest a cardiac

protective role of ERα in both sexes after I/R or MI. In contrast,
following pressure overload induced myocardial hypertrophy
by transverse aortic constriction, female ERKO-mice developed
myocardial hypertrophy to an identical degree as that seen inWT
females, indicating that ERα is not essential for the attenuation
of pressure overload induced hypertrophy observed in females
(107, 108).

Analysis of mice hearts carrying a cardiomyocyte-specific
deletion of ERα (cs-ERKO) revealed variations in the expression
of genes involved in metabolism, cell growth and differentiation,
muscle architecture, and relaxation compared to WT-mice
(109). Furthermore, under basal conditions hearts from
male and female cs-ERKO-mice showed reduction of left
ventricular mass accompanied by decreased left ventricle (LV)
diameter compared with WT-mice. These data are in line
with published findings in mice with cardiomyocyte specific
ERα-overexpression (csERα-OE), showing that constitutive
ERα-overexpression in cardiomyocytes resulted in higher
left ventricular mass and increased ventricular volumes. In
addition, greater cardiomyocyte length, augmented expression
of hypertrophy-associated genes such as nppa and nppb, but no
fibrosis development was observed (65). In agreement with these
data, findings from ovariectomized (OVX) mice also emphasize
an E2-dependent role of ERα on regulation of cardiomyocyte
size and cardiac growth in healthy mice (110). Overall, these
findings indicate that ERα restricted to the cardiomyocytes is
associated with the growth in cardiac mass in both sexes.

Interestingly, the use of csERα-OE mice demonstrated that
ERα provides cardioprotection in female mice by enhancing
neovascularization and impairment of cardiac remodeling in
response to cardiac ischemic injury (65). All together, these
findings indicate that in the female sex, ERα in cardiomyocytes
may have a therapeutic potential in the treatment of ischemic
heart disease, leading to more efficient cardiac repair after
cardiac injury.

ERβ
In contrast to ERKO-mice, male and female ERβ-deficient
(BERKO)-mice show a mild metabolic phenotype characterized
by increased cortical bone formation and loss of trabecular bone
(111). In addition, ERβ deficiency protects against diet-induced
insulin resistance and glucose intolerance (112). However,
with increasing age, BERKO-mice show cardiac hypertrophy,
hypertension, and pathology in other cell types as they age (113–
115). Additionally, BERKO-mice develop severe cardiomyopathy
with a disarray of cardiomyocytes, a disruption of intercalated
discs, an increase in number and size of gap junctions, and
alteration in nuclear structure (114).

Several studies in BERKO-mice demonstrate the relevant role
of ERβ in male and female mice after cardiac injury. The lack
of ERβ significantly decreased post-ischemic cardiac recovery
and therefore myocardial function in female, but not male, mice
(116). In OVXmice subjected toMI, E2-treatment did not reduce
infarct size in female BERKO-mice, as observed in ERKO- and
WT-mice (117). In line with these data, Pelzer et al. reported that
OVX BERKO-mice subjected to chronic MI showed increased
mortality rates and aggravated signs of heart failure (118). These
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observations support the protective role of ERβ in response to
I/R or MI in females. Following transverse aortic constriction,
increase in left ventricular mass was not attenuated by E2-
supplementation in OVX BERKO- as observed in WT- and
ERKO-mice (108). Indeed, it has been shown that female
BERKO-mice responded to transverse aortic constriction, as well
as in the deoxycorticosterone acetate-salt mouse model, with a
significantly higher increase in myocardial hypertrophy, marked
increase in left ventricular diameters, increased cardiomyocyte
size and apoptosis compared with female WT-mice (107, 119,
120). Fliegner et al. showed inmalemice lacking ERβ significantly
higher cardiomyocyte hypertrophy, increased myocyte apoptosis
and faster progression toward heart failure (120). Thus, under
pressure overload the loss of ERβ is detrimental for both males
and females.

In a mouse model with a cardiomyocyte specific ERβ-
overexpression (csERβ-OE), under basal conditions there
were no observed differences in heart weight, morphology,
and function in males and females (66). Interestingly, the
overexpressed ERβ was located within the cytoplasm and nuclei
of cardiomyocytes (66), while in csERα-OE mice the ERα protein
was mainly located within the nuclei of cardiomyocytes (65).
In response to MI, csERβ-OE exhibited improved survival in
female and male mice compared to the WT counterparts (66).
This was due to attenuated increase in heart weight and LV
dilatation as well as improved systolic and diastolic function.
In addition, both male and female csERβ-OE mice had a lower
reduction of sarcoplasmic/endoplasmic reticulum Ca2+-ATPase
2a (SERCA2a) expression, suggesting less reduction in diastolic
Ca2+-reuptake into the sarcoplasmic reticulum post-MI. Most
of these functional parameters were improved in both sexes
by csERβ-OE; however, the effect on LV volumes and ejection
fraction was more pronounced in males than females. This was
possibly due to reduced cardiac remodeling with lower cardiac
fibrosis and lower expression of fibrosis markers (collagen I and
III, periostin and miR-21), which was observed particularly in
male csERβ-OE hearts after MI.

GPER
There are several studies stating the phenotype of mice lacking
GPER (101). The studies of GPER-KO-mice over the last decade
revealed that GPER deficient mice show under basal conditions
multiple physiological alterations, including obesity (75), insulin
resistance, glucose intolerance, and increase in blood pressure
(121). Interestingly, it has been reported that male, but not
female, GPER-KO-mice show impaired cardiac function with
enlarged LV and decreased+dP/dt and –dP/dt (122) or decreased
ejection fraction and fractional shortening with increasing age
(123). Under cardiac stress, one study reported in a mouse model
of I/R that male WT-, ERKO-, and BERKO-mice respond to E2-
treatment with an improved recovery and reduced infract size.
However, the application of E2 to male GPER-KO-mice did not
lead to observed cardioprotection after I/R (80).

A recent study in mice with a cardiomyocyte-specific GPER-
KO (csGPER-KO) revealed under basal conditions adverse
alterations in cardiac structure and impaired systolic and
diastolic function in both sexes, in comparison to WT-mice, with

more profound increases in LV dimensions, and wall-thinning
amongmale KO-mice (124). Using DNAmicroarray analysis, the
authors found differential expression profiles of genes affecting
multiple transcriptional networks with marked differences in
respect to sex and cardiomyocyte-specific GPER deletion. In
detail, mitochondrial genes were enriched in cardiomyocytes
from female GPER-KO- compared to female WT-mice, but not
in male. In contrast, inflammatory response genes were enriched
in GPER-KO- vs. WT-cardiomyocytes from male but not female
mice (124, 125).

Although studies with transgenic ER mice failed to provide
a clear consensus regarding the physiological and pathological
roles of ERs, they suggest that each of the ER subtypes play a
protective role in the heart.

THE ROLE OF 17β-ESTRADIOL AND
ESTROGEN RECEPTORS IN REGULATION
OF CA2+ CHANNELS AND
CONTRACTILITY IN CARDIOMYOCYTES

Ca2+ is a critical regulator of myocardial function. Ca2+

regulates contraction, and deregulation of Ca2+ signaling has
been associated with cardiac dysfunction and pathology such as
arrhythmias and heart failure (4). In cardiomyocytes, Ca2+ levels
are tightly regulated via the excitation-contraction (EC) coupling
pathway (Figure 2). During action potential, in response to
depolarization, Ca2+ crosses the sarcolemma and T-tubular
membrane through the voltage gated L-type Ca2+ channels. This
Ca2+ influx triggers the release of a larger quantity of Ca2+, called
Ca2+ sparks, from the sarcoplasmic reticulum (SR), through
the opening of SR Ca2+ release channels, known as ryanodine
receptors (RyRs, particularly RyR2). This process is termed
Ca2+-induced Ca2+ release. The combination of Ca2+ influx
via the L-type Ca2+ channels and Ca2+ release from SR leads
to the formation of cytosolic Ca2+ transients. The binding of
cytosolic Ca2+ to the myofilaments then initiates cardiomyocyte
contraction. Subsequent relaxation occurs by removal of Ca2+

from the cytosol mainly via the following mechanisms: (I) The
SERCA2a re-uptakes the cytosolic Ca2+ back into the SR; the
activity of this channel being modulated by its endogenous
inhibitor phospholamban (PLN); (II) The Na+/Ca2+ exchanger
(NCX) extrudes the Ca2+ out of the cells; (III) The mitochondrial
Ca2+ uniporter transports Ca2+ into the mitochondria (4, 126).

Numerous studies have documented sex differences in cardiac
EC coupling (127–129). For example, at rest, women have longer
QT intervals and higher left ventricular ejection fraction than
men (130–132). Other studies showed that ventricular myocytes
in the female human failing heart have significantly greater
contractility and enhanced L-type Ca2+ current (ICa,L) compared
tomale patients (133–135). Studies in animalmodels also provide
convincing evidence of sex differences in contractile function
as observed in humans. It has been demonstrated that isolated
cardiomyocytes from male rodents exhibit higher contraction
than those from females (128, 136, 137). Furthermore, male rat
cardiac myocyte and papillary muscle develop higher contractile
force as well as significantly greater Ca2+ transient amplitude
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FIGURE 2 | A schematic illustration of Ca2+ fluxes during excitation-contraction in ventricular cardiomyocytes. This diagram depicts the most representative protein

complexes and intercellular organelles involved in the cardiac excitation-contraction coupling. Ca2+, calcium; SR, sarcoplasmic reticulum; M, Mitochondria; LTCC,

L-type Ca2+ channel; RyR2, Ryanodine receptor 2; SERCA2a, Sarcoplasmic reticulum Ca2+ATPase 2a; PLN, Phospholamban; NCX, Na+/Ca2+ exchanger.

than females (138–142). In studies, using paced cardiomyocytes
at the rates of 0.5–1.0Hz, cardiac relaxation rate was slower
in cardiomyocytes from female rats compared to aged matched
males (139, 143).

The expression and function of cardiac L-type Ca2+ channels,
which have a direct impact on the functional changes in
EC coupling pathway in the heart, also show significant
sexual dimorphisms. In adult cardiomyocytes, the Cavα1C or
Cav1.2 (cardiac voltage-gated L-type Ca2+ channel) is the most
abundant cardiac L-type Ca2+ channel which triggering cardiac
contraction by regulation of ICa,L in cardiomyocytes (144–146).
Therefore, it represents an important cellular site from which
sex-based differences in myocardial intracellular Ca2+ handling
and contractility may arise (138). Studies comparing the cardiac
L-type Ca2+ Channel expression and ICa,L that have included
both female and male animals, are still limited and the existing
data are controversial. It has been demonstrated that the levels
of L-type Ca2+ channel expression increase or do not change
at all in the ventricle of female rats and rabbits in comparison
to males (147–149). Similarly, comparative studies using isolated
cardiomyocytes from female andmale rats, mice, guinea pigs, and
dogs showed that compared to males, the ICa,L density is either
higher (147, 150–152) or lower in cells from females (153) or
that there are no sex differences in ICa,L density at all (137, 140,
141, 154, 155). Even with these discrepancies in the data, which
might be due to variations in the experimental protocols, species,
and used strains, sex differences in the regulation and expression
of L-type Ca2+ channels are apparent, although the underlying

signaling mechanisms implicated in these sex differences are
poorly understood.

In recent years, several studies provided evidence that the
distal part of the C-terminus of the α1C subunit (α1C-dCT) of
Cav1.2 channel is proteolytically cleaved and shuttles between the
plasma membrane and the nucleus of cardiomyocytes. It serves
at the plasma membrane as an auto-inhibitor of Cav1.2 channel
activity (156–159), and acts as transcription factor in the nucleus,
regulating the expression of different genes, including Cav1.2
gene (CACNA1C) itself (160–163). Schroder et al. have provided
evidence that the nuclear import of α1C-dCT in cardiomyocytes
depresses Cav1.2 transcription, while nuclear export of α1C-dCT
increases Cav1.2 channel activity consistent with a reduction of
subsequent increase of Cav1.2 gene transcription rates (161).
In a recent study, we observed a remarkable sex-disparity in
nuclear shuttling of α1C-dCT in mouse cardiomyocytes (164).
Here, the nuclear shuttling was significantly higher in isolated
female cardiomyocytes compared to males. Furthermore, we
found a significant decrease in nuclear shuttling of α1C-dCT in
both female and male cardiomyocytes upon serum withdrawal.
However, subsequent E2-treatment normalized the intracellular
distribution of α1C-dCT only in male cardiomyocytes. This
effect of E2 was reversed by the ER-antagonist ICI 182,780,
indicating the involvement of ER in this signaling pathway.
These findings provide a possible explanation for the cellular
mechanisms responsible for sex differences in the regulation of
L-type Ca2+ channel in the heart, revealing the role of E2/ER in
this process.
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In addition to the L-type calcium channel, sexual
dimorphisms in the expression, and activity of other cardiac
calcium channels have also been reported. For example, several
studies found that the expression and/or current of NCX
(INCX) are significantly higher in cardiomyocytes from female
humans, rats, and rabbits compared to their male counterparts
(135, 147–149, 165). Interestingly, Chen et al. showed that E2
administration increased NCX and INCX in female but not in
male cardiomyocytes. These E2 effects appear to be mediated by a
genomic mechanism involving the binding of E2 to its receptors,
since these E2 effects were blunted by an ER antagonist (ICI
182,780) (165).

On the other hand, several studies have reported contradictory
results on sex differences in the regulation of RyR2 expression
and activity in the heart. It has been shown that the expression
of RyR2 is higher in female rat cardiomyocytes compared
to males (148, 149, 166), or that the expression does not
differ in male and female rat and mice cardiomyocytes (155,
167). Bell et al. showed, however, that the regulation of RyR2
activity is different in male and female rat cardiomyocytes,
with CaMKII (Ca2+/calmodulin-dependent protein kinase II)-
mediated phosphorylation of RyR2 being lower in female
cardiomyocytes than inmale cardiomyocytes (167). This could be
a possible explanation for the observed decrease in the gain of EC
coupling (measured as SR Ca2+ release/Ca2+ current) in female
rat and mice cardiomyocytes, which results from decreased size
and duration of Ca2+ sparks by RyR2 (140, 155).

Collectively these findings suggest that the observed sex
differences reflect, at least partly, the effects of E2 on myocardial
Ca2+ handling, thus on contractility.

In this regard, studies with OVX rodents corroborate the
effects of E2 on myocardial Ca2+ handling and contractility.
Numerous studies with whole hearts or isolated cardiomyocytes
from OVX mice, rats, rabbits, and pigs revealed that the E2
deficiency caused detrimental effects on both Ca2+ regulation
and contractility of cardiomyocytes, such as enhanced Ca²+
transients, increased Ca²+ spark amplitudes, decreased
myofilament Ca2+ sensitivity, and elevated contractions, in
comparison to sham-operated controls (168–179). Remarkably,
substitution of E2 effectively prevented the observed adverse
effects (168, 169, 172, 174–179) and it could be shown that this
is directly mediated via the ER by using the ER-antagonist ICI
182,780 (169).

In this context, several studies suggested that observed E2
effects are mediated by its receptors. Indeed, hearts of male
ERKO-mice exhibit increased cardiac L-type Ca2+ channel
expression and ICa,L (180), as well as significantly higher Ca2+

accumulation compared to control hearts during I/R (106). In
line with these data, a recent study demonstrated that both
E2 pre-treatment and/or ERα activation of Tet-on/ERα H9c2
cardiomyoblast cells inhibited isoproterenol-induced cytosolic
Ca2+ accumulation in these cells, and this protective effect of
the E2/ERα was reversed by treatment with a specific inhibitor
of ERα (181). These data indicate that E2/ERα signaling pathway
is involved in the regulation of Ca2+ balance in cardiomyocytes,
thereby preventing the harmful effects of Ca2+ overload in the
pathophysiology of the heart. By contrast, another study using

ERKO- and BERKO-mice could not show that the inhibition of
ICa,L and decrease in contraction depend on ERα or ERβ action
(182).Moreover, it has been shown that in global GPER-KOmice,
both left-ventricular contractility, and relaxation capacity were
impaired only in males (122).

Furthermore, other studies have confirmed that the specific
activation of different ER-isoforms affects cardiac contractility.
Pelzer et al. showed that activation of ERα with the subtype-
selective ERα agonist 16α-LE2 augments myocardial contractility
to a measurable extent in OVX spontaneously hypertensive
rats (183). Kulpa et al. showed that activation of ERα using
the ERα agonist PPT (4,4’,4”-(4-Propyl-[1H]-pyrazole-1,3,5-
triyl) trisphenol) depressed actomyosin MgATPase activity and
decreasedmyofilament Ca2+ sensitivity (184). Other studies have
demonstrated the respective roles of ERβ and GPER activation in
the regulation of SR Ca2+ handling proteins, such as SERCA2a
and PLN, leading to improved contractility at the whole heart and
single myocyte (66, 185).

These findings reveal that a solid understanding the roles
of the various estrogen receptors in the regulation of cardiac
contractility are needed in order to be able to find appropriate
pharmacological agents that specifically target the receptors
of interest.

THE ROLE OF 17β-ESTRADIOL AND
ESTROGEN RECEPTORS IN CARDIAC
MITOCHONDRIAL FUNCTION

Mitochondria are the main source of ATP and Reactive
Oxygen Species (ROS) in the heart (186). It is considered that
mitochondria play an essential role not only in regulation of
cardiac contractility by providing ATP and by participating in
Ca2+ homeostasis, but also they regulate cell death or apoptosis
by ROS formation. Therefore, defects in mitochondrial structure
and function are highly associated with CVDs (5, 186). E2 plays
an important role in the supporting mitochondrial respiration,
ATP production, and reducing ROS formation (Figure 1VI).

Sex differences in mitochondrial structure and function have
been described. There is plenty of evidence that mitochondrial
morphology and function differ between females and males in
several organs and cell types. In the healthy mice hearts, although
the female and male hearts displayed similar mitochondrial
numbers, the proportion of large mitochondria (≥1 µm2) was
significantly higher in female mice compared to males (56).
Skeletal muscles from female rats show higher mitochondrial
DNA and protein contents, as well as higher capacity of
oxidative phosphorylation (OXPHOS) compared to male rats
(187). Further, mitochondria in brain and liver from female mice
exhibit higher antioxidant gene expression and lower oxidative
damage under stress than in male animals (188). Additionally,
several studies reported that the rate of ROS production is less
in mitochondria from skeletal and cardiac muscle in female
compared with aged matched male rats, particularly under stress
conditions (187, 189, 190). Moreover, female rat hearts show
altered posttranslational modification of several mitochondrial
proteins under I/R in comparison to male hearts, including
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aldehyde dehydrogenase-2 (ALDH2) (189), a protein that has
been reported to be involved in cardioprotective processes (191).
Whole genome expression profiling performed in hearts of old
(78-week) male and female Fischer 344 rats showed that a
majority of genes involved in oxidative phosphorylation had
higher expression in females compared to male rats (192).
These studies suggest that E2 plays a role in the regulation of
mitochondrial function, which is supported by evidence from
several studies in OVX animals.

In particular, a high throughput quantitative proteomic
approach with isolated mitochondria from left ventricles of
OVX rat relative to ovary-intact hearts revealed that about
50% of the identified proteins altered in OVX rat cardiac
mitochondria are involved in mitochondrial ATP production
(193). Indeed, the observed reduction of protein subunits of the
electron transport chain complex I (NADH dehydrogenase), II
(succinate dehydrogenase), III (cytochrome bc1 complex), IV
(cytochrome c oxidase), and V (F0F1 ATP-synthase) in E2-
deficint hearts was associated with reduced ATP production
that may contribute to increased I/R injury and disease risk
with E2 deficiency in aged female rats. Interestingly, in a
mouse model of a human hypertrophic cardiomyopathy (cTnT-
Q92), E2-supplementation of OVX mice significantly elevated
myocardial ATP levels and mitochondrial respiratory function
compared to untreated OVX mice, thereby improving diastolic
heart function (194). In anothermodel of cardiomyopathy, hearts
from OVX rats showed higher Ca2+ accumulation in their
mitochondria, lowermitochondrial respiratory function, severely
structurally damaged mitochondria, and increased myocardial
cell death after I/R injury in comparison to intact animals
(195). Again, in this study, E2-treatment of the hearts from
OVX animals attenuated cardiac damage by I/R, and thereby
maintained the LV function. Furthermore, mitochondria from
hearts of OVX rats showed higher expression of apoptotic
markers compared to mitochondria of intact animals (196).
However, chronic E2-treatment of these animals significantly
attenuated mitochondria-dependent apoptotic pathways. These
data directly show that alterations in mitochondrial function are
a highly selective myocardial response to E2 deficiency, and that
E2-mediated cardioprotection at the level of the mitochondria
leads to improved cardiac function.

Indeed, several studies demonstrated that E2 through its
ERs affects the cardiac mitochondria directly via regulation of
mitochondrial gene/protein expression. It has been shown that
ERα and ERβ are localized in the mitochondria of cardiac cells
(62, 197–199). The presence of ERs in the mitochondria of
cardiac cells suggests that they mediate the observed protective
effects of E2, at least partly, by regulating mitochondrial
structure and function in the heart. In line with the role
of ERα and ERβ as transcription factors, distinct evidence
supports the notion that mitochondrial DNA (mtDNA) could
be one of the major targets for E2 acting via ER in cardiac
cells. This is supported, for example, (1) by the presence
of putative ERE on the mtDNA (200–202), (2) the E2-
induced up-regulation of several mitochondrial-encoded genes,
such as COXI and COXII (cytochrome c oxidase subunits
I and II) (203, 204), and (3) the E2-induced expression of

several nuclear-encoded mitochondrial genes, such as NRF-
1 (nuclear respiratory factor 1), NRF-2 (nuclear respiratory
factor 2), TFAM (mitochondrial transcription factor), PGC-1α
(peroxisome proliferator-activated receptor gamma co-activator-
1 alpha), and MEF2a (Myocyte enhancer factor 2A) (56, 202,
205, 206), whose proteins translocate into the mitochondria and
thereby influence mitochondrial function. Additionally, it could
be shown that in rat myocardium after severe hemorrhage the
E2-induced increased expression of these genes was associated
with an increase in COX IV (cytochrome c oxidase subunit
IV), mtDNA-encoded COX I (cytochrome c oxidase subunit I),
ATP synthase β-subunit, and mitochondrial ATP (207, 208). All
these effects were abolished with the ER antagonist ICI 182,780,
indicating an ER-specific effect.

The role of E2 and ER in the regulation of mitochondrial
structure and function is established from studies with ER
deficient mouse models. Microarray analysis using ERKO- and
BERKO-mice showed that E2/ERβ pathways mediate down-
regulation of mRNAs for nuclear-encoded subunits in each of the
major complexes of the electron transport chain, whereas ERα is
essential for most of the E2-mediated increase in gene expression
including electron transport chain proteins and proteins involved
in the anti-oxidative stress response (209). In a mouse model
of exercise-induced physiological myocardial hypotrophy, we
demonstrated that only female WT-mice showed an increase in
the expression of key regulators of mitochondrial function e.g.,
NRF-1,−2, Mef2a, Atp5k (subunit E of mitochondrial F1F0-ATP
synthase), and electron transport chain proteins (complexes I,
III, and V) after running. Interestingly, ERβ deletion abolished
the observed effects (56). Additionally, our study also showed
that the activated ERβ significantly increased the expression
of MEF2A, NRF-1, and−2 genes in a cardiomyocyte cell line
(AC16 cells) (56). In line with these data, the expression of NRF-
1 is diminished in BERKO hearts (209). On the other hand,
Zhai et al. demonstrated that ERKO-mice hearts showed marked
mitochondrial damages (fragmented and swollen mitochondria)
and severe impairment of mitochondrial respiratory function
compared to control hearts after I/R (106). To our knowledge
a direct localization of GPER within the mitochondria has not
been documented so far. However, analysis of DNA microarray
data followed by Gene Set Enrichment Analysis (GSEA) from
female and male cardiomyocytes of WT- and csGPER-KO-mice
revealed that mitochondrial genes are enriched only in csGPER-
KO females (124, 125), which provided direct evidence that
the cardioprotective effects of GPER under physiological and
pathological conditions in the female csGPER-KO-mice may be
related to enhancements in mitochondrial function.

Several studies demonstrated that E2 also indirectly affects
the cardiac mitochondria via regulation of ROS production.
Elevated Ca2+ uptake by mitochondria results in the opening
of the mitochondrial permeability transition pore (mPTP) and
enhanced release of cytochrome c accompanied by dramatic
increase in ROS formation, which leads to cell death via the
induction of apoptosis pathways (210, 211). It has been shown
that in comparison to male, mitochondria from female rat hearts
accumulate Ca2+ more slowly (212), which might represent
a mechanism that may underlie, at least partly, sex-related
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differences accounting for females to suffer less injury with
I/R. Indeed, several studies demonstrated that E2 administration
can acutely attenuate the Ca2+ accumulation in mitochondria,
inhibit Ca2+-induced opening of mPTP in isolated heart
mitochondria, prevent Ca2+-induced release of cytochrome c
from mitochondria, and inhibit ischemia-induced apoptosis in
perfused heart (213–215). Interestingly, Feng et al. demonstrated
that post-ischemic E2 administration to both male and OVX-
female rats preserved mitochondrial structural integrity, which
was associated with an increased tolerance to Ca2+ overload or
augmented mitochondrial Ca2+ retention capacity (216) which
reflects an inhibition of the mPTP opening in both male and
OVX-female animals.

Here again, using ER deficient mice could be shown that
these E2 effects are mediated by ERs. Male ERKO hearts
subjected to I/R showed an accumulated Ca2+ deposition in
their mitochondria which led to severe mitochondrial damage
(fragmented and swollen mitochondria) in cardiomyocytes, and
consequently to the depletion of ATP production (106). Using
ERKO-, BERKO-, and ERα and ERβ double knockout (DERKO)-
mice, Luo et al. found that both ER subtypes are necessary for E2-
mediated cardioprotection during I/R in female hearts. Thereby,
E2 and ER upregulate mitochondrial p38β-MAPK activity,
with subsequent phosphorylation of the MnSOD (manganese
superoxide dismutase), leading to enhanced SOD activity,
thereby minimizing mitochondrial-derived ROS production and
reduction of myocardial infarct size post I/R (217). By contrast,
a systematic analysis of WT-, ERKO-, BERKO-, and GPER-
KO-mice subjected to I/R showed that only GPER expression
is essential for the acute action of E2 in cardioprotection
against I/R injury in male mouse via a cascade involving
PKC translocation, ERK1/2/GSK-3β (Glykogensynthase-Kinase
3β)- phosphorylation leading to the inhibition of the mPTP
opening, resulting in reduction of harmful mitochondrial ROS
generation (80). However, a pre-administration with G15, a
specific GPER antagonist, reversed this estrogenic effect. This
data indicate that GPER activation mediates E2-induced increase
in mitochondrial Ca2+ retention capacity, and the GPER-
mediated cardioprotective effect of post-ischaemic E2 is related to
a decrease in mPTP sensitivity to Ca2+ overload, a process which
is mediated via activation of the MEK/ERK/GSK-3β axis.

These data suggest that depending on the time period of E2-
treatment, sex, and species different ERs can be activated by E2,
which mediate the mitochondrial-dependent cardioprotective
effect of E2 against I/R injury.

CONCLUSION

In the past, most clinical and animal studies did not include
both sexes or differentiate between sexes in the data analysis.
This might be the possible reason that our understanding
of the molecular and cell-based mechanisms underlying sex-
based differences in cardiovascular system are still incomplete
so far. A more thorough understanding of underlying sex-
dimorphic mechanisms in cardiac health and disease is required
to effectively treat patients with CVDs. The presented data in
this review support the concept that sex specific regulation
of cardiac Ca2+ ion channels and mitochondrial function
by E2 and ERs could be, at least partly, responsible for
differences in cardiovascular disease incidence and outcomes.
However, further attempts toward amore detailed understanding
of E2 and ERs roles in the heart are needed to develop
new drugs that target the beneficial effects on CVD in
both sexes.
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