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The liver is the main metabolic organ in the body, serving as a significant hormonal

secretory gland and functioning to maintain hormone balance and homeostasis. Steroid

hormones regulate various biological pathways, mainly in the reproductive system and in

manymetabolic processes. The liver, as well as steroid hormones, contribute significantly,

through functional intertwine, to homeostasis maintenance, and proper responses during

stress. Malfunction of either has a significant impact on the other and may lead to

severe liver diseases as well as to several endocrine syndromes. Thus, the regulation

on liver functions as on steroid hormones levels and activities is well-controlled. p53,

the well-known tumor suppressor gene, was recently found to regulate metabolism and

general homeostasis processes, particularly within the liver. Moreover, p53 was shown

to be involved in steroid hormones regulation. In this review, we discuss the bi-directional

regulation of the liver and the steroid hormones pointing to p53 as a novel regulator in

this axis. A comprehensive understanding of the molecular mechanisms of this axis may

help to prevent and treat related disease, especially with the increasing exposure of the

population to environmental steroid hormones and steroid hormone-based medication.
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INTRODUCTION

Steroid hormones are involved in regulation of different biological pathways mainly in the
reproductive system and in metabolic homeostasis maintenance. Steroid hormones are derived
from cholesterol and are synthesized primarily by endocrine glands such as the adrenal cortex,
gonads (testes and ovaries), and placenta. They are classified to five main groups, based on
their corresponding nuclear receptor: mineralocorticoids, glucocorticoids, androgens, estrogens,
and progestogens (1–5). The nuclear steroid receptors act as ligand-activated transcriptional
activators, which may regulate different genes expression (6). Steroid hormones affect the entire
body homeostasis. Thus, it is not surprising that their regulation is complex and based on several
parameters including production and degradation, activation vs. inactivation and the proportion
between free and bound circulating steroid compounds (7, 8).

Furthermore, this multi-level regulation takes place not only in steroidogenic tissues but also
in different peripheral organs, mainly in the liver. The liver, as a central metabolic organ, plays a
crucial role in steroid hormones homeostasis (9, 10) and in the elimination of toxic metabolites,
which may be destructive to the tissue and in the end to the whole body, leading to ongoing stress
and liver diseases. The fact that there is a tight relationship between liver pathologies and steroids
hormones (Table 1), together with the enormous potential held in the use of hormone therapy
for different diseases, raises the necessity of a better understanding the mechanisms underlying
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TABLE 1 | Steroid hormone deregulation and liver pathologies.

Steroid status Clinical condition Liver disease

Hypercortisolism Cushing’s

syndrome/disease

NAFLD

Hyperaldosteronism Primary/secondary

hyperaldosteronism

NAFLD

RAAS activation – Liver inflammation and

fibrosis

Hyperandrogenism

female

Polycystic ovary syndrome Alteration in liver metabolic

homeostasis

Hyporandrogenism male

(reduced testosterone)

Hypogonadism Alteration liver metabolic

homeostasis

Increased risk HCC

Hypoestrogenism Menopause NAFLD

Deregulation of steroid hormone levels or bioactivity leads to various

liver pathologies/diseases.

the liver regulation of steroid hormone balance and function.
Interestingly the transcription factor p53, the well-known
guardian of the genome, which reacts upon stress signals to
maintain genome fidelity, was also suggested to control the entire
organism homeostasis (11, 12), and to regulate many processes in
the liver including steroid hormone regulation (13, 14).

In this review, we discuss the interesting bidirectional
relationship between the different steroid hormones and the liver,
independently and dependently on p53, in the context of health
and liver diseases.

Steroid Hormones Homeostasis
Regulation by the Liver
The liver participates in most steps of steroid hormone
regulation starting from biosynthesis of cholesterol, which is the
main source for steroids biosynthesis. Cholesterol is obtained
either by de-novo production, hydrolysis of stored cholesterol,
interiorization of plasma membrane cholesterol, or from LDL
and HDL, which are secreted from the liver to the plasma (15).
Subsequently, the cholesterol is processed to steroids by several
enzymatic steps, which occur mainly in steroidogenic organs.
Further, metabolism of these steroids also occurs in the liver.
For example, the liver enzyme 5α-reductase 1 (5αR1) regulates
metabolic processes of both androgens and glucocorticoids (GC)
(16, 17). Studies have shown that 5αR1-KO mice exhibited
augmented mRNA levels of various hepatic metabolic regulators
genes (e.g., Acc1, Agpat2, Cpt2, and Dgat2) in comparison to WT
mice, suggesting a crucial role of the liver enzyme, 5αR1, in the
regulation of GC and androgens accumulation and effects (18).

Another example is the cytochromes P450 enzymes (CYP),
which are responsible for the metabolism of many drugs
and lipophilic compounds (19). CYP3A4, CYP19, CYP2C2B1,
and CYP2C11 are the liver CYPs that take part in steroid
hormones hydroxylation and processing. CYP3A4 hydroxylases
several steroids such as cortisol, androstenedione, testosterone,
and progesterone (20, 21), CYP19 (Aromatase) transforms
androgens to estrogens by the removal of C19 carbon and the
aromatization of the steroid A ring, while CYP2C11 and CYP2B1

regulate hydroxylation of testosterone (10, 22). Accumulating
data suggest that different mechanisms underlay liver regulation
on CYP expression levels. Several nuclear receptors complexes
such as PXR, VDR, RXR were also found to bind CYP3A4
chromatin and affect its expression (23, 24).

Additional processes such as steroids conjugation, are exerted
by specific enzymes such as sulfotransferases and the uridine
diphosphate-glucuronosyltransferases (UGT) that transfer the
steroid hormones into higher polarity metabolites that are better
suited to be excreted from the body (10). The sulfotransferases
that are expressed by hepatic cells and are related to steroids
conjugations are HSST, EST, SULT 2A1, and SULT 1E1 (25).
Studies have shown that sulfotransferase inhibition, as well as
EST KO, led to the acceleration of free steroids and thus to
sexual abnormalities (10, 26). Interestingly, the sulfotransferase
expression was found to be regulated by androgens, GCs,
and nuclear receptors such as PXR (27), suggesting a possible
regulatory feedback between the hepatic enzymes that are
part of the steroid hormones processing and the steroid
hormones themselves.

UGT enzymes consist of two subfamilies; the UGT2B
subfamily is mainly expressed in the liver and is related to
the processing of steroid hormones (28). UGT enzymes induce
glucuronidation of steroids, a process that interrupts steroids
activity, and enables their elimination. UGTs enzymes are
regulated by several xenobiotics compounds (e.g., PCN, PB),
which were reported to increase their mRNA expression levels
in rats’ livers (29).

As steroids, these hormones are lipophilic thus, when secreted
into the blood stream they need to be bound to carrier proteins
such as Sex hormone binding globulin (SHBG), Corticosteroid
binding globulin (CBG) and to lesser extent albumin, which
facilitate their transportation to their target organs. These carriers
are glycoproteins which are secreted mainly by the liver and bind
with high affinity cortisol, testosterone, and estradiol (30, 31).
In addition to their role as carrier proteins, they serve as a
buffer for steroid hormones homeostasis and balance. The steroid
hormones binding proteins have a principal role in hormone
regulation. On the one hand, based on the “free hormone
hypothesis,” the carrier proteins bind steroids and turn them to
be biologically inactive (32). On the other hand, it was shown that
both SHBG and CBG could bind to their target cells receptors
and effect different molecular pathways and signaling such as
apoptosis (33, 34). Several factors regulate SHBG expression
in the liver including metabolic and hormonal factors such as
glucose (35), thyroid hormone (36), and other factors such as
the hepatocyte nuclear factor 4α (HNF-4α) (37), PPAR-γ (38),
and p53 (14). Together, these findings point out that the liver,
as the primary organ that produces and secrets these carrier
proteins to the plasma (39), is the central regulator of steroid
hormones bioavailability.

Glucocorticoids
Glucocorticoids are vital endocrine regulators of homeostasis
and adaptation to environmental variations. GC is widely used
clinically as a potent anti-inflammatory and immunosuppressive
agents (40). They act via genomic (transcriptional) and
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non-genomic mechanisms. Upon binding to their cognate
intracellular receptor (GR), the complex is translocated into
the nucleus, and regulates various genes transcription (40, 41).
Cortisol, the main glucocorticoid secreted by the adrenal cortex,
is essential for various cellular functions including the immune
system, vascular tone maintenance, and more (42). Cortisol
is a major player during stress and severe illness mainly by
increasing cardiac output and vascular tonus and decreasing
pro-inflammatory cytokines release (43, 44). Cortisol levels are
under the control of the hypothalamus-pituitary-adrenal (HPA)
axis through the adrenocorticotropic hormone (ACTH) and the
corticotropin-releasing hormone (CRH) (42). Eighty percent of
the circulating cortisol is synthesized mainly from the liver-
secreted high-density lipoproteins (HDL) cholesterol. Thus, in
severe low-density lipoproteins (LDL) cholesterol insufficiency,
due to enzymatic metabolic errors or acquired cases, cortisol
production can be impaired (45).

Glucocorticoids and Liver Diseases
Non-alcoholic fatty liver disease (NAFLD) is ametabolic disorder
characterized by hepatic steatosis, namely, the presence of
free fatty acids or triglycerides in the liver (46). Studies in
animal models have shown that rodents on a high fat diet and
chronically elevated GC had a dramatic exacerbation in the
development of NAFLD (47). Similarly, patients with elevated
GC levels, as in Cushing’s syndrome, are prone to develop
features of NAFLD (48). NAFLD, as well as other forms of
liver diseases, can develop into cirrhosis, which is a late stage
of scarring (fibrosis) of the liver. Cirrhosis characterized by low
arterial pressure, circulatory failure, vasodilation, and increased
production of cytokines (45). Cirrhotic patients were reported
to suffer from adrenal insufficiency (AI), a condition where
the adrenal glands cannot synthesize the adequate amount of
cortisol (49). This is mainly due to their low cholesterol levels
and to increased cytokines production such as TNF α, IL-6, IL-1,
and endotoxin like lipopolysaccharide, that over stimulate and
exhaust the HPA axis (50–53). The accumulating observations
of the high prevalence (40–60%) of AI (54) in various stages
of cirrhosis suggests that this disease may have a predisposition
to AI, which may be a feature of liver disease per se (55–58).
Indeed, using “conservative” diagnostic criteria, Marik et al.
(59) reported a surprisingly high incidence of AI in a large
cohort of critically ill patients with liver disease and coined
the term “hepatoadrenal syndrome” to describe the association
between adrenal dysfunction and liver disease. Rauschecker et al.
demonstrated that AI is common, in patient with cirrhosis. This
was done by using serum free cortisol for diagnosis, as protein
abnormalities might affect interpretation of total serum cortisol
levels (60).

It seems that end stage of liver disease may coexist with AI
and on the contrary, excess glucocorticoids have been implicated
in the pathogenesis of liver disease. Patients with NAFLD seem
to have a subtle chronic activation of the hypothalamic pituitary
adrenal axis leading to a state of subclinical hypercortisolism.
Suggesting a bidirectional relationship between liver and the
adrenal (61).

Mineralocorticoids
Mineralocorticoids are hormones synthesized by the adrenal
cortex that influence salt and water balance. Among the
mineralocorticoids, the renin-angiotensin-aldosterone system
(RAAS) is the principal hormonal system responsible for
regulating cardiovascular, renal, and adrenal function and
maintaining blood pressure and electrolyte balance (62).

Hepatocytes synthesis angiotensinogen (AGT) which is
released into the bloodstream and transformed into angiotensin
I and then to angiotensin II (ANG II), the main effector of
this system. The significant biological actions of ANG II are
mediated by binding two types of G protein coupled receptors,
the angiotensin type 1 (AT1), and AT2 receptors. They can
induce vasoconstriction and the release of aldosterone, which
causes sodium and water reabsorption (63, 64). The AT1 and
AT2 receptors are abundant in different tissues. AT1 receptors
are expressed in hepatocytes, bile duct cells, hepatic stellate cells
(HSC), myofibroblasts, and vascular endothelial cells (65). ANG
II activates the AT1 receptors and induces HSC contraction
and proliferation, oxidative stress, and inflammation responses,
and endothelial cells dysfunction and growth (66). Moreover, in
fibroblasts it upregulates TGF-β and collagen 1 gene expression
(67–69). AT2 receptors were also found to be expressed in the
liver (70) with possible anti-fibrogenic effects (71).

Mineralocorticoids and Liver Diseases
Renin-angiotensin-aldosterone system has an important role not
only in the vascular system but also in different organs such as the
liver. RAAS is implicated in various liver pathologies. Results of a
prospective study suggest that patients with Hyperaldosteronism,
a condition in which there is excessive secretion of aldosterone,
frequently exhibit NAFLD (72). Indeed, ANG II was shown to
be involved in cirrhosis-related portal hypertension (73, 74) and
in the pathogenesis of insulin resistance and NAFLD, through
its role in liver inflammation and fibrosis development (75, 76).
Infusion of ANG II into mice was shown to upregulate TGF-
β in normal rat livers (77), suggesting that upregulation of
RAAS is sufficient to cause damage even in the absence of an
underlying liver disease process (78). Thus, it is not surprising
that due to the involvement of the RAAS system in liver
disease, there is a growing interest in using RAAS inhibitors to
treat NAFLD. Indeed, blocking RAAS by angiotensin-converting
enzyme inhibitors and angiotensin receptor blockers reduced
fibrosis in an experimental model of hepatic fibrosis (79).

Transcriptional Regulation of RAAS in Liver Diseases
Angiotensinogen has been suggested to be a key genetic
determinant of RAAS. In experimental animal models a change,
as little as 20%, in AGT expression levels are reflected by high
blood pressure phenotype. In vivo studies have revealed that
direct-repeat motifs (AGGTCA) within the human AGT gene
promoter are functionally required for its expression in the
liver (80). Examination of the human AGT gene-regulatory
sequence revealed a single nucleotide polymorphism, resulting
in two haplotypes. Haplotype I is associated with increased
blood pressure, whereas, haplotype II is related to normal blood
pressure. Interestingly, physiological changes, such as high fat
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diet, might change the transcriptional environment, and cause
a modulation in AGT gene expression in a polymorphism
dependent manner. Moreover, following high fat diet, increased
levels of the transcription factors GR, HNF-1, STAT-3, and
C/EBPβ were noticed in the liver and adipose tissues, leading
to an increased expression of the AGT gene in liver tissue of
haplotype I compared with haplotype II. These findings may
have a significant clinical impact allowing the early identification
and treatment of patients with the unfavorable haplotype
(haplotype I) (81).

Androgens
Androgens are the principal male sex hormones that regulate
masculinizing effects and male sexual behavior. While the
major circulating androgens are dehydroepiandrosterone (DHT),
androstenedione, testosterone, and dihydrotestosterone, only
testosterone and DHT can bind to the androgen receptor (AR)
(82). Testosterone is considered to be the most significant
androgen in humans (82), playing a significant role in controlling
metabolism processes of carbohydrate, fat, glycogen, lipids, and
cholesterol (83). Thus, it is not surprising that testosterone
deficiency usually is characterized with liver diseases (83).

Androgens and Liver Diseases
Studies in men have shown an association between hepatic
steatosis and low levels of serum testosterone (84). Moreover,
mice with non-functional 5αR1, the enzyme that converts
testosterone to DHT, exhibit hepatic steatosis (85, 86).
Interestingly, ARs in male liver tissue have a critical role in
maintaining lipid metabolism compared to female (83, 87).
However, testosterone can also participate in the hepatic lipid
deposition, independently of the classic AR, operating by
regulating several critical lipogenic enzymes activity (88).

Androgens play a role in glucose and cholesterol homeostasis
of the liver. Androgens regulate liver glucose homeostasis
with gender differences; while in males high testosterone
favors hepatic glucose metabolism in females it impairs (89).
Several longitudinal studies have shown that low levels of
testosterone independently predict the later development of type
2 diabetes ormetabolic syndrome (89).Moreover, prostate cancer
patients that are undergoing androgen deprivation therapy are
under increased risk to develop diabetes (90, 91). Testosterone
treatment in men with hypogonadism is associated with a
significant reduction in fasting plasma glucose, HbA1c, fat mass,
and triglycerides (92).

Low levels of testosterone have been associated with
increased levels of LDL cholesterol, triglycerides, and with
decreased HDL levels (83). Androgen replacement treatments
resulted in decrease in serum LDL levels by enhancing
liver cholesterol uptake, suppressing cholesterol removal, and
promoting cholesterol storage (93).

Liver malfunction, manifested by the alteration in its
metabolic homeostasis regulation, can pave the way to liver
tumor development (94). Since hepatocellular carcinoma (HCC)
is more prevalent in men rather than women, sex hormones
might be involved in this malignant process. Indeed, higher levels
of androgen signaling, reflected by higher testosterone levels,

were found to increase the risk for HBV-related HCC in men
(95). Moreover, long-term use of oral contraceptives and anabolic
androgenic steroids can induce both benign and malignant
hepatocellular tumors (96). Additional evidence comes from the
fact that individuals with HCC express augmented levels of ARs
in their tumor tissue and in the surrounding liver (97). These data
support the notion that AR could affect HCC progression and
that a combination of sorafenib, (kinase inhibitor drug approved
for cancer treatment), together with AR inhibitors, might be
a potentially improve treatment for patients with advanced
HCC (98).

Estrogens
Estrogens are the female principal sex hormones that regulate
female reproductive, physiology, and sexual behavior. In humans,
the most essential biologically relevant form of estrogens is
the 17β estradiol (E2). While in premenopausal women E2 is
mainly produced from cholesterol, in postmenopausal women it
is primarily converted from testosterone by aromatase (99). E2
exerts its functions by binding to both the nuclear (ER) (ER-α and
ER-β) and the membrane estrogen receptors (100). In addition to
their expression in reproductive organs, ERs are also expressed to
a lower extent in the liver (101–103).

Estrogens and Liver Diseases
Several studies have demonstrated that mimicking of menopause
and reduction in estrogen signaling lead to insulin resistance,
fatty liver, and dyslipidemia, as determined by decreased HDL
and increased LDL and triglycerides (104–106). Indeed, while
treatment with a specific ER-α agonist decreases fat mass and
triglycerides, ER-α KO mice accumulate liver triglycerides and
diglycerides (107–110). Furthermore, while estrogen deficiency
causes steatosis, estrogen replacement decreases steatosis (111–
113). Thus, it seems that estrogen together with ER-α plays a
role in preventing liver malfunctioning. These data are in line
with the observation that women in menopause are in a higher
risk to develop NAFLD (114). Moreover, hormone treatment can
reduce liver damage, as manifest by reduced plasma levels of liver
enzymes (115).

Transcriptional Regulation Mediated by ER
Upon binding of E2 to ERs, they translocate into the nucleus
where the receptors bind to specific genomic sequences.
Interestingly, estrogen responsive elements (REs) are found
in promoters and enhancers of liver genes. Genetic analysis
revealed that more than 1,000 human liver genes have an
expression based on sex bias (116). More than 40 lipids-related
genes transcriptionally regulated by ER-α (117). Fascinatingly,
this regulation is in tight coordination with the reproductive
needs (118).

p53 AS A MAJOR FACTOR IN HEPATIC
RESPONSES REGULATION

p53 is a well-known tumor suppressor which plays a central role
in cell fate determination through cell-cycle arrest, senescence,
differentiation, and apoptosis, in response to various stress
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signals (119–121). Novel data suggest that p53 governs additional
biological pathways besides its traditional role as a tumor
suppressor. This includes the regulation of metabolism, as well
as pathways that affect the cell microenvironment and regulation
of general homeostasis (122). Therefore, it is not surprising that
the liver, an organ that regulates many metabolic processes,
and coordinates homeostasis, serves as a unique platform for
p53 to perform its classical and non-classical activities, both
in health and in disease (94). Indeed, changes in the ratio
of the hepatic enzymes ALP, ALT, and AST which serves
as indicators of liver failure (123), were observed in p53-
KO mice. These observations suggest that physiological p53
is a main regulator of liver homeostasis (124). Upon stress,
hepatic p53 is activated and acts as a double-edged sword. As
a tumor suppressor, p53 functions locally by preventing the
development of HCC (94), and distally by inducing apoptosis
of breast cancer cells by the secretion of SHBG (14). In
addition, activated p53 can induce the secretion of senescence-
associated secretory phenotype (SASP) in hepatic cells. This
induction leads to a reduction in the accumulation of fibrotic
tissue and to the stimulation of immune surveillance, which
maintains tissue homeostasis and suppresses cancer development
(125, 126).

On the other hand, the p53 induced apoptosis in the
liver may cause infiltration of inflammatory cells and may
lead, in the long run, to steatohepatitis, cirrhosis, and even
to HCC (94). Moreover, the hepatic p53 acts in non-cell
autonomous fashion by affecting and altering the liver
secretome in response to different signals. Thus, presenting
a novel function for p53 in homeostatic regulation of
metabolic processes within the liver (124). Some of these
secreted factors are mainly related to cell migration, implying
a cross-talk between a distal tumor and the liver (124).
Furthermore, p53 was also found to be an important regulator
of lipid homeostasis (127). Hepatic p53 was shown to bind
directly to p53 REs within the chromatin and to induce

the transcription of mainly three genes that represent the
different aspects of lipid metabolism (Pltp, Abca12, and
Cel) (12). Interestingly, it was suggested that p53 also binds
p53 REs in the promoter of cytochrome P450 enzymes and
regulates their expression. These include CYP3A43, CYP3A5,
CYP3A7, CYP4F2, CYP4F3, CYP4F11, CYP4F12, CYP19A1,
CYP21A2, CYP24A1, and CYP3A4 (13). The latter is known
to be the main enzyme which participates in the biosynthesis
of steroid hormones (20, 21). In a proceeding study, it was
found that CYP21A2 that catalyzes the conversion of 17
alphahydroxyprogesterone to 11-deoxycortisol, the immediate
precursor of cortisol (128), is also transcriptionally regulated by
p53 (14).

Moreover, p53 was shown to induce the expression and
secretion of both CBG and SHBG by directly binding to p53
REs in their promoter (14). These data are in line with the
observation that p53-WT mice exhibit higher CBG expression
compared with their p53-KO counterparts. It should be noted
that p53-KO female mice are known to have difficulties
in reproduction (129). Hence, it is intriguing to speculate
whether the lower levels of CBG in p53-KO mice may
influence the level of active or free androgens and lead to
fertility difficulties.

p53 was shown to transcriptionally regulate aromatase, a
key enzyme that converts androgens to estrogen (see also
section Estrogen). A putative p53-binding element was found
in intron 1 of the aromatase gene. Under high fat diet
conditions, p53 KO male mice produced dramatically more
testosterone than WT p53 mice, while the serum testosterone
levels were not significantly different. The level of E2 was low
in both groups of mice resulting in higher testosterone/E2
level in p53 KO male mice (130). Others have shown data
suggesting that p53 is globally required for GC receptor
nuclear export (131). As GCs exert their function in the
nucleus this may place p53 as an important regulator of
GCs function.

FIGURE 1 | Steroid hormones homeostasis regulation by the liver. Functional intertwine exists between the liver and the steroid hormones. While the liver contributes

to adequate levels of bioactive steroid hormones, through the modulation of synthesis and bioactivity, steroid hormones contribute to proper liver functions. p53 has a

dual effect in regulating both steroid hormone levels and bioactivity as well as in maintaining liver hemostasis suggesting a role as a potential regulator in this axis.
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In sum, these data suggest that p53 is associated with the
regulation of the endocrine system at large, and particularly
within the liver, with high impact on steroid hormones.

CONCLUDING REMARKS

Nowadays, population exposure to environmental steroid
hormones, endocrine disruptor chemicals, and the increasing
repertoire of medicines used by the public has an increasing
impact on steroid hormones levels and activities as well as
liver functions, leading to various liver diseases and endocrine
syndromes. A comprehensive understanding of the molecular
mechanisms underlying these diseases may help to prevent
and treat them. An apparent bidirectional link exists between
steroid hormones over secretion or insufficiency and liver
metabolic or functional disease. Moreover, the liver and p53 are
involved in steroidogenesis and steroid hormones homeostasis
and balance. This notion may place p53 as a potential regulator

in the liver/steroid hormone axis, maintaining homeostasis and
preventing diseases (Figure 1).
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