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The aim of this study was to characterize the regulation pattern of prostaglandin

family members namely prostaglandin F2alpha (PTGF), prostaglandin E2 (PTGE), their

receptors (PTGFR, PTGER2, PTGER4), cyclooxygenase 2 (COX-2), PTGF synthase

(PTGFS), and PTGE synthase (PTGES) in the bovine follicles during preovulatory period

and early corpus luteum (CL). Ovaries containing preovulatory follicles or CL were

collected by transvaginal ovariectomy (n = 5 cows/group), and the follicles were

classified: (I) before GnRH treatment; (II) 4 h after GnRH; (III) 10 h after GnRH; (IV) 20 h

after GnRH; (V) 25 h after GnRH, and (VI) 60 h after GnRH (early CL). In these samples, the

concentrations of progesterone (P4), estradiol (E2), PTGF and PTGE were investigated

in the follicular fluid (FF) by validated EIA. Relative mRNA abundance of genes encoding

for prostaglandin receptors (PTGFR, PTGER2, PTGER4), COX-2, PTGFS and PTGES

were quantified by RT-qPCR. The localization of COX-2 and PTGES were investigated

by established immunohistochemistry in fixed follicular and CL tissue samples. The high

E2 concentration in the FF of the follicle group before GnRH treatment (495.8 ng/ml)

and during luteinizing hormone (LH) surge (4 h after GnRH, 574.36 ng/ml), is followed by

a significant (P<0.05) downregulation afterwards with the lowest level during ovulation

(25 h after GnRH, 53.11 ng/ml). In contrast the concentration of P4 was very low before

LH surge (50.64 mg/ml) followed by a significant upregulation (P < 0.05) during ovulation

(537.18 ng/ml). The mRNA expression of COX-2 increased significantely (P < 0.05) 4 h

after GnRH and again 20 h after GnRH, followed by a significant decrease (P< 0.05) after

ovulation (early CL). The mRNA of PTGFS in follicles before GnRH was high followed

by a continuous and significant downregulation (P < 0.05) afterwards. In contrast,

PTGES mRNA abundance increased significantely (P < 0.05) in follicles 20 h after GnRH

treatment and remained high afterwards. The mRNA abundance of PTGFR, PTGER2,

and PTGER4 in follicles before GnRH was high, followed by a continuous and significant

down regulation afterwards and significant increase (P < 0.05) only after ovulation (early

CL). The low concentration of PTGF (0.04 ng/ml) and PTGE (0.15 ng/ml) in FF before

GnRH, increased continuously in follicle groups before ovulation and displayed a further

significant and dramatic increase (P< 0.05) around ovulation (101.01 ng/ml, respectively,
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484.21 ng/ml). Immunohistochemically, the granulosa cells showed an intensive signal

for COX-2 and PTGES in follicles during preovulation and in granulosa-luteal cells of

the early CL. In conclusion, our results indicate that the examined bovine prostaglandin

family members are involved in the local mechanisms regulating final follicle maturation

and ovulation during the folliculo-luteal transition and CL formation.

Keywords: prostaglandins, steroids, gene regulation, ovarian function, follicle, ovulation, cow

INTRODUCTION

The ovarian cycle in bovine is characterized by regularly
repeating patterns of cellular proliferation, differentiation and
transformation that accompanies follicular maturation and
ovulation during the folliculo-luteal transition and corpus lutem
(CL) formation and function (1–5). It is well-known that
the ruminant reproductive function and especially the ovarian
cycle is regulated through endocrine, as well as intraluteal
(autocrine/paracrine) actions (6–9). The LH surge triggers a
biochemical cascade that leads to the ovulation, resulting in
development of the CL (10–12). Ovulation occurs as a result of
a dynamic interaction between the luteinising hormone (LH)
surge and local follicular factors including steroid hormones,
extracellular matrix (ECM) proteases, prostaglandins, vasoactive
peptides and growth factors in a time-dependent manner (1, 13–
15). During these developments in the bovine ovary, steroid
hormones and prostaglandins seem to be highly important
regulatory mediators playing a central role in the regulation
of the estrous cycle (16–22). Progesterone (P4) and estradiol
(E2) steroid production of ovulatory follicles change dramatically
during the preovulatory period, suggesting them to have an
important role during ovulation (19, 23–25). The later stage
of follicular development, ovulation and CL formation depends
upon growth of new blood vessels (angiogenesis) and the
establishment of a functional blood supply (12, 26, 27).

A recent finding demonstrates that steroid hormones and
prostaglandins in addition to different angiogenic factors are
required for angiogenesis and folliculo-luteal transition (28–
33). The prostaglandins are of particular interest because of
their endocrine as well as local effects within the ovarian tissue
during different physiological stages (20, 34, 35). Intraluteal
prostaglandin production is regulated by a variety of endocrine
and autocrine/paracrine factors secreted by different immune
cells, namely, macrophages, eosinophils, lymphocytes and
monocytes (5, 8, 36). The production of prostaglandins from
arachidonic acid is primarily governed by the rate-limiting
enzymes cyclooxygenase (COX)-1 and COX-2 (16, 34). The
downstream enzymes, PTGF synthase (PTGFS) and PTGE
synthase (PTGES), catalyze the conversion of prostaglandin H2
precursors to prostaglandin F2alpha (PTGF) and prostaglandin
E2 (PTGE) respectively, (14, 20). PTGF has the highest affinity
for the specific receptor (PTGFR), and PTGE may interact with
at least four receptor subtypes (PTGER1—PTGER4) and initiate
biological signaling pathways (21, 37–39).

The steroid hormones and prostaglandins were shown
to regulate ovarian cycle in cattle, but the examination of
these factors during final follicle regulation, ovulation and

CL formation, has not been thoroughly elucidated to date.
Therefore, we tested the hypothesis if the preovulatory LH
surge may affect COX-2, prostaglandin synathases (PTGFS
and PTGES), prostaglandin ligands (PTGF and PTGE) and
their receptors (PTGFR, PTGER2, and PTGER4), which
may have further effects to the folliculo-luteal transition
and CL formation in the cow. With the present study, we
aim to evaluate the expression pattern and localization
of earlier mentioned prostaglandin family members in
time-defined follicle classes before (control) and after the
application of GnRH and after ovulation (early CL) in
the cow.

MATERIALS AND METHODS

Animals, Procedure of Superovulation and
Collection of Ovaries
The animal trail was approved by the animal ethics committee
located at the government of Upper Bavaria (reference number
211-2531.3-33/96). The study was conducted on 30 German
Fleckvieh cows and the superovulation procedure was conducted
as described by Berisha et al. (40). For confirmation of LH
surge, blood samples were collected from the jugular vein at
−24 h, −12 h, −1 h, and 0 h before and 3 h and 12 h after GnRH
application (27). The bovine ovaries (containing preovulatory
follicles or early CL) were collected at (I) 0 h, (II) 4 h, (III) 10 h,
(IV) 20 h, (V) 25 h (for follicle collection) and (VI) 60 h (for
early CL collection) relative to injection of GnRH (n=5 cow/
group) as described by Berisha et al. (27). The schematic time
schedule of the superovulatory treatment and ovary collection is
shown in Figure 1.

Collection, Classification and Preparation
of Preovulatory Follicles and Early CL
Only follicles which appeared healthy (i.e., well-vascularised
and having transparent follicular wall and fluid) and whose
diameter were >10mm were collected. The number of follicles
per ovary varied between 8 and 20. Follicular fluid (FF) was
aspirated from single follicles, and then the follicles tissue
(theca interna and granulose cells) aliquots were stored at
−80◦C until extraction for RNA. The FF (1.0–1.5ml) was
stored from single follicles at −20◦C until determination of
P4, E2, PTGF, and PTGE (40). The follicles, after aspiration
of FF and injection of fixative (27) and pieces of CL tissue
were fixed for immunohistochemical analysis of COX-2 and
PTGES (22).
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FIGURE 1 | Time schedule of the treatment for multiple ovulation and ovary collection in cows. Ovaries containing preovulatory follicles or new CL were collected at (I)

0 h, (II) 4 h, (III) 10 h, (IV) 20 h, (V) 25 h (follicles), and (VI) 60 h (early CL, Day 2–3) relative to injection of GnRH to induce an luteinizing hormone (LH) surge (n = 5

cows/group).

Hormone Determinations
The concentrations of P4, E2, PTGF, and PTGE were determined
in the FF with an enzyme immunoassay (EIA) using the second
antibody technique as described by our lab and reviewed by
Berisha et al. (40). The concentration of progesterone in blood
plasma was measured using EIA technique as described by
Berisha et al. (41).

Total RNA Extraction and Quality
Determination
Total RNA from 200mg follicles and CL (deep frozen by−80◦C)
were extracted with peqGOLD TriFAst (PeqLab, Erlangen,
Germany) according to the manufacturer’s instructions and
described by Berisha et al. (40). For DNA digestion the DNA-free
kit (Ambion, Austin, USA) was used. Total RNA was dissolved
in RNAse-free water and spectroscopically quantified at 260 nm.
The purity of isolated RNA was verified by optical density (OD)
absorption ratio OD260 nm/OD280 nm between 1.8 and 2.0.

The RNA integrity was measured with the Agilent 2100
bioanalyzer (Agilent Technologies, Deutschland Gmbh,
Waldbronn, Germany) in conjunction with the RNA 6000
Nano Assay according to the manufacturer’s instructions. The
Bioanalyzer 2100 enables the standardization of total RNA
quality control for quantitative downstream applications (42).
The automatically calculated RNA Integrity Number (RIN)
allows classification of total RNA based on a numbering system
from 1 to 10, with 1 being the most degraded profile and 10 being
the most intact (43). Herein integer total RNA with RIN values
of 7–8 were achieved over all tissue extractions.

RNA Reverse Transcription and Real-Time
PCR
Constant amounts of 1 µg of total RNA were reverse-transcribed
to cDNA using the followingmaster mix: 26µl RNAse-free water,

12 µl 5× Buffer (Promega, Mannheim, Germany), 3 µl Random
Primers (50µM) (Invitrogen, Carlsbad, Germany), 3 µl dNTPs
(10mM) (Fermentas, St. Leon-Rot, Germany) and 200U of M-
MLV Reverse Transcriptase (Promega, Mannheim, Germany)
according to the manufacturer’s instructions. A master mix of
the reaction components was prepared according to Berisha et al.
(22). The following Real-Time PCR protocol was employed for all
investigated factors: denaturation for 10min at 95◦C, 40 cycles
of a three segmented amplification and quantification program
(denaturation for 10 s at 95◦C, annealing for 10 s at 60◦C,
elongation for 15 s at 72◦C), a melting step by slow heating from
60 to 99◦C with a rate of 0.5◦C/s and continuous fluorescence
measurement, and a final cooling down to 40◦C. Data were
analyzed using Rotor-Gene 3000 software (Corbett Research
version 5.03). The relative mRNA abundance of each target
gene were calculated using the “comparative quantification”
method (Corbett Reasearch). The changes in mRNA expression
of examined target genes were assayed by normalization to the
stable expressed and internal UBQ control gene. In order to
obtain the CT (cycle threshold) difference the data were analyzed
using the well-established11CTmethod described by Livak and
Schmittgen (44). Thereby 1CT was not subtracted from a non-
treated control group, which does not exist in this study, but
from the constant number 40, so that a high “40-1CT” value
indicated a high-gene expression level and vice versa. This results
in directly comparable relative expression values between the
examined follicle classes before and after the application of GnRH
and after ovulation (early CL) in the cow.

Immunohistochemistry of COX-2 and
PTGES
Paraffin-embedded mature follicles and CL tissue (fixed in
Bouin’s fluid for 24 h) were cut into 5-µm serial sections
and collected on amino-propyltriethoxysilane coated slides
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TABLE 1 | Concentration of Prostaglandin F2alpha (PTGF), Prostaglandin E2 (PTGE), Estradiol (E2), and Progesterone (P4) in follicular fluid (FF) of preovulatory follicles

collected at (I) 0 h, (II) 4 h, (III) 10 h, (IV) 20 h, and (V) 25 h relative to injection of GnRH to induce an LH surge.

Follicle groups (hours after GnRH administration)

Hormones in FF (ng/ml) Group I (0 h) Group II (4 h) Group III (10 h) Group IV (20h) Group V (25h)

PTGF 0.04 ± 0.1b 1.50 ± 0.5b 1.18 ± 0.26b 36.25 ± 7.13ab 101.01 ± 33.42a

PTGE 0.15 ± 0.03c 1.21 ± 0.26c 3.60 ± 0.63bc 15.16 ± 6.07b 484.21 ± 109.27a

E2 495.8 ± 80.09a 574.36 ± 109.7a 178.96 ± 29.06b 59.25 ± 8.4b 53.11 ± 7.28b

P4 50.64 ± 11.49b 186.41 ± 45.60b 130.63 ± 20.17b 203.78 ± 32.82b 537.18 ± 81.26a

Results are presented as the mean ± SEM (ng/ml FF, n = 8–12 follicle/group from 5 animals). Different superscripts denote significantly different values (P < 0.05).

(SupraFrost Ultra Plus; Menzel-Gläser, Braunschweig,
Germany). Paraffin sections were dewaxed and then washed three
times for 5min with PBS at pH 7.4. The sections were incubated
with polyclonal primary antibodies to PTGES (ab62050; diluted
1:300, host rabbit; Abcam, Cambridge, UK; secondary antibody:
pig anti-rabbit IgG (F(ab′)2), diluted 1:300) and with polyclonal
primary antibodies to COX-2 (ab2367; diluted 1:400, host goat;
Abcam; secondary antibody: rabbit-anti-goat IgG (F(ab′)2),
diluted 1:300) at 6◦C overnight. Endogenous peroxidase activity
was blocked with 7.5% H2O2 (diluted in distilled water) at room
temperature for 10 min.

Nonspecific antibody binding was blocked with Dako
protein block serum-free (Dako Deutschland GmbH; Hamburg,
Germany) for 10min. The sections were incubated with the
primary antibodies at 6◦C overnight. Localization of the antigen
was achieved using the avidin–biotin-complex technique.
The appropriate biotinylated secondary antibodies were
incubated with the sections for 16 h at room temperature.
Subsequently, treatment with Strept-ABComplex-HRP
(Dako Deutschland GmbH) was performed for 30min
at room temperature, and treatment with 1 mg/ml 3,3-
diaminobenzidinetetrahydrochloride (BIOTREND Chemikalien
GmbH; Cologne, Germany) was performed for 5min. All
incubations were performed in a humidified chamber.

Sections were slightly counterstained with haematoxylin
(20 s), dehydrated and mounted with the Eukitt quick hardening

mounting medium for microscopy (Fluka Analytical©;
Sigma-Aldrich Laborchemikalien GmbH, Seelze, Germany).
Negative controls were performed by incubating with the
3,3-diaminobenzidine reagent alone to exclude the possibility of
detecting the non-suppressed endogenous peroxidase activity. A
lack of detectable staining in the negative controls demonstrated
that the reactions were specific. The images were captured with
a Leica Labo-Lux microscope equipped with a Zeiss Axiocam
camera (Zeiss, Munich, Germany). As positive controls, ovarian
tissues from quails (Coturnix japonica) and cats (Felis silvestris)
of proven immunoreactivity were used (45). The reaction
intensities were marked as weak (+), distinct (++), and
strong (+++).

Statistical Analysis
The statistical significance of differences in hormone
concentration in FF and mRNA expressions in follicle and
CL tissue of the examined factors was assessed by one way

ANOVA followed by the Holm Sidak as a multiple comparison
test. Data, which failed the normality or equal variance test, were
tested by one way ANOVA on ranks followed by the Kruskal-
Wallis test (Sigma Stat 3.0). All experimental data are shown
as means±SEM (n = 8–12). The differences were considered
significant if P < 0.05.

RESULTS

Concentration of E2, P4 and PTGE and
PTGF in FF During Preovulation
We analyzed the concentration of E2, P4, PTGF, and
PTGE in FF for a better characterization of follicle
groups before and after GnRH application and during
ovulation (Table 1).

The high E2 concentration in the FF of the follicle group
before GnRH treatment (495.8 ng/ml) and during luteinizing
hormone (LH) surge (4 h after GnRH, 574.36 ng/ml), is
followed by a significant (P < 0.05) downregulation
afterwards with the lowest level during ovulation (25 h
after GnRH, 53.11 ng/ml). In contrast the concentration
of P4 was very low before LH surge (50.64 mg/ml)
followed by a significant upregulation (P < 0.05) during
ovulation (537.18 ng/ml).

The low concentration of PTGF (0.04 ng/ml) and PTGE
(0.15 ng/ml) in FF before GnRH, increased continuously
in follicle groups before ovulation and displayed a further
significant and dramatic increase (P<0.05) around ovulation
(101.01 ng/ml respectively 484.21 ng/ml).

Confirmation of Primer Specificity and
Sequence Analysis
The mRNA expression was quantified by the reverse
transcription quantitative polymerase chain reaction (RT-
qPCR), as described in detail in our previous study (46).
Amplified RT-qPCR products were separated on agarose
gel electrophoresis for length verification, and for sequence
confirmation additionally sequenced by a commercial provider
(TopLab, Munich, Germany). All amplified RT-qPCR products
showed 100% homology to the known bovine gene sequence
published in NCBI GenBank (complete sequences are not
shown herein). The primer sequences and expected PCR product
length are shown in Table 2.

Frontiers in Endocrinology | www.frontiersin.org 4 July 2019 | Volume 10 | Article 467

https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles


Berisha et al. Prostaglandins in the Bovine Periovulatory Follicles

TABLE 2 | Primer sequences for investigates genes, respective RT-qPCR product

length, and appropriate reference.

Target Sequence of nucleotide fragment* Size (bp) References

UBQ For 5′-AGATCCAGGATAAGGAAGGCAT-3′

Rev 5′-GCTCCACCTCCAGGGTGATT-3′
189 (30)

GAPDH For 5′-GTCTTCACTACCATGGAGAAGG-3′

Rev 5′-TCATGGATGACCTTGGCCAG-3′
197 (30)

COX-2 For 5′-CTCTTCCTCCTGTGCCTGAT-3′

Rev 5′-GACTCATAGAAACTGACACCCTC-3′
359 (30)

PTGFS For 5′-ACCTGGACCTCTACCTCATCCA-3′

Rev 5′-TCCTCATCCAATGGGAAGAAGT-3′
100 (22)

PTGES For 5′-GCGCGCTGCTGGTCATCAAA-3′

Rev 5′-GTGTAGGCCAGGGAGCGGGT-3′
334 (22)

PTGFR For 5′-TCAGCCCTCACCCAGATAGT-3′

Rev 5′-GGCCATTTCACTGTTCAGGT-3′
167 (22)

PTGER2 For 5′-CTACTTTGCCTTTTCCATGACC-3′

Rev 5′-GATGAAGCACCACGTCCC-3′
210 (22)

PTGER4 For 5′-CGATGAGTATTGAGCGCTACC-3′

Rev 5′-AGCCCGCATACATGTAGGAG-3′
220 (22)

*For, forwards; Rev, reverse.

Relative mRNA Abundance
To evaluate equal quantity and quality of the preceding RT
reaction in each sample, the housekeeping genes ubiquitin
(UBQ) and glyceraldehyde-3-phosphate dehydrogenase
(GAPDH) were examined in all samples. As both housekeeping
genes were constantly expressed in all samples we choose
UBQ as normalizer. The results of mRNA expression of
examined factors (Figures 2, 3) are presented as changes
(40-1CT ± SEM from 6 follicles or CL per group) in the
target gene expression, normalized to UBQ as described by
Berisha et al. (22).

Relative mRNA Expression of COX-2,
PTGES and PTGFS in Preovulatory Follicles
and Early CL
The mRNA expression of COX-2 (Figure 2A) increased
significantely (P < 0.05) 4 h after GnRH and again 20 h after
GnRH, followed by a significant decrease (P < 0.05) after
ovulation (early CL). The mRNA of PTGFS (Figure 2B) in
follicles before GnRH was high followed by a continuous and
significant downregulation (P < 0.05) afterwards. In contrast,
PTGES mRNA abundance increased significantely (P < 0.05)
in follicles 20 h after GnRH treatment and remained high
afterwards (Figure 2C).

Relative mRNA Expression of PTGFR,
PTGER2 and PTGER4 in Preovulatory
Follicles and Early CL
The mRNA abundance of PTGFR (Figure 3A), PTGER2
(Figure 3B), and PTGER4 (Figure 3C) in follicles before GnRH
was high, followed by a continuous and significant down
regulation afterwards and significant (P < 0.05) increase only
after ovulation (early CL).

Immunohistochemical Localization of
COX-2 in Preovulatory Follicles and Early
CL
The multilayered epithelium of follicles at the time of ovulation
(follicle diameter 18- 25mm) displayed a clear signal for COX-
2 (Figure 4A). COX-2 was expressed in the cytoplasm of more
than 90% of the high prismatic basal cells located at the top of
the basal membrane (BM). A slight staining was also seen in the
theca interna surrounding the follicular epithelium. On days 1–
2 after ovulation a strong signal for COX-2 could be noted in
a subpopulation of cells located in the apical half of the folded
membrana granulosa around the former antrum (Figure 4C).
They were surrounded by other granulosa cells (GC), which
showed only a weak signal. On days 3–4 scattered and distinctly
COX-2-positive progesterone producing granulosa-luteal cells
(LC) occurred in the developing corpus luteum (Figure 4E).

Immunohistochemical Localization of
PTGES in Preovulatory Follicles and Early
CL
A distinct to strong immunoreactivity for PTGES was
found throughout the follicular epithelium before ovulation
(Figure 4B). Most cells of the theca interna (TI) displayed
only weak immunoreactivity for this enzyme and the stromal
cells of the theca were almost negative. On days 1–2 after
ovulation, granulosa cells (GC) of the developing CL showed
distinct signal with the PTGES antibody (±). The signal
intensity of the granulosa-luteal cells (LC) increased in the CL at
days 3–4 (Figure 4F).

DISCUSSION

Recent studies have demonstrated the important role of steroid
hormones and prostaglandins during follicle development,
ovulation and CL formation in different species and various
study models (8, 22, 31, 47, 48). Our present study demonstrates
the expression pattern of steroid hormones (E2 and P4) and
prostaglandin family members (COX-2, PTGFS, PTGES, PTGF,
PTGE, and their receptors) in different timely defined follicle
classes before and after GnRH application and after ovulation
(early CL) in the cow. We have shown in our previous studies
(40, 49) that superovulated follicles after GnRH application are
comparable to natural ovulation in the cow. We demonstrated
in addition that also the time interval between the LH surge and
ovulation is quite comparable between induced ovulation (40)
and spontaneous ovulation in cows (49).

The LH surge initiates a series of biochemical events in ovary,
such as upregulation of steroids, prostaglandins, ECM proteases
and many locally produced growth and angiogenic factors to
complement gonadotropins action in process of ovulation and
CL formation (8, 13, 27, 50–52).

It is well-known that P4 and E2 steroid production
of preovulatory follicles change dramatically during the
periovulatory period, suggesting them to play an important role
during final follicle development and ovulation (11, 14, 23–
25, 53, 54). In addition our previous studies demonstrated
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FIGURE 2 | Changes of mRNA for (A) Cyclooxygenase 2 (COX-2), (B)

Prostaglandin F2alpha synthase (PTGFS) and (C) Prostaglandin E2 synthase

(PTGFS) in preovulatory follicles collected at (I) 0 h, (II) 4 h, (III) 10 h, (IV) 20 h, (V)

25 h (follicles), and (VI) 60 h (new CL, Day 2–3) relative to injection of GnRH to

induce an LH surge (5 follicles or CL per group from 5 animals). Different

superscripts denote statistically different values (P < 0.05).

clear evidence for steroids as local regulators of follicular and
luteal activity (4, 19). In vivo and in vitro studies demonstrated
production and localization of P4 and E2 and their specific
receptors in both granulosa and theca cells of perovulatory
follicles (11, 14, 23–25). The E2 concentration in the FF of our
study (Table 2) was high in the follicle group before and during
LH surge, followed by a significant downregulation afterwards.
In contrast the concentration of P4 was very low before LH
surge followed by a significant upregulation during LH surge,
with maximal level during ovulation (Table 2). Our present
data agree with results of Fortune et al. (11) suggesting that
increase in follicular P4 production and associated decreases in
E2 concentration in FF prior ovulation, reflect transition from a
follicular to a luteal steroidogenic profile of cells.

The results of our present study clearly demonstrate the
expression pattern of examined prostaglandin family members,
which depends on the developmental stage of the follicles before

FIGURE 3 | Expression of mRNA for (A) Prostaglandin F2alpha receptor

(PTGFR), (B) Prostaglandin E2 receptor 2 (PTGER2), and (C) Prostaglandin E2

receptor 4 (PTGER4) in preovulatory follicles collected at (I) 0 h, (II) 4 h, (III) 10 h,

(IV) 20 h, (V) 25 h (follicles), and (VI) 60 h (new CL, Day 2–3) relative to injection

of GnRH to induce an LH surge (5 follicles or CL/group from 5 animals).

Different superscripts denote statistically different values (P < 0.05).

and after LH surge and after ovulation (early CL) in the bovine
ovary. The multilayered epithelium of mature follicles shows
a distinct to strong signal for COX-2 and PTGES, whereas
the theca interna is only weakly positive (Figure 4). At day
1–2 after ovulation, a subpopulation of GC of the former
follicle epithelium is distinctly immunopositive for COX-2 and
PTGES. According to Fortune et al. (11), the major source of
prostaglandins is believed to be GC of the preovulatory follicle.
At day 3–4 large (granulosa luteal cells) and small (theca luteal
cells) can be discerned. A subpopulation of the large luteal cells
is distinctly immunopositive for both enzymes. As COX-2 and
PTGES are key enzymes for the synthesis of prostaglandins, their
similar expression pattern makes sense.

It is well-known that LH surge and ovulation process
influence production of COX, prostaglandin synthases (PTGFS
and PTGES), prostaglandin ligands (PTGF and PTGE) but
also regulates expression of prostaglandin receptors (PTGFR,
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FIGURE 4 | Immunohistochemical localization of COX-2 and PTGES in bovine preovulatory follicles and early corpus lutem (CL). (A) Immunohistochemical localization

of COX-2 in a mature preovulatory follicle. A distinct to strong immunostaining was found throughout the granulosa cells (GC) with increaded intensity adjacent to the

basement membrane (BM). The theca interna (TI) was also weakly stained. SB = 75µm. (B) Immunohistochemical localization of PTGES in a mature preovulatory

follicle. A distinct to strong immunostaining is found in the cytoplasma of the GC. Similar to the result with COX-2, the basal cells show stronger reactions than the

luminal cells. The TI and the endothelium of this longitudinal cut vessel (V) show slight positive reactions. SB = 150µm. (C) Immunohistochemical localization of

COX-2 in the CL at days 1–2. A subpopulation of the folded membrana granulosa (GC) surrounding the remaining lumen (L) of the former antrum of the ovulated follicle

display distinct (++) to strong (+++) positive immunostaining with the COX-2 antibody. TI = theca interna; SB = 100µm. (D) Immunohistochemical localization of

PTGES in the CL at days 1–2. Many of the former GC display distinct immunostaining. L = lumen, TI = theca interna; SB = 200µm. (E) Immunohistochemical

localization of COX-2 in the CL at days 3–4. At this magnification many granulosa-luteal cells (LC) with distinct (++) immunostaining alternate with negative or only

weakly stained cells (+). SB = 150µm. (F) Immunohistochemical localization of PTGES in the CL at days 3–4. Several of the granulosa-luteal cells (LC) show strong

immunostaining (+++) with PTGES antibodies, whereas the rest of this cell population display only distinct to moderate immunopositivity (++). SB = 75µm.

PTGER2, and PTGE4). In our present study the concentration
of PTGF and PTGE in FF (Table 2) was low prior to LH
surge (before GnRH application), increased continuously and
significantly 20h after GnRH and further increase around
ovulation (25 h after GnRH). The rapid increase of PTGF and
especially PTGE in preovulatory follicles close to ovulation
is in accordance with previous studies in bovine and other
mammals (55–57). The data of Fortune et al. (11) supported the
hypothesis that prostaglandins, especially PTGE, can stimulate
P4 secretion by both follicular cell types and suggest a positive

feedback relationship between P4 and the prostaglandins.
In addition, Bridges and Fortune (21) demonstrated that
both theca and GC of preovulatory follicles are targets for
both the PTGF and the PTGE produced by the GC. The
results of some earlier studies showed clearly that ovulation
process is dependent from follicular prostaglandin production
also in cows (23, 47, 53–59). LH surge has been reported
to induce enzymes modulating prostaglandin production
and specific prostaglandin receptors in the preovulatory
follicles (21, 33, 39, 60).
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The upregulation of COX-2 and PTGES expression in our
study was followed by a dramatic increase of PTGF and PTGE
in the FF starting 20 h after GnRH application (Table 2). The
preovulatory increases of prostaglandin concentration in FF have
shown to be necessary component of the ovulation in several
species (11, 33, 57, 59–61). Some earliest studies in different
species suggested both PTGF and PTGE to be important to
the ovulatory process (59, 62). However, the recent studies in
different mammalian species clearly demonstrated that PTGE
is more essential for ovulation and CL formation (14, 39, 47).
Based on these findings, it is widely accepted that PGE2 is an
essential paracrine mediator of the LH surge in mammalian
(39, 57). The concentration of PTGE during ovulation in our
study (Table 2) was much higher (484.21 ng/ml) than PTGF
concentration (101.01 ng/ml). The marked increase of PTGF and
especially PTGE in response to LH surge agrees with observation
of other authors made in cow (23, 33, 59, 63).

The final follicle growth and ovulation process involves
intense interactions between endothelial, steroidogenic and
migrating immune cells, leading to the folliculo-luteal cell
transition, ECM remodeling and further angiogenesis in the
developing CL (9). Previous studies demonstrated the effects
of LH surge in remodeling of ECM by regulation of diverse
proteases of the plasminogen activators (PA) and the matrix
metalloproteinase (MMP) enzyme systems in follicles during
ovulation process and CL formation in cow (64–69). In
addition Fortune et al. (11) demonstrated the effect of LH,
P4 and prostaglandins in regulation of ADAMTS proteases
(A Disintegrin And Metalloproteinase with Thrombo Spondin
motifs), suggesting an important role of these factors in
remodeling the preovulatory follicle during ovulation and
angiogenesis. This study as well as others demonstrated that
prostaglandins act viamultiple receptors to regulate follicle-luteal
transition and CL formation (22, 37–39, 57).

Not just the upregulation, but also the shift in the localization
of different factors after LH surge suggests them to have
an important role during the follicle-luteal transition. In our
previous study in the same samples we have shown a distinct
change in localization of FGF2 in the bovine follicles from the
theca cell compartments (cytoplasm of endothelial cells) to the
GC initiated by the LH surge. We suggested that nuclear FGF2
localization may be important for GC survival until ovulation
and for a transition of GC to luteal cells in early CL (40).
Examples of spatial differences are obvious for FGF2 (28) and,
in particular, FGF7, for which the ligand is localized in the theca
tissue and its receptor is localized mainly in GC (70). However,
the aim of the present study was to analyze the regulation of
the factors examined in whole follicle tissue (without GC and
TI separation) in order to compare the expression between
whole follicles tissue (GC and TI) and CL during follicle–
luteal transition.

The significant upregulation of all prostaglandin receptors just
after ovulation (early CL) in our study (Figure 3) demonstrates
the important role of prostaglandins they play in the ovulation
process, luteinisation and CL formation. Our previous study

(22) demonstrated that PTGF and PTGE are involved in
the local (autocrine/paracrine) mechanisms regulating CL
formation and function. In early CL, the PTGE is known as
a luteotropic factor, as it stimulates in vitro P4 production
by bovine luteal steroidogenic cells (71, 72). In addition,
PTGF stimulates P4 production, as well as PTGE, by cultured
luteal cells (16, 73–75). Furthermore, PTGF and PTGE can
suppress the apoptosis of steroidogenic and endothelial cells
in bovine CL (72). In addition, our previous in vivo studies
demonstrated that PTGF stimulates itself and PTGE in bovine
CL (76, 77).

Moreover, in the early CL, prostaglandins regulate the
expression of angiogenic factors in a luteal stage-dependent
manner (9, 12, 35, 78). High expression and tissue levels of
angiogenic factors during the early luteal stage (PTGF-refractory
days) suggest a survival function for both endothelial cells of
the capillaries and steroidogenic cells of the CL (12, 79). In
our recent study we assume that LH modulates prostaglandin
production in the bovine CL by stimulating the expressions
of COX-2, prostaglandin synthases and angiogenic factors and
that these actions help to maintain CL function during the
early luteal phase (22). Moreover, intraluteal prostaglandins
in the early CL may have different other functions, such as
cellular transition and differentiation, blood flow regulation and
intercellular communication (34, 80).

In conclusion, our results indicate that the LH surge
upregulated prostaglandin family members in the follicle
before ovulation, support the potential role of these system
components in GC and TI tissue remodeling during ovulation
process. The further upregulation of prostaglandin family
members after ovulation (early CL) suggests that they play an
important role in follicle-luteal transition and CL formation in
the cow.
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