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Non-functioning pituitary adenomas (NFPAs) are tumors with clinically challenging

features since they have insidious progression. A complex network of gene interactions is

thought to have roles in tumor formation and progression. Therefore, revealing the genetic

network behind NFPA tumorigenesis is not only essential to attain further knowledge

of tumor biology, but also plays a fundamental role in the development of efficacious

treatment strategies. Differential co-expression network analysis is an outstanding

approach for elucidation of groups of genes which show distinct co-expression patterns

among phenotypes. In this study, we carried out a differential co-expression network

analysis of NFPA-associated transcriptome dataset (n = 40) considering invasive

(n = 22) and non-invasive (n = 18) phenotypes. Furthermore, we identified differentially

co-expressed and co-regulated mRNAmodules, which might be considered as potential

systems biomarkers for NFPA prognosis and invasiveness. As a result, we have identified

a novel 13-genemodule, includingCEACAM6, CYP4B1, EIF2S2, HID1, IFFO1, MYO18A,

PDCD2, SGIP1, SWSAP1, and four unknown genes (A_24_P127621, A_24_P255786,

A_24_P683553, and A_24_P916979), which was able to categorize the patients into two

groups as invasive and non-invasive NFPA with distinct prognosis. The prognostic core

module genes were associated with progression and prognosis of brain and glandular

based cancers as well. Furthermore, these module genes were also expressed in

blood, salivary gland, and spinal cord tissues. These results may provide the evidence

on featured gene module which might play a prominent role in NFPA prognosis and

sub-typing as effective biomarkers and therapeutic targets in the future.

Keywords: co-expression, differential co-expression network, non-functional pituitary adenoma, invasiveness,

prognosis, biomarker

INTRODUCTION

Pituitary adenomas (PAs) are the second most frequently reported primary brain tumors that are
associated with increased mortality and morbidity (1, 2). Non-functioning pituitary adenomas
(NFPAs) are the most common type of PAs that are not hormonally active (3). In contrast with
the functioning pituitary adenomas (FPAs), which secrete excess levels of hormones that can lead
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easily to track endocrine syndromes, the detection of pituitary
adenomas including NFPAs is clinically challenging. They are
diagnosed usually in the context of mass effect (compress
adjacent neurovascular tissues) leading to visual loss, dysfunction
of the pituitary, and cranial neuropathies. PAs are usually
non-invasive and benign neoplasms in nature, but some of
them exhibit an aggressive attitude and represent invasive
characteristics through cells from a neoplasm extend to the
adjacent healthy tissues and infiltrating into them. Invasive
PAs display local invasion, elevated risk of postoperative
recurrence, and inadequacy of therapeutic response (4). Even
in the perturbation of surrounding tissues, invasive PAs are not
considered as malignant.

In the classification of tumors of the endocrine system,
World Health Organization (WHO) offers several markers
associated with invasiveness such as the Ki-67 proliferative
index, the number of mitotic figures, and the expression
of p53 (5). Moreover, FSH-β, LH-β, and/or α-subunit
immunostain positivity and expressivity of SF-1, GATA-
2, and ER-α transcription factors were proposed as the
indicators of the gonadotroph lineage in NFPAs, and null
cell adenomas were defined as negative immunoreactivity
for both pituitary hormones and pituitary transcription
factors (5, 6).

The expression profiling studies at RNA level intending
the identification of molecular markers associated with NFPA
invasiveness are very limited. The upregulation of MYO5A, and
downregulation of E-cadherin (CDH1) andH-cadherin (CDH13)
were proposed as markers of invasiveness at mRNA level (7, 8).
Several microRNAs including miR-135a, miR-140-5p, miR-582-
3p, miR-582-5p, and miR-938 were found as overexpressed in
the invasive state, and they were also associated with tumor
size and tumorigenesis (9). Moreover, the expression levels
of lncRNAs, maternally-expressed gene 3 (MEG3) and Hox
transcript antisense intergenic RNA (HOTAIR), were correlated
with NFPA development and invasion (10).

Despite the proposed molecular markers and
immunohistochemical indicators of invasiveness, early
prediction of invasive NFPA remains considerably arduous
since there is no consistent pattern that differentiates invasive
from non-invasive PA. Thus, invasive PA needs to be properly
defined with molecular markers in order to identify patients
at increased risk of early recurrence or subsequent tumor
progression. The present markers and classification systems are
insufficient to guide precise diagnostic and therapeutic decisions
in pituitary tumor invasiveness.

Differential co-expression is defined as the altered co-
expression patterns of genes between two phenotypes and
represents significant potential to identify gene clusters
associated with the phenotype of interest (11). In several studies,
co-expression analyses were performed to elucidate the PA
metastasis, invasion and progression. Zhang et al. identified
co-expressed gene pairs for prolactin (PRL) secreting pituitary
tumor metastasis and hypothesized that SLC2A11, TENM1,
IPO7, and CHGB are associated with metastasis in prolactinoma
cases (12). Co-expression of somatostatin and dopamine
receptors were also investigated and invariable loss in expression

of both receptors in invasive growing corticotroph adenomas
was reported (13).

In this study, we aimed to determine whether invasive
and non-invasive PAs display differences in mRNA expression
profiles through a differential co-expression network analysis
framework. A novel gene module, which was differentially co-
expressed in non-invasive PA when compared to invasive PA
state, was presented, and its prognostic performance was tested
in several tumor types through survival analyses. Topological and
functional enrichment analyses were performed to elucidate the
molecular mechanisms. Transcriptional regulatory elements (i.e.,
transcription factors andmiRNAs) associated with the prognostic
gene module were investigated, and expression levels of the
module genes in various tissues were also screened.

METHODS

Selecting Gene Expression Profiling
Dataset
In order to gather NFPA associated gene expression profiling
datasets, we comprehensively screened the publicly available
functional genomics data repositories including ArrayExpress
(14), NCBI Gene Expression Omnibus (GEO) (15) and The
Cancer Genome Atlas (TCGA, http://cancergenome.nih.gov/).
Among three transcriptome datasets, GSE63357 (16), GSE77517
(17), and E-TABM-899 (7), carried out with NFPA samples (with
no hormone secretion), we preferred to employ E-TABM-899
considering its large sample size and sampling characteristics.
Expression profiles of mRNA and related clinical data of invasive
and non-invasive PA were downloaded from ArrayExpress
database (https://www.ebi.ac.uk/arrayexpress/). Gene expression
profiles generated using Agilent whole human genome oligo
microarrays were used as a training set to construct co-
expression networks, identify hub genes, and differentially
expressed genes (DEGs) in this study. Transcriptome data was
composed of 40 samples classified as invasive (n = 22) or
non-invasive (n = 18). NFPA samples were characterized in
terms of clinical and pathological features including age, sex,
hormonal secretion (LH, FSH), immunohistochemical staining,
tumor volume (varied between 0.5 and 77 cm3), tumor grade,
follow-up time, and outcome (recurrence, stably remnant, and
remnant). Immunostaining for FSH-β and LH-β and/or α-
subunit was used for tumor characterization. According toWHO
2017 classification of tumors of the pituitary gland (5), the
dataset was composed of 38 samples with gonadotroph lineage
(positive immunostains FSH-β and LH-β and/or α-subunit) and
2 samples with null cell adenoma (negative for immunostains)
(5, 6). Tumor size and invasiveness were determined with regard
to preoperative magnetic resonance imaging and perioperative
findings, by employing the modified Hardy criteria (18), which
is grade I, if tumor < 10mm, it is enclosed microadenoma; grade
II, if tumor > 10mm, it is enclosed macroadenoma; grade III,
localized perforation of the sellar floor; and grade IV, diffusive
destruction of the sellar floor. Tumor recurrence was classified
according to radiological findings of re-growth of the tumor
remnant or new tumor growth (in patients with no surgical
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remnants). Remnant tumors were accepted as stable if there was
no sign of growth on two MRI within the 1-year interval and
no clue of disease reactivation. Follow-up times were years that
passed after surgery and varied between 3 and 10.5 years. This
dataset included tumors in varied grades, 1 of grade I, 18 of grade
II, 6 of grade III, and 15 of grade IV. Grade III and IV tumors, as
well as one Grade II tumor exhibiting extradural extension, were
accepted as invasive.

Data Processing and Identifying
Differentially Expressed Genes
Pre-processing of microarray data was performed in R using
expression profiles (E-TABM-899.eSet.r) downloaded from
ArrayExpress database (14). The expression profiles were
normalized through quantile normalization. DEGs between
invasive and non-invasive PAs were identified from the
normalized expression values by using Linear Models for
Microarray Data (LIMMA) package (version 3.34.5) (19). The
Benjamini-Hochberg method was used to control the false
discovery rate. In addition, cross-validation of the DEGs was
performed using the two-sample t-test. To determine the
statistical significance, adjusted p < 0.05 was used, and genes
that showed at least 10% change in expression were selected for
further consideration in the network construction.

Pathway and Functional Enrichment
Analysis for DEGs
The pathway and functional enrichment analyses were
performed using ConsensusPathDB (Release 32) (20) to
identify functional annotations significantly associated with
the DEGs. The Kyoto Encyclopedia of Genes and Genomes
(KEGG) (21) database was preferably used as the pathway
database. The Gene Ontology (GO) terminology (22) was
employed as the source for annotating the molecular functions
and biological processes. P-values were obtained via Fisher’s
Exact Test. Benjamini-Hochberg’s correction was used as the
multiple testing correction techniques, and enrichment results
with adjusted p < 0.01 were considered statistically significant.
Comparison of the significant GO terms and KEGG pathways
was performed to identify the different biological functions and
processes between the invasive and non-invasive samples.

Co-expression Network Construction for
Invasive vs. the Non-invasive States
Co-expression networks were constructed for invasive and non-
invasive PA states as previously described (11). Initially, among
the 29,754 genes detected in the pituitary samples, DEGs were
identified. In the case of the repetition in expression values of
DEGs, the mean expression values were computed and used
in further analyses. Pearson’s correlation coefficient (PCC) was
employed to determine the co-expression levels between DEG
pairs in each state. Benjamini-Hochberg’s correction was used
as the multiple testing correction techniques, and the gene pairs
were regarded as co-expressed if |PCC| ≥ 0.80 and adjusted
p ≤ 0.05.

To identify differential co-expression profiles between two
states, the following criterion was employed:

|(PCCNONINV − PCCINV)/PCCINV|≥1

where PCCNONINV and PCCINV are the PCC of a DEG pair
in non-invasive and invasive states, respectively. Resultant gene
pairs were selected to construct the co-expression networks,
ICON (invasive co-expression network) and NICON (non-
invasive co-expression network), representing invasive and non-
invasive states of PA, respectively.

Identification of Differentially
Co-expressed Gene Modules
To elucidate highly connected network modules, co-expression
networks were analyzed using MCODE (23) plugin of Cytoscape
(v.3.5.1) (24). Modules with at least 10 nodes (genes), average
connectivity≥10 and clustering coefficient≥ 0.5 were considered
as differentially co-expressed modules between invasive and non-
invasive states. Modules were further analyzed with Network
Analyzer (25) and Cytohubba (26) plug-ins to determine the
significantly altered hub genes with respect to local and global
topological metrics (i.e., degree and betweenness centrality).

Sub-type Clustering Performance of
Co-expressed Gene Modules
Considering the expression profiles of module genes, Principal
component analysis (PCA) was performed to cluster invasive
and non-invasive samples. The principal components explaining
at least 85% of the total variance was considered in the
determination of clustering performance, i.e., the ability
hereupon “sub-typing” of PA.

Prognostic Power and Survival Analyses
PCA was performed based on gene expression profiles of module
genes, and samples were categorized into three clusters using
k-means algorithm taking into consideration the first three
principal components (explaining 98% of the total variance).
Cox regression was performed via MedCalc Statistical Software
(v.18.2.1, Ostend, Belgium) to elucidate survival-associated
genes. Analysis results were visualized and compared through
Kaplan-Meier plots using the follow-up times of invasive and
non-invasive groups. The prognostic power of the module was
determined using the log-rank test p-value, the hazard ratio (HR),
and its confidence intervals (CI).

In silico Validation in Related Tumor Types
We used SurvExpress (27) web-based biomarker validation
tool in order to test the validity of the proposed prognostic
gene module in various cancer types. Validation analyses were
carried out through independent RNA-seq datasets obtained
from TCGA (28) and microarray datasets from NCBI-GEO.
Core module genes were tested through glandular based
cancers including adrenocortical carcinoma (TCGA, n = 77),
breast invasive carcinoma (TCGA, n = 502), and ovarian
serous cystadenocarcinoma(TCGA, n = 247); brain tumors
including glioblastoma (TCGA, n = 660), meningioma (NCBI-
GEO, GSE16581, n = 68), and medulloblastoma (NCBI-GEO,
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GSE37418, n= 76) (29, 30); and other cancers including prostate
adenocarcinoma (TCGA, n = 497) and lung adenocarcinoma
(TCGA, n = 475). For each dataset employed, samples
were partitioned into low and high-risk groups according to
their prognostic index, survival multivariate analyses, and risk
assessments. The prognostic performance of modules in each
dataset was determined using Kaplan-Meier plots, log-rank test
p-values, hazard ratios (HR), and their confidence intervals (CI).
Differences in gene expression levels between high and low-risk
groups were presented by box-plots and statistical significance of
the difference was calculated through t-test. Heatmaps were also
created to clarify the correlation of the survival analysis with gene
expression levels. Samples were sorted by their prognostic index
and genes were clustered by using Euclidean distance.

Screening of Gene Expressions in Varied
Tissues
The expression levels of modules genes in easily collectible tissues
were obtained from The Genotype-Tissue Expression (GTEx)
project (31), which provides a genome-scale expression profiling
(RPKM) of 51 normal human tissues, cells, and fluids.

RESULTS

Transcriptional Profiling in Non-functioning
Non-invasive Human Pituitary Adenoma
Transcriptome data (E-TABM-899) was composed of 40 NFPA
samples, which were characterized in terms of clinical and
pathological features including age, sex, hormonal secretion
(LH, FSH), immunohistochemical staining (FSH-β and LH-β
and/or α-subunit), tumor volume (0.5–77 cm3), tumor grade (I-
IV), follow-up time (3–10.5 years), and outcome (recurrence,
stably remnant, and remnant). Tumor size and invasiveness
were determined with regard to preoperative magnetic resonance
imaging and perioperative findings, by employing the modified
Hardy criteria (18), Tumor recurrence was characterized
according to radiological findings of re-growth of the tumor
remnant or new tumor growth (in patients with no surgical
remnants). As a result, the samples were classified into invasive
(n= 22) and non-invasive (n= 18) groups.

Further verification of sample classification was carried out
employing the expression values of MKI67 gene, which encodes
Ki-67 protein accepted as a labeling index of proliferation (32).
MKI67 expression levels in two groups were compared and
a statistically significant difference (p = 0.02) was observed
between mean expression levels of invasive (88.49 ± 2.32) and
non-invasive groups (81.62± 1.56; Figure 1).

Identification and Functional Annotation of
Differentially Expressed Genes (DEGs)
Following up a standard protocol including quantile
normalization of raw data, statistical comparisons of expression
levels through “limma” package, and multiple testing correction
with Benjamini-Hochberg method, a total of 4,091 genes were
identified as differentially expressed between two phenotypes,
i.e., invasive and non-invasive pituitary adenoma, considering a

FIGURE 1 | The expression values of MKI67 gene, which encodes Ki-67

protein, between tumor groups.

statistical confidence level of p < 0.05. In addition to p-values,
we also considered at least 10% change in mean expression levels
(FC < 0.9 for down-regulation, FC > 1.1 for up-regulation) as
a criterion in the identification of DEGs and determination of
their direction of regulation. This filtering resulted in 641 DEGs
of which 145 were down-regulated and 496 were up-regulated.

The functional annotations of the down-regulated DEGs were
significantly enriched with transmembrane transport of organic
substances (especially the cations), disassembly of protein
complexes and its regulation, endocytic recycling, and response
to copper ion; whereas genes associated with responses to lipids,
DNA damage stimulus, and cytokines, regulation of protein
localization, proteasomal protein catabolism, endoplasmic-
reticulum-associated protein degradation (ERAD) pathway,
regulations of telomere maintenance and oxidoreductase activity,
cell aging, and oxidative demethylation were up-regulated
(Figure 2A). The major KEGG pathways significantly associated
with DEGs (p< 0.01) were axon guidance (17 genes), ABC family
mediated transport (8 genes), SUMOylation of DNA damage
response and repair (6 genes), estrogen receptor alpha signaling
pathway (5 genes), imatinib pathway (3 genes), and warfarin
pathway (2 genes; Figure 2B).

Detection of Differentially Co-expressed
Gene Modules
The possible co-expression patterns of 641 DEGs were analyzed
through the employment of PCCs in invasive and non-
invasive phenotypes separately to construct phenotype-specific
co-expression networks. This resulted with a denser, centralized,
and modular co-expression network in invasive phenotype
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FIGURE 2 | Biological process and pathway enrichments of DEGs. (A) Biological process enrichments of up- and down-regulated DEGs. (B) Pathway enrichments

of DEGs.

FIGURE 3 | Differentially co-expressed gene networks of invasive and non-invasive states. (A) The co-expression network in invasive phenotype (ICON) with 183 links

among 162 and topological features of ICON (B) the non-invasive co-expression network (NICON), which includes 2,385 links among 562 genes and topological

features of the network (C) Functional annotations of ICON hub genes (D) Functional annotations of NICON hub genes.

(ICON) with 183 links among 162 genes (Figure 3A) when
compared to the non-invasive co-expression network (NICON),
which includes 2,385 links among 562 genes (Figure 3B). Not

only the number of genes exhibiting co-expression pattern was
almost 4-fold higher in the non-invasive state, but also the
network centralization (0.835) and the clustering coefficient
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(0.348) were higher in NICONwhen compared to those in ICON
(0.394 and 0.002, respectively).

Hub genes of ICON network (ARL5, ASTN2, C11orf39,
CTNNAL1, EIF2S2, NPTX2, RALGPS2, and SLC12A9) were
enriched in cytolysis, Ras protein and Rho protein signal
transduction and small GTPase signal transduction biological
processes (Figure 3C). Hub genes of NICON network (ASTN2,
C11orf39, CEACAM6, CTNNAL1, GZMM, GLT8D2, NPTX2,
RALGPS2) were enriched in processes such as urogenital
system development, epoxygenase P450 pathway, thyroid gland

development, protein tyrosine kinase activity, drug metabolic
processes, protein kinase B signaling, intracellular receptor
signaling pathway (Figure 3D).

Comparative analysis of the phenotype-specific co-expression
networks yielded with 10 differentially co-expressed gene
modules (ranging in size from 5 to 69 genes), which were
activated in non-invasive phenotype when compared to invasive.
Differentially co-expressed gene modules were named as M1
(Module 1), M2, M3, M4, M5, M6, M7, M8, M9, and M10.
Module sizes and their associations with biological processes and

TABLE 1 | Identified modules and their features.

Module identifier Number of module genes Functional enrichments (p-value < 0.001) Relationship with PA*

M1 41 Regulation of cell-cell adhesion Novel as a module

M2 45 GTPase activator activity,

Nucleoside-triphosphatase regulator activity

Novel as a module

M3 14 Actin filament binding,

Ras protein signal transduction

Novel for every module gene

M4 69 DNA damage checkpoint,

Regulation of cellular response to stress

Novel as a module

M5 10 DNA damage checkpoint Novel for every module gene

M6 8 Metal ion binding Novel for every module gene

M7 8 Pyrophosphatase activity,

Hydrolase activity,

Acting on acid anhydrides

Novel for every module gene

M8 5 Nervous system development Novel for every module gene

M9 5 Ras protein signal transduction,

Small GTPase mediated signal transduction

Novel for every module gene

M10 5 Protein complex binding Novel for every module gene

*If stated as novel for every module gene, each module gene and module itself was reported for the first time in this study. If stated as novel as a module, some of the module genes

were reported as a biomarker for PA but not reported as a whole module.

FIGURE 4 | Principle Components Analysis (PCA) plots of differentially co-expressed gene modules (M3, M6, M7, and core module) that have significant

prognostic performance.
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PA were tabulated (Table 1). M1 was composed of 41 genes and
these genes were enriched in regulation of cell adhesion. M2
had 45 genes that were enriched in GTPase activator activity
and nucleoside triphosphatase regulator activity. M3 included
14 genes that related to Actin filament binding and Ras protein
signal transduction processes. M4 had 69 genes which were
enriched in DNA damage checkpoint and regulation of cellular
response to stress. There were 10 genes in M5 and enriched in
DNA damage checkpoint process. M6 had 8 genes that were
related with metal ion binding process. M7 included 8 genes
that enriched in pyrophosphatase activity, hydrolase activity,
and acting on acid anhydrides. M8, M9, and M10 included 5
genes that were enriched in nervous system development, Ras
and GTPase mediated signal transduction, and protein complex
binding, respectively. Core module included 13 genes which were
enriched in ATPase activity and regulation of endocytosis. These
modules have been associated with neither PA diagnosis nor PA
prognosis in literature.

To determine the possible associations of the identified co-
expression modules with clinicopathological features (i.e., age,
tumor size, tumor grade, hormonal status, follow-up time, and
clinical outcome), we conducted the Principal Components
Analyses (PCA) as well as Kaplan Meier survival analyses, and

detected significant correlations with tumor grade and sub-type
for several gene modules.

Three modules, i.e., M3 with 14 genes associated with actin
filament binding and Ras protein signal transduction, M6 with
8 genes associated with metal ion binding, and M7 with 8
genes associated with pyrophosphatase and hydrolase activities,
presented considerable accuracy in discrimination of two
sub-groups of invasive and non-invasive states in PA (Figure 4).
Considering the similar discriminatory behavior of these
modules, we combined them and narrowed the co-expression
patterns with a higher PCC cut-off (increasing from 0.8 to 0.9)
to obtain a “core module” consisting of the minimum number
of genes with higher discrimination ability. This resulted with a
core module of 13 genes (CEACAM6, CYP4B1, EIF2S2, HID1,
IFFO1, MYO18A, PDCD2, SGIP1, SWSAP1, A_24_P127621,
A_24_P255786, A_24_P683553, A_24_P916979), which indicates
higher discrimination accuracy, since clusters representing
invasive and non-invasive states were clearly separable and
distinguishable without any overlaps in PCA plots (Figure 4).
Interestingly, the genes in the core module were not enriched in
any molecular pathway or biological process as a whole; but some
sub-groups were enriched in ATPase activity and regulation of
endocytosis (p < 0.001). Notably, four genes (A_24_P127621,

TABLE 2 | Differentially co-expressed genes represented in the core module.

Gene Name Description References

CEACAM6 – A member of the immunoglobulin cell adhesion molecule superfamily.

– Located on the cell surface of the mammary, respiratory and gastrointestinal

epithelium and neutrophils.

– Reported to be overexpressed in colorectal and pancreatic cancers.

(33–36)

CYP4B1 – An extrahepatic form of P450s.

– Has a role in the bioactivation of xenobiotics

– Strongly associated with bladder cancer.

(37, 38)

EIF2S2 – Has functions in encoding eukaryotic translation initiation factor -2 (subunit

2 beta)

– Involved in early steps of protein synthesis.

(39)

HID1 – Associated with the medial- and trans- Golgi membranes.

– Involved in the intracellular trafficking within the Golgi region.

(40)

IFFO1 – A member of the intermediate filament family.

– Essential components of the cytoskeleton and nuclear envelope.

(41, 42)

MYO18A – An unconventional member of the myosin superfamily.

– Regulates epithelial cell adhesion and migration.

(43)

PDCD2 – Encodes a highly conserved nuclear protein,

– Abnormal PDCD2 expression alters cell apoptosis.

– Alteration of PDCD2 expression could be conducive to human cancer

development and progression.

(44)

SGIP1 – One of the key regulators of clathrin-mediated endocytosis.

– Functions as an endocytic protein that alters signaling by receptors in

neuronal systems

– Affects energy homeostasis via interaction with endophilins.

(45, 46)

SWSAP1 – Required for efficient homologous recombination repair in mammalian cells.

– Has roles in the maintenance of genomic stability and tumor suppression.

(47)

A_24_P127621

A_24_P255786

A_24_P683553

A_24_P916979

– Genes with unknown functions.
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FIGURE 5 | The degree of co-expression of core module genes between

invasive and non-invasive states. Upper-triangle represents invasive state

whereas lower-triangle shows non-invasive state.

A_24_P255786, A_24_P683553, A_24_P916979) located in
distinct chromosomes were not annotated with any molecular
function yet (Table 2).

The Prognostic Performance of the Core
Module Between Different PA States
The genes in the core module indicated significantly different
co-expression patterns between invasive and non-invasive
phenotypes of PA (Figure 5). The clustering of samples based
on the expression profiles of core module genes via the first
principle component (PC1) of the PCA analysis (describing
89.8% of the total variance) and k-means algorithm resulted with
three distinct sub-groups of patients (Figure 6A). The cluster
representing lower loadings on PC1 consisted of only invasive
and grade IV tumor samples; whereas the cluster with higher
loadings on PC1 included non-invasive and grade II tumors.
Furthermore, survival analysis with the Cox regression model
and Kaplan-Meier estimates indicated the predictive power of
patient survival among the sub-types (Figure 6B). There was
a significant difference among groups in terms of survival
probability estimates (p = 0.0024, log-rank test), and the average
survival probability of non-invasive and grade II tumors was
significantly higher than that of invasive and grade IV tumors
with a hazard ratio of 2.96 (p= 0.011).

Transcriptional Regulators of the Core
Module Genes
In order to elucidate the regulatory mechanism behind the
co-expression pattern of module genes and to evaluate the
condition-specific expression pattern alterations, we performed
serial analyses to link the key regulators of transcriptional
control, i.e., transcription factors (TFs) and microRNAs

FIGURE 6 | Clustering of sub-types of NFPA with PCA analysis. (A) The

clustering of samples via first principle component of expression profiles of

core module genes (B) survival analysis by Cox regression model and

Kaplan-Meier estimates indicated the predictive power of patient survival

among the sub-types.

(miRNAs), to genes in the core module. A total of 10 TFs
were found as regulators of the module genes and GATA1,
GATA2, ETS1, ESR1, and PRDM14 were top five regulators
with highest degree values (Figure 7A). The majority of the
core module genes were co-regulated by ETS1 and GATA2.
Furthermore, among module genes EIF2S2, IFFO1, and PDCD2
were co-regulated by the same TFs. In contrast to TFs, core
module genes were regulated by distinct miRNAs (Figure 7B).
Among those, mir-335-5p was the only common regulator
between two gene pairs (HID1 and MYO18A). Members of
the core module were found in varied chromosomal locations.
CEACAM6 and SWSAP1 were located on chromosome 19
whereas HID1 and MYO18A were on chromosome 17, CYP4B1,
and SGIP1 were on chromosome 1, PDCD2 was on chromosome
6, A_24_P127621 was on chromosome 7, A_24_P683553 was on
chromosome 9, A_24_P255786 was on chromosome 10, IFFO1
was on chromosome 12, EIF2S2 was on chromosome 20, and
A_24_P916979 located on chromosome X.

The Specificity of the Core Module to NFPA
In order to analyze NFPA-specific expression and prognostic
performance of the core module, we carried out several analyses
over various human cancers with or without tissue similarity
with PA. First of all, we tested its prognostic performance
in other glandular based cancers including adrenocortical
carcinoma, breast invasive carcinoma and ovarian serous
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FIGURE 7 | Transcriptional regulators of prognostic genes. (A) Transcription factors that regulate prognostic core module genes (B) microRNAs (miRNAs) regulating

the core module genes.

cystadenocarcinoma (Figure 8), and observed that the core
module presents high prognostic performance in adrenocortical
carcinoma (HR = 7.22, p = 4.69 × 10−6), breast invasive
carcinoma (HR = 2.60, p = 1.84 × 10−4), and ovarian serous
cystadenocarcinoma (HR = 2.02, p = 4.56 × 10−3). Secondly,
we tested the performance of core module in brain tumors
(Figure 9), and significant results were obtained in glioblastoma
(HR = 3.54, p < 10−20), meningioma (HR = 10.54, p = 8.90
× 10−4), and medulloblastoma (HR = 14.25, p = 6.02 × 10−3).
Lastly, we tested the prognostic performance of the core module
in two other unrelated tissue but highly prevalent cancers, namely
lung, and prostate adenocarcinoma. This time survival analyses
pointed out insignificant performance in both lung (p = 0.08)
and prostate (p = 0.15) adenocarcinomas (Figure S1). As a
consequence, our core module could be considered as prognostic
for both glandular-origin cancers and brain cancers, but not for
lung and prostate cancers.

Tissue-Specific Expressions of Core
Module Genes
We searched for the expression levels of module genes in easily
collectible tissues (especially not need to biopsy or taking by
minimally invasive operations) in order to decipher whether
these genes can be detectable at mRNA level. Core module genes
have detectable expression values in varied tissue types like blood,
kidney, lung, spleen, spinal cord, saliva, pancreas, and uterus. It
was also difficult to obtain a cumulative behavior in expression

patterns of the genes in the same tissue; however, we found that
every core module genes have considerable expression values in
three tissue types, which are blood, salivary gland, and spinal
cord (Figure 10).

DISCUSSION

There is a great need for interpretation of omics data to elucidate
the multi-layered molecular mechanisms lay behind the invasion
of PA. However, omics datasets associated with PA invasiveness is
scarce in the publicly available databases. Even in TCGA, which
is the most comprehensive and multi-dimensional database
for cancer genomics with 33 cancer types, genomics and/or
transcriptomics of PA were not considered. The scarcity of omics
datasets indicates the urgent need for further efforts on mRNA
profiling in NFPA.

Despite designated markers associated with invasive behavior
of PA tumors such as the Ki-67 proliferative index, the number
of mitotic figures, and the expression of p53 (48, 49), the early
prediction of PA invasiveness is still considerably hard, since the
patient’s state tends to be delayed due to the clinical symptoms
of NFPA which are not obvious in the early stage. In the era
of precision medicine, accurate biomarkers for cancer-specific
prognosis and early prediction were urgently required and this
convincingly enhances decision making for patient management.

Instead of the construction of the commonly used biological
networks in literature like PPIs and metabolic networks, we
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FIGURE 8 | Prognostic power of core module through related tissue type cancers. Core module was also prognostic for (A) Adrenocortical carcinoma, (B) breast

adenocarcinoma, (C) ovarian serous adenocarcinoma.

constructed gene co-expression networks since it has several
advantages such as almost complete coverage of human
genes, little knowledge bias obtained from the published
literature, and the ability to create cancer type–specific
networks. Identification of changes in co-expression patterns
of genes among invasive and non-invasive samples provides
information about the invasiveness of PA-specific gene modules.
Previous studies in literature objected to predict candidate
prognostic biomarkers or protein-protein interaction networks
constructed around differentially expressed genes in PA, not
co-expressed gene modules. The altered co-expression schemes
of module genes among invasive to the non-invasive state
were neglected in these studies. Here, we made a differential
co-expression analysis to elucidate PA genes and their co-
expression pairs. As a result, the novel co-expressed gene
module presented here may be regarded as “systems biomarkers”

that lead to the design of effective therapeutic strategies in
PA prognosis.

In the present study, co-expressed gene networks were
constructed for invasive and non-invasive states (ICON and
NICON, respectively) separately. ICON hub genes were enriched
mostly in signaling processes like Ras, Rho, and small-GTPase
signaling. It was reported that Ras small GTPase had a key
signal transduction role in activating MAPK cascade (50). Rho
GTPases are activated by G-protein-coupled receptors (GPCRs)
and play critical roles in the invasion and metastasis of cancer
cells (51). Hub genes of NICON were enriched in biological
processes like urogenital system development, thyroid gland
development, tyrosine kinase activity, protein kinase B signaling,
and intracellular receptor signaling. The pituitary is part of
the endocrine system and it was expected to found urogenital
system development and thyroid gland development processes
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FIGURE 9 | Prognostic power of core module through 3 types of brain tumors. (A) glioblastoma, (B) meningioma, (C) medulloblastoma.

considering the secretion of TSH and FSH in the pituitary.
Protein kinase B (Akt) signaling was found as over-expressed and
over-phosphorylated in human PAs and proposed a potential role
for Akt with respect to p27 deregulation (opposite direction to
each other) (52).

The differential co-expression profiling followed by
clustering and survival analyses resulted with a prognostic
core module composed of 13 genes; namely, CEACAM6,
CYP4B1, EIF2S2, HID1, IFFO1, MYO18A, PDCD2,
SGIP1, SWSAP1, and 4 unknown genes (A_24_P127621,
A_24_P683553, A_24_P255786, A_24_P916979). The unknown
genes, A_24_P127621, A_24_P683553, A_24_P255786, and
A_24_P916979, have specific gene sequences and distinct
chromosomal locations (chromosome 7, chromosome 9,
chromosome 10, and chromosome X, respectively); however,
there was no known functional annotation of them in any of
the annotation sources. Further in-depth experimental research

studies might be performed to elucidate their function and
association with PA tumorigenesis and/or invasiveness. The high
prognostic power of the core module was not specific to NFPA
but also observed in cancers with the same tissue origin such as
glandular-origin cancers and brain cancers.

Among the module genes, CEACAM6 encodes a protein
that is a member of the carcinoembryonic antigen (CEA)
family whose crew are cell surface glycoproteins (33).
Members of this family have a function in cell adhesion
and they are widely employed as serum tumor markers for
determinations of carcinoma (53). Moreover, over-expression
of CEACAM6 modulates cancer progression through aberrant
cell differentiation, anti-apoptosis, cell growth, and resistance to
therapeutic agents (54). In addition, CEACAM6 over-expression
in varied malignancies promoting cell invasion and metastasis,
therefore, it represents a characteristic advantage of tumor cells
which are responsible for an invasive phenotype (55). It is also
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FIGURE 10 | Tissue-specific expressions of core module genes.

a major determinant for malignant phenotype of pancreatic
cancer through over-expression of the positive regulation of
epithelial–mesenchymal transition (35, 36, 56).

CYP4B1 gene encodes a member of the cytochrome P450
superfamily of enzymes which is responsible for the oxidation
of steroids, fatty acids, and xenobiotics therefore involved in
reactions in drug metabolism (37). CYP4B1 was reported as
procarcinogen for some chemicals in bladder carcinoma, down-
regulated in esophageal squamous cell carcinoma and up-
regulated in breast tumors when comparing the surrounding
healthy tissues (38, 57, 58).

EIF2S2 encodes eukaryotic translation initiation factor 2 and
functions as a vehicle in the early phases of protein synthesis.
The deletion of EIF2S2 gene has been reported with suppression
of testicular germ cell tumor incidence and recessive lethality in
mice (39). It is also reported that EIF2S2 is up-regulated and
involved in major enriched genes in epithelial ovarian carcinoma
(EOC) samples and cervical cancer vs. normal group (53, 59, 60).
In ER-negative breast cancer, EIF2S2 gene was found as amember
of novel loci (61).

HID1 gene encodes a protein functioning in the trafficking of
cargos that are important for the sorting/biogenesis/maturation
of dense core vesicles and plays an important role in the
development of cancers in a broad range of tissues (40, 62).
It is alternatively named as DMC1 (down-regulated in multiple
cancer 1). The loss of expression of HID1 was reported in breast,
cervical, lung, thyroid, renal, and gastrointestinal cancer cell
lines (62).

IFFO1 gene is a member of the intermediate filament family
which include essential components of the cytoskeleton and
nuclear envelope (41, 42). In ovarian cancer, its promoter was
hypermethylated and IFFO1 was proposed as a biomarker (63).
In addition, it has been identified as a strong prognostic indicator
of breast cancer (63). The hypomethylation and up-regulation
of IFFO1 have been also reported in endometrioid endometrial
adenocarcinoma samples (64).

MYO18A encodes a protein which is part of a complex
that unifies lamellar actomyosin bundles and needed for
cell migration. MYO18A has been found highly expressed
in metastatic prostate cancer and its knockdown affects the
cytoskeleton and cell migration (65). MYO18A gene fusion has
been identified in an acute cell leukemia patient (66).

PDCD2 (programmed cell death 2) gene encodes a nuclear
protein expressed in a variety of tissues and its expression
is controlled by transcriptional repressor BCL6. It plays an
important role in cell death and/or in the regulation of cell
proliferation. PCDC2 has been found as a tumor suppressor
and involved in the pathogenesis of osteosarcoma. Aberrant
expression of PDCD2 is associated with many tumors, such as
leukemia and gastric cancer (44, 67). PDCD2 is an important
predictor of clinical relapse in acute leukemia patients (67).
Plus, loss of PDCD2 expression could induce gastric cancer
development and progression through cell growth arrest at the
early S phase of the cell cycle and reported as a putative tumor
suppressor in gastric stromal tumors (68).

SGIP1 (SH3 domain GRB2 like endophilin interacting
protein) functions as an endocytic protein that has effects on
signaling in neuronal systems including energy homeostasis
(45, 46). Hypomethylation and retrotransposition of SGIP1 have
been reported in colorectal cancer samples (69). SGIP1 has been
found as a potential therapeutic target for obesity- and diabetes-
related symptoms, since the selective reduction of the expression
of SGIP1 consequenced with inhibition of food intake and the
decrement of body weight in rat models (70). SGIP1 has been
identified as the second most significantly upregulated gene in
the colon and rectal cancers samples (71). The expression level
of SGIP1 has been shown significantly decreased in gastric cancer
when compared to control samples (72).

SWSAP1 (SWS1-Associated Protein 1) gene is involved in
homologous recombination repair by binding single-stranded
DNA activity and it also has ATPase activity. Depletion of
SWSAP1 contributes to defects in homologous recombination
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repair and Knockdown of SWSAP1 ends up with increased cell
sensitivity to the DNA damaging (47).

Remaining core module gene members (A_24_P127621,
A_24_P255786, A_24_P683553, A_24_P916979) were unknown
with their unknown functions. The present study may contribute
to assigning function/ functions to these genes. Known module
genes were briefly explained with their functions and roles in
various types of cancers. But there was no research found that
could report module members for PA progression and prognosis.
Therefore, identified module genes and module itself are novel
for PA prognosis and they might be considered as the indicator
of the non-invasiveness.

While our study provides some insight into the prognosis
of PA in different states, more efforts should be performed to
validate them clinically and extend our findings. We examined
the prognosis of PA through core module genes in the context
of gene co-expression networks. Results were in silico validated
through various cancer types and it can be concluded that the
core module is novel for PA prognosis. In addition, core module
has also found as prognostic for brain tumors (glioblastoma,
meningioma, and medulloblastoma) and glandular- originated
tumors (adrenocortical carcinoma, breast invasive carcinoma,
and ovarian serous cystadenocarcinoma). Our findings are based
on TCGA, ArrayExpress, and GEO data (module investigation
and validation), so a critical extension of this work would
be to learn whether the patterns can be recapitulated by
clinical trials. All in all, future efforts should be carried out
to incorporate this systems-level understanding of prognostic
genes into the practice of construction of effective clinical
prognostic vehicles.

CONCLUSION

Pituitary adenomas are the most common intracranial tumors
in the central nervous system. They are accepted as benign
in general but somehow tumors can exhibit gross invasion
into surrounding tissues rarely. Invasion results in resistance
to conventional treatment methods and leading to early and

frequent recurrences. In order to shed light on the multi-
layered molecular mechanism lay behind the invasion of PA,
there is a great need for omics-level data and their integration
into meta-analyses. Our study used gene co-expression analysis
to construct a gene co-expression network, elucidate and
validate network modules associated with the invasiveness and
prognosis of PA. Eventually, a core module with 13 genes
including CEACAM6, CYP4B1, EIF2S2, HID1, IFFO1,MYO18A,
PDCD2, SGIP1, SWSAP1, and 4 unknown genes (A_24_P127621,
A_24_P255786, A_24_P683553, A_24_P916979) were identified
and in silico validated in association with the indicator of
invasiveness and prognosis of PA, plus some related cancer types.
The research not only increases the theoretical knowledge but
also provides a novel prognostic module and therapeutic strategy
for PA.
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