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With more women than ever waiting until a more advanced age to have children,

there exists a newfound urgency to identify the various implications aging has on

human reproduction, and understand the disrupted biological processes that result in

these changes. In this review, we focus on one recent area of study: the age related

epigenetic changes that have been found in female reproductive organs, and the effect

these changes may contribute to reproductive outcomes.
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BACKGROUND

As a result of many social and economic factors, increasing numbers of women are delaying
childbirth until a more advanced age (1). Increasing maternal age has resulted in well documented
decreases in fertility (2, 3), and increases in oocyte aneuploidy (4), and pregnancy complications
(5–7). While these risks are clear, the underlying physiological processes that result in these
outcomes are much less well defined. Proposed mechanisms involve neuroendocrine deficiency (8,
9), oocyte chromosome telomere length, meiosis abnormalities (10, 11), mitochondrial dysfunction
(12, 13), as well as epigenetic modifications. Here, we discuss the epigenetic alterations associated
with aging in female reproduction, and their effects on female reproduction.

EPIGENETICS: A GENERAL OVERVIEW

Epigenetics are heritable covalent modifications to DNA bases and chromatin proteins that do not
alter the actual base pair sequence, but rather enhance or repress its transcription, by affecting
chromatin structure and transcription factor binding (14). Epigenetics are essential to normal
development and functioning (15, 16), and play an integral role in both normal cellular function
and disease (17). Epigenetic modifications include DNA methylation, histone modifications (18),
and chromatin remodeling (19).

DNA methylation (in mammals) predominantly involves adding a methyl group
[S-adenosylmethionine (SAM)] to the fifth carbon position of cytosine bases in CpG
dinucleotides—a cytosine followed immediately by guanine (20). DNA methyltransferase
(DNMT) is the group of enzymes responsible for adding methyl groups to DNA. DNAmethylation
generally represses transcription of the gene, by condensing the chromatin structure and
preventing transcription factors from binding, as well as by coordinating with HDAC’s to decrease
histone acetylation, another repressive factor (18). During cellular differentiation, however,
methylation of 3′ CpG islands has been shown to activate transcription (21). Methyl groups can
be removed from DNA—demethylation—actively or passively. Active demethylation occurs via
the ten-eleven translocation (TET) family of enzymes, while passive demethylation occurs during
DNA replication by the lack-of-methylation of newly formed daughter strands (thereby diluting
the methylation present) (22–24).

Histones are octamers comprised of two copies of each of four basic building blocks—H2A,
H2B, H3, and H4—that are wrapped in DNA forming a nucleosome. Several nucleosomes further
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wrap together and are stabilized by H1 linker histones
(25). Histone modifications come in many forms: acetylation,
methylation (mono, di, tri), phosphorylation, ubiquination,
and sumoylation (26). Histone acetylation generally promotes
transcription by neutralizing the histone’s positive charge
and thereby reducing its attraction to the negatively charged
DNA, allowing the DNA to open (27). Histone acetylation
occurs via the histone acetyltransferase enzyme (HAT), and
deacetylation occurs via the histone deactylase enzyme (HDAC).
Histone methylation can either promote or inhibit transcription
depending on the methylation site (28, 29), and has also been
shown to influence DNA methylation activity, and vice versa
(30). Histone methylation occurs via histone methyl transferase
(HMT), while demethylation occurs via lysine demethylase
(KDM) (31). Histone phosphorylation is an important regulator
of gene transcription, and mitotic chromatin condensation
(32). Phosphorylation occurs on serine, threonine, and tyrosine
residues via various regulatory kinases. The mechanism by
which phosphorylation achieves its effects is thought to be via
altered DNA surface binding affinity (26). Histone ubiquitination
involves adding a ubiquitin group—a small regulatory protein—
onto histones H2A or H2B. Ubiquitination requires three
enzymes, E1, E2, E3, in a sequential process, and can result in
transcription repression or expression, depending on the location
of ubiquination (33). Finally, sumoylation is the addition of
a SUMO (small ubiquitin-like modifiers) group to histones or
transcription factors, via enzymes E1, E2, E3, and generally
resulting in transcription repression (34).

Another very important regulator of cellular function is
non-histone protein methylation. These are post-translational
modifications that occur on proteins and alter their function.
Methyl groups can be added onto lysine or arginine residues
of specific proteins. The function of these modifications is
not yet completely understood, but they are thought to affect
DNA structure and function, RNA and protein synthesis and
metabolism, and the cell cycle and apoptosis (35).

EPIGENETIC CHANGES IN FEMALE
REPRODUCTIVE AGING

Changes in epigenetics, and epigenetic related enzymes, in
oocytes of females of advanced age have been reported to include
alterations to DNMT levels, DNAmethylation levels, and histone
acetylation and methylation patterns (Table 1).

DNMT Alterations in Reproductive Aging
DNA methyltransferase is a group of enzymes responsible for
adding methyl groups to DNA (43). There are currently five
DNMT’s known to function in mammals, each with a slightly
different function: DNMT1, DNMT2, DNMT3a, DNMT3b, and
DNMT3L. There also are two types of DNA methylation that
can occur: maintenance and de novo. Methylation maintenance
occurs after semi-conservative DNA replication, where the newly
synthesized, semi-un-methylated daughter strand, is methylated
to the same pattern as the parent template strand. The new hemi-
methylated DNA thus becomes fully methylated. Methylation
maintenance is the role of DNMT1 (20). On the other hand,

when double stranded un-methylated DNA is methylated for
the first time, it is known as de novo methylation. This process
occurs via DNMT3a and DNMT3b (each has slightly different
substrate preference) (44). DNMT3L does not itself methylate
DNA, but rather it helps facilitate DNMT3a, and DNMT3b
activity (45, 46). DNMT2 has a separate function in methylation
of transfer RNA (47).

During normal development, as an oocyte develops from
primordial, to primary, to secondary follicle, and then from
the germinal vesicle (GV) through MII and beyond, the levels
of the various types of DNMT’s are in flux. DNMT1 is first
expressed in the secondary follicle stage, and continues through
the zygotic stage and beyond. DNMT3a is expressed beginning
from the primordial stage, and DNMT3b is expressed from the
primary follicle stage. DNMT2a is not detectable at any stage.
DNMT3L is detected in preimplantation embryos (48). The
cellular location (cytoplasmic vs. nucleic) in which the enzymes
are located also changes with the different stages (49). The levels
of DNMT 3a, 3b, and 3L in developing oocytes have been shown
to correlate with their levels of growth and DNA methylation,
associating them with a unique role in oocyte maturation (50).
Furthermore, targeted gene deletions of DNMT3a or DNMT3L
result in similar outcomes—embryonic death due to a failure of
imprinting (epigenetic silencing of maternal or paternal DNA,
that results in only one chromosome being expressed for a
certain trait) caused by inadequate methylation—pointing to the
essential role these enzymes play (51, 52). Interestingly, oocytes
lacking DNMT3b do not show severe abnormality, indicating it
plays a secondary role in development (53).

With aging, this pattern of DNMT regulation is altered.
Experiments comparing MII oocytes from aged mice (42–45
weeks) to young mice (5–6 weeks) found altered levels of
transcription of genes involved in establishing and maintaining
DNA methylation, including DNMT1, DNMT3L, and higher
levels of DNMT3b transcription (54). Similarly, a study using
even older mice (66 weeks old) found reductions in transcription
levels of DNMT3a (55). In another study on human oocytes
from aged women, genes involved in cell cycle checkpoint
and DNA damage repair and transcription showed decreased
transcription (56).

Comparisons of DNMT1, DNMT3a, DNMT3b, and
DNMT3L levels in MII oocytes and pre-implantation embryos
(2 cell, 4 cell, 8 cell, and morula) showed a significant decrease
in old (35–40 weeks) compared to young mice (6–8 weeks)
(36). This decrease in turn reflects a broader decrease in DNA
methylation found with aging in oocytes.

DNA Methylation Alterations in
Reproductive Aging
DNA methylation in germ cells and early embryos is dynamic,
and plays a critical role in development and growth throughout
life (57). Somatic cells have stable and highly methylated DNA,
which regulates their gene expression and allows them to carry
out their tissue-specific functions. While mature oocytes and
sperm have similarly high levels of methylation (20), they
undergo dynamic changes throughout their development.

Early on, during the primordial stage, mouse germ cells
undergo genomewide demethylation. Oocytes then entermeiotic
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TABLE 1 | Epigenetics, their biological function, enzymes, and changes in oocytes with advanced age.

Epigenetic modification Biological function Enzymes Changes in oocytes with aging

DNA methylation ↓ transcription

3′ methylation in differentiating cells

↑ transcription

DNMT–methylation

TET–demethylation

↓ DNMT’s and methylation in MII oocytes and preimplantation

mouse embryos (36)

↑ demethylation enzymes and intermediates in mouse oocytes (37)

more extreme methylation pattern in human granulosa cells (38)

Histone acetylation ↑ transcription HAT–acetylation

HDAC–deacetylation

↓ in GV mouse oocytes (39)

↑ in MII mouse oocytes

↑ in MI and MII human oocytes (40)

Histone methylation ↑/↓ transcription (location

dependent)

HMT–methylation

KDM–demethylation

↓ in GV mouse oocytes (41)

↑ di-methylation in MII mouse oocyets (42)

Histone phosphorylation ↑/↓ transcription/chromatin

condensation

Kinases –

Histone ubiquination ↑/↓ transcription (location

dependent)

E1, E2, E3 –

Histone sumoylation ↓ transcription E1, E2, E3 –

arrest, and undergo remethylation only after birth, during oocyte
growth from primary to secondary follicles (58). Male germ cells
replicate throughout the life of the male, and enter meiosis in the
adult male. Remethylation in male germ cells occurs prenatally at
the pro-spermatagonia stage.

Post fertilization, the maternal and paternal chromosomes are
physically separate, and undergo different methylation changes.
The paternal genome is actively-demethylated before DNA
replication begins, while the maternal genome is demethylated
passively (59–61). By the blastocyst stage, near the time of
implantation, both genomes have again been remethylated (58).
This cycle of demethylation and remethylation is important
for removing parental epigenetic modifications to the germ
cell genome, and for establishing totipotency in the new
embryo (15, 58).

With maternal aging, these patterns change. By measuring 5-
MeC fluorescence intensity in MII oocytes and preimplantation
embryos (2-cell, 4-cell, 8-cell, and morula), researchers showed
that the level of DNA methylation in older mice (35–40
weeks) was significantly lower than that of younger mice (6–
8 weeks). Interestingly, there was no significant difference in
DNA methylation in blastocysts (36). The researchers suggested
that this may be attributed to the de novo methylation which
occurs via DNMT3a and DNMT3b prior to implantation.
Other researchers similarly showed that in cases of advanced
maternal age, embryos capable of developing to mid-gestation
seem to undergo normal acquisition and maintenance of DNA
methylation patterning (62).

Other research investigated the levels of DNA methylation
and related gene transcription in human granulosa cells.
Researchers looked at genomic DNA methylation patterns
in granulosa cells of young (mean age of 26) and older
(mean age of 40) women. The younger group responded
robustly to ovarian stimulation during assisted reproductive
technology (ART), with a mean of 25 oocytes retrieved, while
the older group responded poorly with a mean of <4 oocytes
retrieved. DNA methylome patterns between the two groups
were compared using Methylated DNA Capture followed by
Next Generation Sequencing (MethylCap-seq), as well as by

Reduced Representation Bisulfate Sequencing (RRBS). Their
results revealed a more nuanced methylation change with aging.
Regions of DNA that are more highly methylated DNA in
younger females, showed increased levels of methylation with
aging, and areas that were poorly methylated in younger females,
showed decreased methylation with aging. With aging, then,
the DNA methylation pattern shifts farther to both extremes.
The researchers then sought to assess the effect this methylation
difference might have on gene expression. They found 3,397
genes that were differentially expressed between the two groups,
of which 1,809 were downregulated in the older group, and many
of which are related to ovarian function [e.g., anti-mullerian
hormone (AMH)] (38).

The flip side of DNA methylation is DNA demethylation.
Intermediates of the demethylation cascade in mouse oocytes,
including levels of TET enzymes as well as modified cytosine’s
resulting from demethylation (5-hydroxymethylcytosine, 5-
formylcytosine, 5-carboxylcytosine), have been found to be
increased with advanced maternal age, signaling that the low
DNA methylation levels observed with advanced age may result
from decreased methylation, as well as increased demethylation.
Furthermore, the researchers found that chemically induced
accelerated aging results in different levels of demethylation-
pathway-intermediates than what is found in normal aging (37).
This can potentially be useful in distinguishing between natural
and accelerated aging, and perhaps more importantly evaluating
the pace of a woman’s reproductive aging and her estimated
reproductive longevity.

The consequences of altered DNA methylation in advanced
maternal age was recently studied, and found to result in
decreased expression many important genes. Researchers used
single embryo RNA-seq to examine the genetic expression
of human blastocysts. They found that with increasing
maternal age, there is decreased expression in over 800
genes, including many genes that are critical for cell cycle
control and meiotic chromosomal segregation, and are
potential causes of aneuploidy with aging (63). This, once
again, highlights the important role epigenetics plays in
normal reproduction.
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Histone Modifications in Reproductive
Aging
Acetylation of the N-terminal tail of histones usually occurs on
lysine (K) residues, and promotes transcription (29). Histone
methylation can occur on either lysine or arginine residues,
and can suppress or promote transcription, depending on the
location. Methylation of histone H3 K9 is associated with
transcription suppression (64), while methylation of H3 K4,
or methylation of arginine on H3 or H4, is associated with
transcription promotion (28, 65).

Like DNA methylation, histone modifications are in flux
during germ cell development, and play a critical role in normal
gametogenesis. In mouse oocytes at the GV stage, histone 3 lysine
9 and lysine 14 are acetylated, while on histone 4, lysines 5, 8,
12, and 16 are acetylated (H3K9, H3K14, H4K5, H4K8, H4K12,
H4K16). At MI and MII, these histones are deacetylated by
HDAC with the exception of H4K8 (66, 67). Histone acetylation
patterns were found to be similarly well monitored (albeit to a
slightly different pattern) in bovine, porcine, and sheep (68). In
contrast to this, histone methylation was found to be relatively
stable during oocyte maturation (69).

With maternal aging, again, these patterns shift. Research
in mouse GV oocytes showed that aged (10-month-old) mice
had lower levels of acetylation at H4K12 (67/81) and H4K16
(55/92) than young (2-month-old) mice (100% for both H4K12
and H4K16) (39). Additionally, and paradoxically, at the MII
stage, all oocytes from young mice were found to be completely
deacetylated at H4K12, while 40% of oocytes from older mice
were acetylated at H4K12 (39). Interestingly, the researchers
were able to correct the aging related MII stage acetylation
abnormalities by correcting the GV oocytes acetylation pattern
using Trichostatin A (TSA), a histone deacetylase inhibitor.

Another study compared MII oocytes from the same mouse
(to eliminate genetic interactions) at a young (3 weeks) and
old age (10 months), and again found higher levels of H4K12
acetylation in the older population (70). Indeed, research
indicates that H4K12 acetylation levels can potentially be used
as a biomarker for oocyte quality, yielding potential clinical
significance to this finding (71).

These changes can result in oocyte dysfunction and infertility.
Research looking at the effect of elevated histone acetylation
levels in MII mouse oocytes showed that inhibiting histone
deacetylase during meiosis results in a high frequency of oocyte
aneuploidy and embryo death. Another study examined the role
HDAC’s play in meiosis, by culturing mouse oocytes with TSA.
The treated oocytes progressed through MI and MII, fertilized,
and developed into blastocysts, as well as the control group did,
but they subsequently had lower implantation rates, and higher
miscarriage rates, than the control group. Karyotype analysis
done on one cell zygotes revealed higher rates of hyper- and
hypo- ploidy in the TSA treated oocytes, explaining their high
rate of failure. The inhibition of histone deacetylation in oocytes
led to greater rates of aneuploidy. The researchers then compared
the H4K12 acetylation status of aged and young oocytes, and
found them to be elevated in the aged group. They postulated that
this results in an inability of the chromosome to adopt the proper
conformation necessary to undergo precise segregation during

meiosis, and thereby explains the increased aneuploidy rates seen
with increased maternal age (72).

Another group similarly found that oocyte age correlated
with abnormally elevated levels of histone acetylation on H4K12
in human MI and MII oocytes. This in turn was related to a
greater propensity for chromosomes to misalign, leading to more
segregation errors in older oocytes (40). In this way, the residual
elevation in histone acetylation in aged oocytes at MI and MII
carries a very real clinical significance.

In a similar vein, HDAC’s were discovered to contribute to
the stability of microtubules, and the formation of proper
kinetochore-microtubule interactions, by deacetylating
H4K16 and alpha tubulin, in cells undergoing meiosis. Alpha
tubulin acetylation levels are important in the regulation
and stability of the spindle apparatus, and similar to histone
acetylation, are essential for proper spindle formation and
kinetochore functioning (73, 74). HDAC2 knockout mouse
oocytes resulted in hyper-acetylation of H4K16, defective
chromosome condensation and segregation, and increased
rates of aneuploidy (73). HDAC3 knockout oocytes had higher
levels of tubulin acetylation, and impaired spindle assembly,
chromosomal alignment, kinetochore-microtubule attachments
and chromosomal movement, resulting in higher rates of MI
arrest, and aneuploidy (75).

Sirtuins are another family of cellular deacetylases and Sirt2 in
particular also plays an important role in deacetylation of alpha
tubules and histone H4K16, giving it great importance in normal
microtubule and kinetochore function. Sirt2 knockout mouse
oocytes show spindle defects, and chromosomal disorganization,
and were significantly impaired in completing MI and forming
a polar body. Aged mouse oocytes were found to have lower
levels of Sirt2, which corresponded to greater defects in forming
a meiotic spindle, and aligning chromosomes. What’s more
fascinating is that overexpression of Sirt2 in aged oocytes by
experimental manipulation led to normalized levels of H4K16
and alpha tubulin acetylation levels, and decreased rates of
meiotic dysfunction (76).

Other work examined the changes to histone methylation
in oocytes with age. There have been some identified decreases
in methylation in H3K9me3, H3K36me2, H3K79me2, and
H4K20me2 in GV oocytes of old mice when compared to young
mice (41). Other researchers found that di- and tri- methylation
on H3K4 was decreased in GV oocytes of aged (42–44 weeks)
as compared to young (6–8 weeks) mice, and that H3K4 di-
methylation was increased in MII oocytes of the aged mice.
Furthermore, the expression of proteins encoded by the genes
containing these histone changes was found to fluctuate with
respect to the histone methylation level (42).

These results highlight the fundamental role epigenetics
plays in oocyte functioning, and how it may, at least partially,
explain the decreased fertility, and increased aneuploidy seen
in females of advanced age. They also highlight potential
therapeutic interventions that may reduce meiotic error, and
improve treatment outcomes.

Histone phosphorylation, ubiquination, and sumoylation in
oocytes from older females have not yet been as well examined,
but studies looking at gene expression identified a dysregulation
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in genes related to ubiquination in aged oocytes, suggesting
dysfunction with age (77).

SUMMARY AND CONCLUSION

In summary, the existing work on epigenetics and female
reproductive aging sheds light on some important cellular
mechanisms, while raising many more questions. Manipulating
DNMT or HDAC levels in mouse oocytes leads to morbid
outcomes, illustrating the critical role these enzymes, and
epigenetics in general, play in normal development. A better
understanding of their function in normal development, and
how they are affected by aging, may lend valuable insight into
reproduction and reproductive aging.

MII oocytes and preimplantation embryos of aged mice
showed a decrease in DNMT enzymes and methylation levels.
Aged mouse oocytes also showed an increase in demethylation
enzymes and demethylation cascade intermediates. In contrast,
human granulosa cells showed a more nuanced change in
methylation with advanced age, shifting toward either extreme—
increased methylation in highly methylated regions, and
decreased methylation in poorly methylated regions. Histone
acetylation was paradoxically decreased in GV oocytes, but
increased in MII oocytes of aged mice and humans as compared
to young mice. They were shown to play a critical role in normal
meiosis, and were also responsive to corrective measures. Finally,
histone methylation is decreased in GV oocytes of old mice.

Little has been published, thus far, on the changes to histone
phosphorylation, ubiquination, and sumoylation, or the changes

to non-histone protein modifications, in oocytes with aging, and
the consequences those changes may carry. Histone sumoylation,
for example, plays a critical role in mitotic regulation, and spindle
assembly in oocytes (78). Epigenetic modifications disrupting
normal histone sumoylation functioning can theoretically have
severe deleterious effects. Further research is necessary to better
understand these changes, and, more specifically, as they occur in
human oocytes.

It is also critical to better understand mechanisms of
epigenetic changes with age, and the factors that may mitigate
or accelerate them. Can biologic or environmental elements
that produce oxidative stress, which has been shown to disrupt
cellular epigenetics (79), be a factor in determining reproductive
longevity? Would it be possible to impede this process, or
even correct it, as has been done experimentally using TSA to
correct for abnormal acetylation levels? Finally, can epigenetic
modifications in aged human oocytes be used to predict an
oocyte’s embryonic development potential? These questions
are just a few of many important areas for clarification,
and carry the potential of improving, and fundamentally
changing, the care millions of women around the world need
and receive.
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