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It is now well-established that the pathways that control lymphocyte metabolism and

function are intimately linked, and changes in lymphocyte metabolism can influence

and direct cellular function. Interestingly, a number of recent advances indicate that

lymphocyte identity and metabolism is partially controlled via epigenetic regulation.

Epigenetic mechanisms, such as changes in DNA methylation or histone acetylation,

have been found to alter immune function and play a role in numerous chronic disease

states. There are several enzymes that can mediate epigenetic changes; of particular

interest are sirtuins, protein deacetylases that mediate adaptive responses to a variety

of stresses (including calorie restriction and metabolic stress) and are now understood

to play a significant role in immunity. This review will focus on recent advances in the

understanding of how sirtuins affect the adaptive immune system. These pathways are

of significant interest as therapeutic targets for the treatment of autoimmunity, cancer,

and transplant tolerance.
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INTRODUCTION

The adaptive immune system is critical for responding to and eliminating foreign pathogens.
T cells are important members of the adaptive immune system, and are generally responsible for
recruiting additional inflammatory machinery to the site of infection or tumor. T cells develop
within the thymus and, upon maturation, are classified broadly by their expression of either CD4
or CD8 receptor. Both CD4+ and CD8+ T cells exist as a number of subsets that perform unique
functions within the immune milieu and exhibit unique surface receptors, produce lineage-specific
cytokines, and express lineage-defining transcription factors. CD4+ T effector cells (Teff) are a
broad class of T cells that are further divided into unique subsets with distinct effector functions.
T helper 1 (Th1) cells are necessary for combating intracellular bacteria and viruses and for
producing cytokines (most notably IFNγ and IL-2, but also TNFα) to promote cellular immunity,
macrophage activation, and phagocytosis (1). Th2 cells are important for responses to helminthic
and other gastrointestinal parasitic infections, producing IL-4, IL-5, and IL-10, and stimulating B
cell differentiation (2). Th9 cells are a relatively newly defined subset, and are known to primarily
produce IL-9 and facilitate the immune response against intestinal worms (3). Th17 cells are
broadly involved in inflammation as well as host response to infection, producing IL-17, IL-6, and
TNFα to recruit additional immune cell types to the site (4). In contrast with the pro-inflammatory
nature of Teff cells, regulatory T (Treg) cells are responsible for immunosuppression,
preventing overactive inflammatory responses and autoimmunity (5). This subset secretes key
anti-inflammatory cytokines, notably TGFβ and IL-10, and Treg differentiation is driven by the
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transcription factor Foxp3. CD8+ cytotoxic T cells are primarily
responsible for killing infected or malignant cells through
the release of cytotoxic cytokines (TNFα, IFNγ) and granules
(perforin, granzymes), and by initiating apoptotic processes
mediated by the caspase cascade (6). Lastly, B cells are
lymphocytes derived from bone marrow and are also major
players within the adaptive immune system, supporting humoral
immunity upon activation by producing large quantities
of antibodies (7).

The metabolic profile of each of these specialized T
cell subsets is optimized to support their unique functions
(8). For example, activated CD4+ Teff cells, including Th1,
Th2, Th17, and CD8+ cytotoxic T cells upregulate glucose
uptake and glycolysis to promote rapid growth, proliferation,
and effector function. Teff cells also rely on increased
glutamine uptake and metabolism to support cell growth
and proliferation, although the requirement for glutamine
metabolism varies among T cell subsets (9). In contrast,
Treg cells rely primarily on lipid oxidation to support their
suppressive activity. While considerably less is known about B
cell metabolism relative to T cell metabolism, there are some
similarities such that naïve B cells are relatively quiescent,
but following stimulation, have increased metabolic demand,
likely to support proliferation and antibody production (10).
Additionally, B cell subsets tend to display unique metabolic
phenotypes as a product of their environment and function
(11). Thus, the pathways that control adaptive immune cell
function and metabolism are intimately linked (12–14). A
number of recent advances indicate that immune cell identity,
function, and metabolism are controlled, at least in part, via
epigenetic mechanisms.

EPIGENETICS

While DNA sequence is the same from cell to cell within an
organism, the transcription (or lack thereof) of certain genes
contributes greatly to the differentiation of the myriad of
cell types that are present within an organism. This variation
is controlled in large part by epigenetic mechanisms that
result in dynamic but heritable changes in gene expression
that do not involve changes in DNA sequence (15). There
are several mechanisms by which this kind of transcriptome
regulation may occur. One example of these mechanisms is
DNA methylation, the addition of a methyl group to cysteine
residues within DNA by various DNA methyltransferases
typically in regions rich in cysteine-guanine dinucleotides.
Generally, DNA methylation can act to either inhibit gene
transcription (if methylation occurs within a promoter region)
or promote transcription (if methylation occurs within the
gene body) (16). Another mechanism of epigenetic regulation
occurs via non-coding RNA. These single-stranded RNA
fragments seek out complementary sites within the mRNA
of target genes and degrade RNA, ultimately preventing
translation (17). Lastly, the modification of histones is
a highly prevalent mechanism of epigenetic control and
contributes to genetic regulation by altering the physical
structure of chromatin to improve or impair the accessibility

of DNA to various transcription factors and transcription
machinery. Histones form the backbone of the nucleosome,
providing structure and stability. In contrast with the stability
of DNA methylation, histone modifications can be more
fluid over acute periods of time (18). Deacetylated histones
form a densely packed chromatin structure, known as
heterochromatin, physically preventing transcription. Histone
acetylation maintains a more loose and fluid chromatin
structure. Other common histone modifications can occur by
methylation, phosphorylation, and deamination. Moreover,
all of these mechanisms likely work synergistically to regulate
the epigenome (19).

SIRTUINS

Among the four defined classes of histone deacetylases, sirtuins
(class III) are a unique family of highly conserved, NAD+-
dependent protein deacetylases with important implications on
the epigenome. In addition to their deacetylase activity, sirtuins
display some additional enzymatic function on other substrates,
including ADP-ribosyltransferase and desuccinylase activity (20,
21). Mammalian sirtuins are orthologs of the silent information
regulatory 2 (Sir2) protein, which was first identified in yeast
as a significant contributor to the life-span extending effects of
calorie restriction (22). These effects were further observed in
C. elegans and Drosophila (23), suggesting that this pathway is
conserved across species. Given the NAD+-dependent activity
of sirtuins, they are activated in periods of catabolism and low
nutrient availability, and were thus thought to be a novel target
for mimicking the life-span extending effects of calorie restriction
in humans.

Mammals ubiquitously express seven sirtuins (SIRT1-SIRT7)
with different subcellular locations and functions. Sirtuins are
currently gaining widespread attention in the context of a
number of disease states associated with inflammation, including
autoimmunity (24), cardiometabolic diseases (25), and cancers
(26). Further, the mammalian sirtuins have been found to
mediate cellular metabolism and adaptive responses to a variety
of stresses, including calorie restriction and othermetabolic stress
(27). Given the relationship between nutrient availability and
the function of the adaptive immune system (28), sirtuins are
currently of great interest as mediators of tumor proliferation,
autoimmunity, and the ability of an organism to respond
to foreign pathogens.

The idea that sirtuins might be involved in immunity was
posited over a decade ago (23), following the early finding that
SIRT1 can regulate NF-κB (29), a transcription factor well-known
to regulate inflammation and immune cell proliferation (30).
Indeed, further study has begun to elucidate the link between this
family of proteins and immune cell function. While each of the
sirtuins has since been broadly studied, themost intense attention
has been given to SIRT1 (primarily localized to the nucleus)
and SIRT3 (primarily in mitochondria) with respect to adaptive
immune cells, and will thus be the focus of this review (Figure 1).
Further, considerations for the use of sirtuin-modifying drugs to
manipulate immune activity are explored.
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FIGURE 1 | Summary of reported effects of SIRT1 and SIRT3 on lymphocyte populations.

EFFECTOR CD4+ T CELLS

Activation of T cells occurs seconds after stimulation of
the T cell antigen receptor (TCR) by a ligand, along with
co-stimulatory signals, which initiate a number of signaling
pathways that promote differentiation and growth. This
activation is supported by a transition from a relatively quiescent
oxidative metabolism to an intense glycolytic metabolic
signature to support proliferation and cytokine production
(12). This metabolic switch is likely driven, at least in part, by
sirtuin activity, however there presently appears to be a number
of incongruous effects reported across the various CD4+ T
cell subsets.

SIRT1 appears to play a significant role in the regulation
of Teff cell activation (31, 32). Early studies into the
function of SIRT1 on Teff cells indicated that SIRT1 inhibits
the immune response by acting as an antagonist against

transcription factors that support IL-2 production (32) and
thereby decreasing Th1 cell activation. This relationship may

contribute in part to the link between fasting/calorie restriction
and poor immune performance (28), given that SIRT1 is
generally activated in response to fasting (33). The direct role
of sirtuins within adaptive immune cells has also begun to

be studied using knockout (KO) animal models. T cells from
a SIRT1 KO mouse model are more proliferative, produce
more IL-2 both in vitro and in vivo, and these mice are
more susceptible to experimental autoimmune encephalomyelitis
(EAE), indicating a more inflammatory immune phenotype
(32). Studies in SIRT1 KO animals also found that T cells
without SIRT1 can be activated solely via the T cell receptor
(TCR), without co-stimulation by CD28, suggesting a hyper-
sensitivity to activation signals when SIRT1 is not present
(32). Follow-up studies indicated that IL-2 is involved in a

feedback response to reduce further SIRT1 gene transcription
and allow for proliferation in response to the activation
cascade (34). Hyper-responsive Teff cells can contribute to
an environment prone to autoimmune disease. In fact,
earlier studies in SIRT1-null mice detailed the development
of a mild autoimmune condition that resembled systemic
lupus erythematosus, characterized by deposition of immune
complexes within liver and kidneys, with some mice going on
to spontaneously develop a diabetes insipidus-like autoimmune

disorder after 2 years of age, altogether suggesting a preventative
role of SIRT1 in autoimmunity (35).

SIRT1 also inhibits Bcl-2 Associated Transcription Factor
1 (Bclaf1) (36). Bclaf1 was originally identified as a promoter
of apoptosis (37); however, subsequent studies revealed further
reaching effects of Bclaf1 on T cell development, activation,
and proliferation (38), perhaps by promoting hypoxia-inducible
factor 1-α (HIF-1α) transcription (39). SIRT1-mediated
inhibition of Bclaf1 is thought to occur by the binding of
SIRT1 to the promoter region of Bclaf1 after stimulation of
the TCR, suppressing acetylation of the histone 3 lysine 56
residue (H3K56) (36). When SIRT1 was knocked out of T cells,
there was greater expression of the gene coding for Bclaf1,
and specific knockdown of Bclaf was able to suppress the
increase in IL-2 production and proliferation seen in SIRT1 KO
mice (36).

SIRT1 inhibition can also depress the adaptive response and
differentiation of Th2 cells. Pharmacological SIRT1 inhibition
contributed to decreased allergic inflammation in BALB/c mice
exposed to ovalbumin via aerosol (40). In addition, mice that
exhibit KO of a transcriptional activator essential for Th2
differentiation (B-cell lymphoma/leukemia 11B; Bcl11b) have
been found to be protected against EAE (41). Bcl11b is a
transcriptional repressor and likely functions by recruiting SIRT1
for histone deacetylase activity (42). Although T helper 9
(Th9) cells exhibit a number of similarities to Th2 cells, SIRT1
inhibition has been found to promote Th9 cell differentiation and
IL-9 production by these cells (43).

The implications of SIRT1 on Th17 cells have been more
equivocal. Pharmacological induction of SIRT1 using resveratrol,
low dose metformin, or the inhibitor SRT1720 has been shown to
impair Th17 cell differentiation with decreased expression of IL-
17 and RORγt, in a STAT3-dependent manner (44). The same
study further describes anti-tumor effects of metformin by its
action in reducing Th17 differentiation and STAT3 acetylation.
In a separate study, in vivo activation of SIRT1 through treatment
with NAD+ contributed to a delayed onset of EAE. This
protection was hypothesized to be conferred by enhanced SIRT1
expression within the spinal cord of mice exposed to the EAE
stimulus, which may suppress inflammatory responses by Th1
and Th17 cells (45). However, others have shown that SIRT1
is necessary for the production of pro-inflammatory Th17 cells
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through the deacetylation of transcription factor RORγt, which
suggests that SIRT1 inhibitors could confer protection against
autoimmunity (46). Clearly, more studies are needed to dissect
out the role of SIRT1 in Th17 cell differentiation, proliferation,
and cytokine response.

SIRT3 is a mitochondrial sirtuin that supports the structure,
function, and biogenesis of the mitochondria (47). SIRT3 is
elevated in fasting and calorie restriction in liver, muscle,
and brown adipose tissue, and is known to modify cellular
metabolism in those tissues (48, 49). In a model of experimental
allogenic bone marrow transplantation, total T cells from donor
animals that exhibit a whole-body SIRT3 KO were less likely to
promote graft-vs.-host disease relative to T cells from control
mice, but did not affect the graft-vs.-tumor effect, suggesting that
targeted inhibition of SIRT3 in allogenic T cells can improve
outcomes after transplant (50). Further, while SIRT3 KO did
not affect the composition of peripheral naïve T cell subsets, it
was determined that SIRT3 KO Teff cells were less proliferative
and produced less reactive oxygen species (ROS) in response to
non-specific TCR stimulation (50). However, a SIRT3 KOmouse
model did not affect the development of immune cells or immune
responses to various endotoxins (51), suggesting SIRT3 may play
a limited role in Teff cell function.

Little is known about the role of the other sirtuins on Teff cell
development and function. SIRT6 may be a negative regulator
of glycolytic activity, notably through the inhibition of glucose
transporter 1 (GLUT1) and the transcriptional regulator HIF-
1α (52), suggesting a potential role for SIRT6 in downregulating
Teff cell activation. HIF-1α is a transcriptional regulator of
glycolysis and is known to regulate the production of a number
of cytokines (53) and enhance Th17 cell differentiation (54).
Relatively little work has been done on SIRT2 in adaptive
immunity. However, SIRT2 has been identified as a potential
suppressor of colitis through its deacetylase activity on NF-κB
within bone marrow-derived macrophages in a mouse model
(55). Further, this study observed a greater proportion of
activated (CD4+CD69+) T cell populations at the mesenteric
lymph nodes of SIRT2 KO mice in response to DSS-induced
colitis, indicative of enhanced inflammatory action (55), and
ascribing a role for SIRT2, similar to SIRT1, in limiting CD4+

Teff cell inflammation.

REGULATORY CD4+ T CELLS

SIRT1 has been found to reduce the activity of Foxp3,
contributing to an overall more inflammatory immune
phenotype (46). Further, inhibiting SIRT1 can promote greater
Treg suppressive activity (56, 57). While the regulation of
Treg metabolism by sirtuins has not been widely studied, Treg
function has been shown to be regulated in part by sirtuin
activity. In addition, Foxp3 itself has been found to be a regulator
of epigenetic activity to support the Treg phenotype, and is
regulated in part by the deacetylase activity of SIRT1 (56). A
previous review has outlined the role of demethylation and
histone modifications that occur in order to promote and
stabilize the expression of Foxp3 during Treg cell development
(58). Briefly, three conserved non-coding sequences are primary

targets for epigenetic mechanisms that regulate Foxp3 expression
in response to external environmental stimulus.

Given the localization of SIRT3 to the mitochondria and
its role in oxidative metabolism and mitochondrial function,
it is not surprising that the loss of SIRT3 in Treg cells has
been shown to impair their suppressive activity (59). Indeed,
deletion of histone deacetylase 9 was found to be sufficient to
increase Treg suppressive activity, by increasing the expression
of SIRT3. Further, Treg cells from SIRT3 KO mice had impaired
suppressive function both in an in vitro suppression assay and an
in vivo cardiac allograft model, likely due to the role of SIRT3 in
promoting oxidative metabolism (59).

CD8+ T CELLS

Activation and differentiation of CD8+ T cells leads to markedly
variable chromatin accessibility (60), which is likely critical to
facilitate the transition between naïve, effector, and memory
CD8+ T cells. SIRT1 appears to play a crucial role in CD8+ T
cell differentiation. Basic leucine zipper ATF-like transcription
factor (BATF) has been shown to inhibit the expression of
SIRT1, contributing to increased histone acetylation, particularly
at the T-bet locus (61). This has been shown to affect CD8+

T cell differentiation and activity, as CD8+ T cells from BATF
KO animals exhibited lower ATP production and lower mRNA
expression of perforin and IFNγ (61). SIRT3 is also involved
in CD8+ T cell function. Toubai et al. found that SIRT3-null
activated CD8+ T cells produced less ROS upon activation (50).
This impairment in ROS production may lead to impairments
in sulfenylation, a process known to play a role in the regulation
of histone deacetylases (62). Further SIRT3-null donor cells were
able to attenuate graft-vs.-host disease within the gastrointestinal
tract and the authors hypothesize this may be due, in part, to
decreased CD8+ T cell trafficking to site (50).

MEMORY T CELLS

Following the primary immune response, a portion of T cells
(CD4+ and CD8+) can become memory cells that remain
ready to respond rapidly in the event that they re-encounter
their antigen. These cells are relatively long-lived and therefore
exhibit a relatively quiescent oxidative metabolism similar to
that of a naïve immune cell until they are re-activated. Little is
known about the role of sirtuins in mediating the generation or
longevity of memory T cells; however, given the role of sirtuins in
promoting oxidative metabolism, this is a potentially interesting
area for further study. Though not specific to memory T cells,
SIRT1 has distinct effects on PGC-1α and PGC-1β, both proteins
with roles in facilitating mitochondrial biogenesis and oxidative
metabolism. Thus, the return to a more oxidative metabolism in
memory cells may be mediated in part by SIRT1, given the role of
SIRT1-mediated deacetylation on transcription of PGC-1α and
PGC-1β (63, 64). In support of this hypothesis, SIRT1 expression
has been shown to be decreased in terminally differentiated
CD8+CD28− memory T cells, driving the downregulation
of forkhead box protein O1 (FoxO1), a transcription factor
that mediates T cell homing and differentiation (65). Further,
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these authors demonstrate that these SIRT1-low CD8+CD28−

memory cells have an enhanced glycolytic capacity in the resting
state, which can support effector function upon reactivation.

B CELLS

Naïve B cells exhibit a relatively inert epigenetic status with high
levels of DNA methylation and histone deacetylation. However,
upon activation and maturation toward a germinal center B cell
phenotype, B cells exhibit dramatic shifts in methylation status
and become hypomethylated with increased histone acetylation
and expression of various miRNAs (66, 67). Thus far, the limited
literature on sirtuin activity in B cells indicates sirtuins support
B cell viability, proliferation, and function. SIRT1 overexpression
by viral transfection in BaF3 B cells (a murine B cell line) has
been shown to support enhanced viability (mediated in part by
a decrease in p53) and increased cytokine production (68). A
short, non-coding microRNA, miR-132, is increased in B cells of
patients with multiple sclerosis (MS) concurrent with a reduced
expression of SIRT1 (69). SIRT3 also has been found to be a
tumor suppressor in the context of B cell malignancies, as a
number of malignant B cell lines display decreased SIRT3 protein
expression and higher ROS levels, and overexpression of SIRT3
in these lines decreased proliferative activity (70). SIRT4 has
also been shown to act as a tumor suppressor by inhibiting
glutamine metabolism, which is necessary to conserve resources
for repairing DNA damage (71). Further, SIRT4 overexpression
can inhibit proliferation of Burkitt lymphoma cells, a model of
B cell lymphoma (72). Inhibition of SIRT1 and SIRT2 increased
apoptotic activity and ROS production in cells from patients with
B cell chronic lymphotic leukemia (73). While not specific to
sirtuins, histone deacetylase inhibitors have been shown to be
effective in preventing B cell malignancies (74).

MODULATING SIRTUIN ACTIVITY TO
ALTER IMMUNE OUTCOMES IN VIVO

A number of novel drugs with sirtuin modulatory activity have
been studied in the context of immune function. However, it
will be critical to determine whether to induce or inhibit sirtuin
activity and, further, how to target specific sirtuins (perhaps even
within a particular lymphocyte subset), in order to reach desired
immune outcomes. For instance, promoting SIRT3 activity
in Treg cells to improve suppressive capabilities and temper
inflammation could be a novel means to treat autoimmunity.
On the other hand, SIRT1 generally inhibits Teff inflammation,
suggesting that activators of SIRT1 could be useful for the
treatment of autoimmune disease; however, the effects of SIRT1
on T cells vary by subset and are context-dependent. As sirtuins
are proteins with functions in a wide array of cell types, targeting
specific sirtuins in specific tissues (and immune cell subsets) will
remain an immense challenge.

Despite the challenges with tissue-specificity, drugs to modify
sirtuin activity have been studied in cell culture and animal
models. Inhibition of SIRT1 in vivo (using a SIRT1-specific
inhibitor, EX-527) increased complications of sepsis at 12 h
despite conferring dramatic protection at 24 h (75). EX-527

and sirtinol (another commonly studied sirtuin inhibitor with
specificity against SIRT1 and SIRT2) also have been found to
reduce platelet count (76). Metformin, classically prescribed as
a medication for the management of type 2 diabetes, has been
well-documented to have anticancer effects (77); however, the
precise mechanism of action is largely unknown, though there
is speculation that these effects may be due to the stimulatory
effect of metformin on sirtuins. SIRT1 activation by metformin
has been shown to decrease Th17 cell populations promoting a
less inflammatory environment (44). SIRT1 knockdown has also
been shown to promote apoptotic processes in leukemia cells
(78), suggesting the exact mechanisms for sirtuin modulation in
cancers is still being determined.

Resveratrol, a polyphenol compound with anti-inflammatory
properties, is a compound with sirtuin modifying effects that is
currently of intense interest within both the scientific and lay
communities. Resveratrol increases SIRT1 activity and impedes
acetylation of c-Jun, thereby limiting T cell activation (79).
Further, resveratrol has been shown to improve outcomes in
two well-characterized murine models of autoimmunity: EAE
(80) and colitis (81). Additionally, resveratrol confers protection
against a murine model of rheumatoid arthritis, by inhibiting
Th17 expansion and IL-17 production, as well as autoantibody
production from B cells (82). Resveratrol has also been shown
to increase the ratio of CD4+ to CD8+ T cells and increase
total Treg cells in the context of diet-induced obesity in
mice while also conferring benefits on glucose homeostasis by
activating phosphoinositide 3-kinase (PI3K) signaling pathways
(83). Dosages necessary to produce these effects in humans are
likely impossible to obtain exclusively through diet, but could
realistically be obtained through supplementation.

The role of sirtuins in promoting organ transplant tolerance
is also an area of intense investigation. While advances have
been made in long-term survival following transplantation,
current immunosuppressive therapies are known to promote
infections and cancer. There is speculation that SIRT1 inhibitors
may enhance the function of Treg cells to support immune
suppression and allograft tolerance (84). Additionally, SIRT1
inhibitors may also confer prolonged allograft survival
through the suppression of Th17 activity, as evidenced by
decreased IL-17A (85); however, these results are in direct
opposition to the SIRT1-activating and anti-tumor properties
of metformin described above (44), and further studies
are needed.

CONCLUDING REMARKS

The wide-ranging effects of sirtuins and the availability of a
number of sirtuin-modifying compounds provide a significant
opportunity for future study to improve immune cell phenotypes.
However, there are significant challenges ahead in developing
drugs with targeted tissue-specific effects given the ubiquity
of these mechanisms within the body. The development
of tissue-specific and sirtuin-specific therapies remains an
intriguing possibility to treat the myriad of autoimmune diseases,
cancers, and other chronic diseases associated with inflammation
that are now understood to be regulated by some degree of
protein acetylation.
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