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Pubertal onset is thought to be timed by an increase in pulsatile gonadotropin-releasing

hormone (GnRH)/gonadotropin secretion in mammals. The underlying mechanism of

pubertal onset in mammals is still an open question. Evidence accumulated in the

last 15 years suggests that kisspeptin/neurokinin B/dynorphin A (KNDy) neurons in

the hypothalamic arcuate nucleus play a key role in pubertal onset by triggering

pulsatile GnRH/gonadotropin secretin in mammals. Specifically, KNDy neurons are now

considered a part of GnRH pulse generator, in which neurokinin B facilitates and

dynorphin A inhibits, the synchronized discharge of KNDy neurons in autocrine and/or

paracrine manners. Kisspeptin serves as a potent secretagogue of GnRH secretion and

thus its release is fundamental to pubertal increase in GnRH/gonadotropin secretion in

mammals. Proposed mechanisms inhibiting Kiss1 (kisspeptin gene) expression during

childhood to juvenile varies from species to species: we envisage that negative feedback

action of estrogen plays a key role in the inhibition of Kiss1 expression in KNDy neurons

in rodents and sheep, whereas estrogen-independent inhibition of kisspeptin secretion

by γ-amino butyric acid or neuropeptide Y are suggested to be responsible for the

pre-pubertal suppression of GnRH/gonadotropin secretion in primates. Taken together,

the timing of pubertal onset is postulated to be controlled by upstream regulators for

kisspeptin biosynthesis and secretion in mammals.

Keywords: dynorphin A, gonadotropin-releasing hormone (GnRH), GnRH pulse generator, kisspeptin, KNDy,

neurokinin B, puberty

INTRODUCTION

The reproductive system is governed by the hypothalamo-pituitary-gonadal axis and has a unique
functional quiescence during childhood in mammals. Pubertal onset is thought to be timed by
an increase in gonadotropin-releasing hormone (GnRH)/gonadotropin secretion. The underlying
mechanism controlling pubertal onset still remains elusive (1). Evidence accumulated in the last
15 years suggests that a neuropeptide kisspeptin plays a key role in pubertal onset via triggering
GnRH/gonadotropin secretion in mammals. This article provides a brief historical background
including the discoveries of gonadotropins, GnRH, and kisspeptin, and our current understanding
of how the brain controls pubertal onset in mammals.
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GNRH/GONADOTROPIN SECRETION
TRIGGERS PUBERTAL ONSET
IN MAMMALS

The concept that factor(s) synthesized and secreted by the
pituitary gland controls pubertal onset in mammals dates
back to the late 1920s, when physiologists examined effects of
hypophysectomy or extract of the pituitary gland on gonadal
activities and found the factor(s) that induced pubertal onset
in immature rodents (2). First, they believed that the pituitary
gland synthesizes and secretes a single gonadotropic factor. Later,
increasing evidence suggested the existence of two gonadotropic
factors in the pituitary gland and two gonadotropins, follicle-
stimulating hormone (FSH) and luteinizing hormone (LH),
were successfully purified from the pituitary gland in the
early 1930s (3). In the late 1940s, Harris predicted that the
secretion of pituitary gonadotropins would be controlled by
factor(s) secreted from the hypothalamic neurons through the
pituitary portal circulation (4). This prediction promoted studies
on the discovery of such hypothalamic factor(s) in several
mammals. Consequently, the mammalian form of GnRH, a
decapeptide, which stimulates both FSH and LH secretion
from the pituitary gland, was isolated and sequenced by two
independent laboratories led by Schally and Guillemin in the
early 1970s (5, 6).

Establishment of the radioimmunoassay by Yalow and Berson
(7) in 1950s has facilitated studies on GnRH/gonadotropin
secretion. By using frequent blood collection and this
radioimmunoassay, Knobil et al. clearly demonstrated that
two modes of gonadotropin secretion in female rhesus monkeys,
as a model of humans (8–10): one is tonic gonadotropin secretion
that controls follicular development and steroidogenesis in the
ovary and the other is a large secretion of LH, namely a LH
surge, that controls ovulation and corpus luteum formation.
As for tonic secretion, Knobil et al. successfully showed the
pulsatile nature of LH secretion (9). They assumed that the
pulsatile nature of tonic gonadotropin secretion is most
likely caused by pulsatile GnRH stimulation to the pituitary
gland and clearly demonstrated the physiological significance
of pulsatile GnRH stimulation on the pituitary gland to
maintain circulating gonadotropin levels (11). Importantly,
continuous GnRH stimulation to the pituitary gland suppressed
gonadotropin secretion (11). These findings clearly indicate that
the pulsatile nature of GnRH secretion is required to maintain
the normal responsiveness of the pituitary gland to GnRH. The
Knobil laboratory also demonstrated that this pulsatile GnRH
stimulation successfully triggered pubertal onset in immature
female monkeys (12). This finding suggests that an initiation
of pulsatile GnRH secretion is the first step in pubertal onset
in mammals. Accumulating evidence suggests that pubertal
onset is triggered by an increase in pulsatile secretion of
GnRH/gonadotropins in several mammalian species (13–16).

Pulsatile GnRH secretion in the pituitary portal circulation
was first described in sheep in 1982 by Clarke and Cummins (17)
with a pituitary portal cannulation, and then examined with the
same skillful technique in more detail in 1992 by Moenter et al.
(18). These studies clearly demonstrated that each GnRH pulse

detected in the pituitary portal circulation corresponds to each
LH pulse detected in the peripheral circulation. Pulsatile GnRH
secretion is not easily detectable in the peripheral circulation due
to a combination of the short half-life of GnRH and the dilution
in the relatively large volume of peripheral circulation (18).
Therefore, plasma LH profiles showing pulsatile LH secretion
have been used as good surrogate for pulsatile GnRH secretion
into the pituitary portal circulation in mammals.

KISSPEPTIN CONTROLS GNRH PULSE
GENERATION AND PUBERTAL ONSET

Pulsatile GnRH secretion from the nerve terminals of GnRH
neurons at the median eminence into the pituitary portal
circulation has been assumed to be driven by a so-called “GnRH
pulse generator” (19, 20). The Knobil laboratory first established
a method for the detection of GnRH pulse generator activity via
an electrophysiological approach in rhesus monkeys (21): They
clearly demonstrated that rhythmic increases in the multiple
unit activity (MUA), correspond to LH pulses detected in the
peripheral circulation, was successfully monitored from the
recording electrodes implanted in the mediobasal hypothalamus.
This electrophysiological approach was subsequently adapted to
rats and goats (22–24) and showed that rhythmic increases in
the MUA recorded in the mediobasal hypothalamus, or more
specifically in the arcuate nucleus (ARC), also correspond to LH
pulses in such species.

Increasing evidence suggests that hypothalamic
kisspeptin [first named as metastin (25)] neurons play a
key role in controlling pubertal onset via stimulation of
GnRH/gonadotropin secretion in mammals. A novel peptide
kisspeptin was discovered from the human placenta as an
endogenous ligand of GPR54, an orphan G-protein coupled
receptor, in 2001 (25, 26). Subsequently, clinical studies revealed
that inactivating mutations of the GPR54 gene caused the
impairment of pubertal maturation and reproductive functions
with hyposecretion of gonadotropins, i.e., hypogonadotropic
hypogonadism, in humans (27, 28). These findings suggest
that kisspeptin serves as a gatekeeper of pubertal onset in the
hypothalamo-pituitary cascade regulating reproductive system in
humans. Indeed, kisspeptin profoundly stimulated gonadotropin
secretion in several mammals including humans (29–35) and
the stimulatory effect of kisspeptin on gonadotropin secretion
was blocked by GnRH antagonists in rodent models (29–31).
These studies clearly indicate a physiological role of kisspeptin
as a potent secretagogue of GnRH in the hypothalamus. In
2012, the phenotypes of patients carrying GPR54 mutations,
i.e., hypogonadotropic hypogonadism and lack of puberty,
was recapitulated in patients carrying inactivating mutations
of the KISS1 gene (coding kisspeptin) (36). Further, several
rodent models lacking functional kisspeptin or its receptor by
gene targeting, namely Kiss1 or Gpr54 knockout mice, showed
pubertal failure and infertility (28, 34, 37–39). In addition,
Kiss1 knockout rats never showed puberty and demonstrated a
lack of both pulse and surge modes of gonadotropin secretion
(40). These findings strongly suggest that kisspeptin-GPR54
signaling plays a key role in the mechanism controlling

Frontiers in Endocrinology | www.frontiersin.org 2 May 2019 | Volume 10 | Article 312

https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles


Uenoyama et al. Kisspeptin Triggers Pubertal Onset

GnRH/gonadotropin secretion and pubertal onset in mammals.
Indeed, Keen et al. (41) demonstrated that a pubertal increase
in pulsatile kisspeptin secretion along with pulsatile GnRH
secretion at the median eminence in rhesus monkeys. Kisspeptin
administration successfully stimulated GnRH/LH secretion in
pre-pubertal and pubertal mammals including rodents (42–44)
and primates (45–47).

It is well-accepted that kisspeptin directly stimulates GnRH
secretion via GPR54 expressed in GnRH neurons in rodents (30,
34). Indeed, the targeted deletion of Gpr54 in GnRH neurons of
mice resulted in infertility, whereas the reintroduction of Gpr54
to GnRH neurons in Gpr54-null mice resulted in fertility (48),
suggesting that GPR54 expression solely in GnRH neurons is
sufficient for fertility. A previous study showed stable expression
of GnRH mRNA in the hypothalamus during the pubertal
transition in rats (49). Thus, kisspeptin has a role to trigger GnRH
secretion rather than GnRH synthesis at the onset of puberty
in mammals.

TWO POPULATIONS OF KISSPEPTIN
NEURONS CONTROL PULSE AND
SURGE-MODE OF GNRH SECRETION

There are two populations of hypothalamic kisspeptin neurons:
one is localized in the ARC and the other population is localized
in the anteroventral periventricular nucleus and periventricular
nucleus continuum (AVPV-PeN) in rodents and the pre-optic
area (POA) in other mammals including ruminants, primates,
pigs, and musk shrews (50–60). Kisspeptin neurons localized in
the AVPV-PeN of rodents are possibly equivalent to those in
the POA of the other animals. Accumulating evidence suggests
that the neurons in the ARC have a role in GnRH pulse
generation described above, whereas the neurons in the AVPV-
PeN have been recognized to play a pivotal role in mediating
positive feedback action of estrogen to induce GnRH/LH surge
in rodents (61–64).

The most plausible interpretation is that ARC kisspeptin
neurons serve as a part of the GnRHpulse generator inmammals,
because rhythmic increases in the MUA are successfully detected
from recording electrodes that are placed in close proximately
to ARC kisspeptin neurons in goats (53) but not in the
lateral median eminence where GnRH nerve terminals are
abundantly located. Further, a study with a GCaMP6 fiber
photometry technique demonstrated inmice that ARC kisspeptin
neurons exhibited rhythmic increases in intra-cellular Ca2+

corresponding to LH pulses and that optogenetic stimulation
or inhibition of ARC kisspeptin neurons induced or suppressed
pulsatile LH secretion, respectively (65). GnRH neuronal
terminals in the median eminence seem to be an action site
of kisspeptin for the generation of GnRH pulses (Figure 1),
because immunoelectronmicroscopy revealed a close association
of kisspeptin and GnRH fibers in the median eminence in
rats and goats (66, 67). Further, few typical synaptic structures
between kisspeptin and GnRH fibers were found in the median
eminence, suggesting that kisspeptin acts on GnRH fibers in a
non-synaptic manner, such as “volume transmission” (66, 67).

GnRH cell bodies also seem to be an action site of ARC kisspeptin
neurons, because a tract-tracing study revealed the projection of
ARC kisspeptin neuron to the POA in mice (68) and confocal
microscopy revealed contacts of kisspeptin fibers from the ARC
population to GnRH neurons in ewes (69).

Increasing evidence suggests that the anterior population
of hypothalamic kisspeptin neurons serves as GnRH surge
generator that evokes the GnRH/LH surge in response to the
positive feedback action of estrogen derived from the pre-
ovulatory follicles in mammals, because estrogen up-regulates
Kiss1 expression and/or neuronal activation in this population
(52, 54–57, 70–72). We recently reviewed the sexual dimorphism
and role of AVPV-PeN kisspeptin neurons elsewhere (73).

In contrast to AVPVKiss1 expression, ARCKiss1 expression is
down-regulated by estrogen. This suggests that ARC kisspeptin
neurons mediate the negative feedback action of estrogen on
pulsatile gonadotropin secretion in mammals (33, 50, 52).
Recently, Treen et al. (74) have generated immortalized Kiss1-
expressing cells from the murine hypothalamus and successfully
replicated estrogenic regulation of Kiss1 expression in both
AVPV- and ARC-derived immortalized Kiss1-expressing cells.
Such immortalized AVPV and ARC Kiss1-expressing cells
would serve as a promising platform to explore the molecular
mechanism mediating estrogenic controls of Kiss1 expression in
the two hypothalamic kisspeptin neurons.

Interestingly, the interaction between ARC and AVPV
kisspeptin neurons was recently suggested through a tract-
tracing study showed that ARC kisspeptin neurons project to the
AVPV kisspeptin neurons in mice (75). Further, an optogenetic
study indicated that the channelrhodopsin-2-mediated light
stimulation of ARC kisspeptin neurons activated GnRH neurons
via AVPV kisspeptin neurons and suggested that this pathway
is likely involved in the pre-ovulatory GnRH/LH surge (76).
This finding is consistent with our previous finding that ARC
kisspeptin neurons are activated at the proestrous stage of
estrus cycle in female rats (33). Interestingly, Kiss1 expression
in both POA and caudal ARC increased just before GnRH/LH
surges in ewes and monkeys (59, 60, 77). These findings are
also consistent with previous findings that the mediobasal
hypothalamus including the ARC is likely involved in GnRH/LH
surge generation in those species (78–81).

Ours and other previous studies showed a pubertal increase
in both ARC and AVPV Kiss1 expression in female rodents
(42, 51, 82). As discussed below, we envision that the regulation of
ARC Kiss1 expression is fundamental to control pubertal onset of
tonic gonadotropin secretion, whereas AVPV Kiss1 expression is
secondarily controlled by estrogen secreted from the ovary under
the tonic stimulation of gonadotropin (82).

CELLULAR AND MOLECULAR
MECHANISM OF GNRH PULSE
GENERATION AND PUBERTAL ONSET

Clinical studies also demonstrated the involvement of neurokinin
B, a member of tachykinin family (83), in regulation of
GnRH/gonadotropin secretion and pubertal onset in humans:
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FIGURE 1 | The close association of kisspeptin and gonadotropin-releasing hormone (GnRH) fibers in the median eminence of female rats. (A) An

immunofluorescence photomicrograph showing kisspeptin (red)- and GnRH (green)-immunoreactivities in the arcuate nucleus (ARC)-median eminence (ME) region.

Note that the square in the internal zone of the median eminence shows the area for electron microscopy. Scale bar, 50µm. 3V, third ventricle. (B,C) Immunoelectron

micrographs showing kisspeptin- (red asterisks) and GnRH-immunoreactive fibers (green asterisks) visualized by diaminobenzidine and silver enhancement of colloidal

gold, respectively. Solid and open arrowheads show kisspeptin- and GnRH-immunoreactive secretory granules, respectively. Open arrows show non-synaptic contact

between kisspeptin- and GnRH-neuronal elements. Scale bar, 500 nm. (D) Electron micrograph showing synaptic contacts (solid allows) in other neurons. Scale bar,

500 nm. Originally published in Uenoyama et al. (66) (permission was obtained from John Wiley and Sons).

loss-of-function mutations of TAC3 gene (coding neurokinin B)
or TACR3 gene (coding tachykinin NK3 receptor (NK3R), which
preferably bind to neurokinin B) also caused hypogonadotropic
hypogonadism and pubertal failure in humans (84–86). It is
noteworthy that both neurokinin B and NK3R are co-localized in
most of ARC kisspeptin neurons of several mammalian species
(87–89). Further, dynorphin A, an endogenous opioid peptide,
is also co-localized in ARC kisspeptin neurons (87–89). Thus,
the kisspeptin/neurokinin B/dynorphin A (KNDy) co-expressing
neurons in the ARC are referred to as KNDy neurons (90).
Wakabayashi et al. (89) clearly demonstrated that a central
administration of neurokinin B facilitated the frequency of the
rhythmic increases in the MUA in goats. They also demonstrated
that the frequency of the rhythmic increases in the MUA was
suppressed by a central administration of dynorphin A and

facilitated by antagonism of the kappa-opioid receptor (KOR,
which preferably binds to dynorphin A) signaling in goats (89).
Similarly, a central administration of neurokinin B or KOR
antagonist facilitated pulsatile LH secretion in sheep (91, 92).
Recently, Weems et al. demonstrated that KOR is expressed
in both KNDy and GnRH neurons and proposed a current
working model that dynorphin A acts on both KNDy and
GnRH neurons to terminate each GnRH pulse in ewes (93–
95). This is in agreement with our previous study that showed
that chronic peripheral administration of NK3R agonist or KOR
antagonist prior to puberty advanced pubertal onset in female
rats via an increase in tonic gonadotropin secretion (96). Taken
together, it is tempting to speculate that neurokinin B-NK3R
and/or dynorphin A-KOR signaling may serve as a driving force
for GnRH pulse generation to trigger the pubertal onset in
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an autocrine and/or paracrine manner in mammals. Previous
studies have shown pubertal increase in ARC Tac3 as well asKiss1
expression in mRNA or protein levels in rodents (82, 97, 98) and
sheep (99).

Our recent in vitro study using a primary culture of
green fluorescent protein (GFP)-tagged kisspeptin neurons
obtained from transgenic Kiss1-GFP mice, proposed possible
involvement of gap junctions between KNDy neurons as well
as between KNDy neurons and glial cells in the generation of
rhythmic activity of kisspeptin neurons under the neurokinin
B-NK3R signaling (100). Briefly, neurokinin B secreted from
KNDy neurons binds NK3R to open Ca2+ channels in an
autocrine/paracrine manner (#1 in Figure 2), triggering Ca2+

influx into the NK3R-expressing KNDy neurons (#2 in Figure 2).
The increased intracellular Ca2+ may propagate to neighboring
KNDy neurons and glial cells via gap junctions, even if those
neurons do not express NK3R (#3 in Figure 2). The gap junctions
between KNDy neurons or between KNDy neurons and glial cells
might be formed, at least in part, by connexins 26 or 37, because
quantitative RT-PCR analysis showed Gjb2 (connexin 26 gene)
and Gja4 (connexin 37 gene) expression in kisspeptin neurons
of the Kiss1-GFP mice (100). The propagation of intracellular
Ca2+ increase would result in synchronized discharge of ARC
KNDy neurons and then causes pulsatile kisspeptin secretion
at the median eminence (#4 in Figure 2). Finally, kisspeptin in
turn induces pulsatile GnRH secretion into the pituitary portal
circulation (#5 in Figure 2). Neurokinin B-NK3R signaling is
supposed to be a major mechanism underlying the synchronized
discharge of KNDy neurons, because ∼80% KNDy neurons
express NK3R (100, 101). The gap junctional communication
would contribute to ensure synchronized discharge of KNDy
neurons regardless of NK3R expression. Indeed, a previous
study reported that patients with mutations of connexin-26
showed hypogonadotropic hypogonadism and a lack of pubertal
onset (102).

SPECIES DIFFERENCE IN THE
PRE-PUBERTAL RESTRAINT OF
GNRH/GONADOTROPIN SECRETION

A current interpretation for brain mechanism controlling
pubertal onset in mammals is presented schematically in
Figures 3, 4. Several lines of evidence suggest that the key players
in this mechanism are ARC KNDy neurons, which serve as the
GnRH pulse generator, regulate pulsatile GnRH/gonadotropin
secretion and hence pubertal onset in mammals including
rodents, ruminants, and primates. GnRH pulse generation is
postulated to be suspended by a lack of kisspeptin secretion
in mammals during the pre-pubertal period. Indeed, previous
studies demonstrated a pubertal increase in Kiss1 expression in
rodents (42, 82) and a pubertal increase in kisspeptin secretion at
the median eminence in primates (41).

Interestingly, the underlying mechanism of suppression of
kisspeptin biosynthesis and secretion during pre-pubertal period
differs from species to species. In rodents and sheep, ovariectomy
acutely induced gonadotropin secretion even in pre-pubertal

period, whereas estrogen replacement inhibited gonadotropin
secretion until a normal pre-pubertal period expired (43, 82,
103). These findings suggest that estrogen plays a key role
in the pre-pubertal restraint of GnRH/gonadotropin secretion
and that the inhibitory action of estrogen seems to decrease
during pubertal transition in those species (Figure 3). Indeed,
estrogen strongly suppresses ARC Kiss1 expression in female
rats during the pre-pubertal period, but estrogen moderately
suppresses ARC Kiss1 expression in female rats during the
post-pubertal period (82). Further, ovariectomy increased the
number of ARC kisspeptin-immunoreactive cells in sheep in the
pre-pubertal period, but not in the post-pubertal period (99).
The regulation of ARC Kiss1 expression by estrogen during
pubertal transition is consistent with the classical “gonadostat
hypothesis” (104, 105) which states that a decrease in the
sensitivity to the negative feedback action of estrogen would
be associated with the pubertal increase in GnRH/gonadotropin
secretion in rodents. We envisage that a small amount of
estrogen derived from the immature ovary directly inhibits
Kiss1 expression via estrogen receptor α (ERα) in kisspeptin
neurons, because kisspeptin neuron-specific ERα knockout
mice showed premature increases in ARC Kiss1 expression
and gonadotropin secretion, which resulted in the precocious
pubertal onset (106, 107). Indeed, estrogen implantation into
the ARC suppressed LH pulses in ovariectomized rats at the
pre-pubertal period (43). Interestingly, estrogen implantation
into the POA also suppressed LH pulses in ovariectomized
rats at the pre-pubertal period, suggesting that ARC kisspeptin
neurons are not a solitary inhibitory action site of estrogen
to suppress Kiss1 expression and hence GnRH/gonadotropin
secretion in rats (43). Further studies are needed to clarify how
sensitivity to estrogen decreases during pubertal transition in rats
and sheep.

In primates, plasma gonadotropin profiles in gonadectomized
animals were comparable to gonad-intact controls during
juvenile and childhood: gonadotropin secretion was
suppressed until just before puberty in both gonad-intact
and gonadectomized animals (108, 109). Interestingly, estrogen-
dependent suppression of gonadotropin secretion is manifested
just before puberty onset in monkeys (110, 111). Thus, the
central mechanism inhibiting GnRH/gonadotropin secretion
in primates appears to differ from that in rodents and sheep
(109, 112). A current interpretation for the brain mechanism
controlling pubertal onset in primates was reported elsewhere
(113). Briefly, two hypotheses have been suggested for the central
suppression of GnRH/gonadotropin secretion during childhood
to juvenile in primates (Figure 4). One is that tonic inhibition
by γ-aminobutyric acid (GABA) neurotransmission would be
responsible for the central suppression of GnRH/gonadotropin
secretion in pre-pubertal monkeys (112); the other is that
neuropeptide Y neurons could be responsible for the pre-
pubertal suppression of GnRH/gonadotropin secretion (114).
KNDy neurons may mediate the inhibitory role of GABA
and/or NPY neurons in pre-pubertal restraint of GnRH
neurons in primates. Further studies are needed to clarify
how these inhibitory actions disappear at the pubertal onset
in primates.
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FIGURE 2 | Schematic illustration of a model for the synchronized discharge of arcuate kisspeptin/neurokinin B/dynorphin A (KNDy) neurons and subsequent GnRH

secretion. Neurokinin B secreted from KNDy neurons (green) binds tachykinin NK3 receptor (NK3R) in an autocrine/paracrine manner (1), triggering Ca2+ influx into

the NK3R-expressing KNDy neurons (2). The increased intracellular Ca2+ may propagate to neighboring KNDy neurons and glial cells (red) via gap junctions, even if

those neurons do not express NK3R (3). The propagation of intracellular Ca2+ increase would result in synchronized discharge of KNDy neurons and then causes

pulsatile kisspeptin secretion (4). Resultant pulsatile kisspeptin secretion controls pulsatile GnRH secretion at the median eminence (5).

METABOLIC CONTROL OF PUBERTAL
ONSET

It has been well-accepted that nutritional or metabolic
cues are important determinants of the initiation of tonic
GnRH/gonadotropin secretion during pubertal transition, as
evidenced by suppression of gonadotropin secretion when
growth is retarded by a food restriction in several mammalian
species including sheep (115) and rats (116, 117). Interestingly,
such animals exhibited pubertal onset when they reached
“critical” body weights, at which normally grown animals with
ad libitum feeding exhibited pubertal onset (115, 116). The
“critical” body weight hypothesis for determining pubertal
onset was initially proposed by Frisch and Revelle (118) as an
explanation of findings that girls showed puberty onset when
they reached a body weight of around 47 kg at 17 years old
in 1840s, and at 13 years old in 1960s along with nutritional
improvements (119, 120).

Nutritional or metabolic cues reportedly control
hypothalamic Kiss1 expression in rodents. Castellano et al. (121)
demonstrated that short-time fasting inhibited hypothalamic
Kiss1 expression along with the suppression of LH secretion in
peripubertal rats. Inhibition of Kiss1 expression and LH release

by fasting has also been reported in adult rats and mice (122–
126). Our recent tract-tracing study showed that hypothalamic
kisspeptin neurons receive neuronal inputs from the hindbrain
ependymocytes (127), which are suggested as a central energy
sensor, in rats (128). The hindbrain ependymocytes, which
express pancreatic glucokinase—a rate-limiting enzyme for
glucose metabolism—and AMP-activated protein kinase, have
been proposed to be able to sense, in particular, lowered glucose
availability for controlling GnRH/LH secretion in rats (129–
131). Thus, it is speculated that pre-pubertal suppression of
hypothalamic Kiss1/kisspeptin expression might be, at least
partly, mediated by this neuronal network.

Energy storage in the adipose tissue has been also considered
to be involved in pubertal onset for a long time (132, 133).
Leptin, the first hormone discovered to be secreted from
the adipocytes, was then considered as a signal that relays
the attainment of energy storage from the adipose tissue to
the brain. Indeed, the leptin receptor is expressed in several
hypothalamic and extra-hypothalamic nuclei including the ARC
(134): KNDy neurons in the ARC express leptin receptors in
mice (135). Importantly, leptin-null mice showed decreased ARC
Kiss1 expression (135) and pubertal failure (136). Moreover,
leptin administration restored ARC Kiss1 expression (135)
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FIGURE 3 | Schematic illustration showing a current interpretation for the brain mechanism controlling pubertal onset in rats and sheep. We envision that ovarian

estrogen strongly suppresses ARC Kiss1 expression (down arrow). The inhibitory action of estrogen on ARC Kiss1 expression somehow decreases during the

pubertal transition, resulting in an increase in Kiss1 expression (up arrow). Resultant pulsatile kisspeptin secretion triggers pubertal increase in pulsatile GnRH

secretion.

FIGURE 4 | Schematic illustration showing a current interpretation for brain mechanism controlling pubertal onset in primates. We envision that γ-amino butyric acid

(GABA) or neuropeptide Y (NPY) suppresses kisspeptin secretion (down arrow) in primates. Those inhibitory actions somehow disappear during the pubertal

transition, resulting in an increase in Kiss1 expression (up arrow). Resultant kisspeptin secretion triggers pubertal increase in GnRH secretion.

and fertility in the leptin-null mice (136). Further, leptin
administration induced pubertal onset in normal and growth-
retarded rodents (137–140). These studies suggest that leptin
is a prerequisite of normal pubertal onset. Interestingly, an
increase in leptin secretion is not necessarily preceded with

the pubertal onset in several mammals including primates
and rodents (141–145). In humans, serum leptin concentration
increased during pubertal development in girls, but remained
constant in boys (141, 143). Circulating leptin remained constant
during puberty in male monkeys (142, 144) and female rats
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(145). Donato et al. (146) showed that genetic deletion of the
leptin receptor selectively from hypothalamic kisspeptin neurons
had no critical effect on puberty and subsequent reproductive
performance in mice, suggesting that leptin indirectly acts
on kisspeptin neurons to control Kiss1 expression. Further,
recent studies suggested two separate leptin signaling pathways
from ARC proopiomelanocortin (POMC) neurons and pituitary
adenylate cyclase activating polypeptide (PACAP) neurons to
ARC kisspeptin neurons in mice (147, 148). Overall, leptin is now
considered as one of the permissive metabolic factors that allow
pubertal development to proceed (149).

Ghrelin, a hormone mainly secreted from the stomach (150,
151), has been suggested to cooperate with leptin for the
metabolic control of puberty onset in mammals (152–154):
ghrelin has an inhibitory effect, while leptin has a stimulatory
effect on pubertal onset. Indeed, repeated administration of
ghrelin during pubertal transition partly delayed pubertal onset
along with a decrease in serum LH and testosterone levels in
male rats (155, 156). This notion is consistent with previous
studies suggesting that ghrelin has an orexigenic effect as a
peripheral signal of energy insufficiency, because ghrelin was
shown to increase food intake in humans and rodents and plasma
ghrelin levels increased by fasting and decreased by food intake
in humans (157, 158). Further studies are needed to clarify
the mechanisms underlying metabolic control of pubertal onset
in mammals.

CONCLUSIONS AND PERSPECTIVE

Studies during the twentieth century have increased our
understanding of the mechanism controlling pubertal onset in
mammals along with the discoveries of gonadotropins from
the pituitary gland and GnRH from the hypothalamus. Most

significantly, a breakthrough came in twenty-first century when
kisspeptin and its receptor emerged. We now envisage that ARC
kisspeptin neurons (also known as KNDy neurons), as a part
of the GnRH pulse generator, are instrumental for pubertal
onset in mammals via triggering GnRH/gonadotropin secretion.
The timing of pubertal onset would be controlled by upstream
regulators for kisspeptin biosynthesis and secretion. These are
tightly controlled by steroid-dependent (rodents and sheep)
or steroid-independent (primates) mechanisms as mentioned
above. In addition, pubertal changes in kisspeptin biosynthesis
and secretion may also be controlled by nutritional or metabolic
cues. Further studies are needed to fully elucidate underlying
mechanism of pubertal onset in mammals.
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