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This review focuses on the role of oxidized sterols in three major gastrointestinal cancers

(hepatocellular carcinoma, pancreatic, and colon cancer) and how the circadian clock

affects the carcinogenesis by regulating the lipidmetabolism and beyond.While each field

of research (cancer, oxysterols, and circadian clock) is well-studied within their specialty,

little is known about the intertwining mechanisms and how these influence the disease

etiology in each cancer type. Oxysterols are involved in pathology of these cancers,

but final conclusions about their protective or damaging effects are elusive, since the

effect depends on the type of oxysterol, concentration, and the cell type. Oxysterol

concentrations, the expression of key regulators liver X receptors (LXR), farnesoid X

receptor (FXR), and oxysterol-binding proteins (OSBP) family are modulated in tumors

and plasma of cancer patients, exposing these proteins and selected oxysterols as

new potential biomarkers and drug targets. Evidence about how cholesterol/oxysterol

pathways are intertwined with circadian clock is building. Identified key contact points

are different forms of retinoic acid receptor related orphan receptors (ROR) and LXRs.

RORs and LXRs are both regulated by sterols/oxysterols and the circadian clock and in

return also regulate the same pathways, representing a complex interplay between sterol

metabolism and the clock. With this in mind, in addition to classical therapies to modulate

cholesterol in gastrointestinal cancers, such as the statin therapy, the time is ripe also for

therapies where time and duration of the drug application is taken as an important factor

for successful therapies. The final goal is the personalized approach with chronotherapy

for disease management and treatment in order to increase the positive drug effects.

Keywords: oxysterols, circadian rhythm, hepatocellular carcinoma, pancreatic cancer, colorectal cancer, ROR,

LXR, FXR

INTRODUCTION

Cholesterol and Oxysterols
Cholesterol is an essential molecule that participates in many cellular processes. It enables proper
functioning of cellular membrane, is a precursor for synthesis of steroid hormones, oxysterols
and bile acid, and functions as a signaling molecule regulating cell cycle, modifying proteins, and
affecting its own synthesis (1–3). Most of the cholesterol in cells resides in the cellular membranes,
where it plays a crucial role in stabilization of membranes, affects its fluidity and has an important
role in lipid rafts (3). Oxysterols also have multiple functions, such as affecting membrane fluidity,
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regulating SREBP (sterol regulatory element binding
transcription protein) signaling pathway through regulation
of INSIGs (insulin induced genes) and by this sterol synthesis,
interacting with NPC1 (NPC intracellular cholesterol transporter
1) and OSBP/OSBPL [oxysterol-binding proteins (like)] and,
most importantly, are ligands and activators of several nuclear
receptors, such as RORs (NR1F1-3, retinoic acid receptor
related orphan receptors A, B, C), FXR (NR1H4, farnesoid X
receptor alpha), PXR (NR1I2, pregnane X receptor), ESR1/2
(NR3A1/2, estrogen receptor alpha/beta), and LXR (NR1H3,
liver X receptor alpha) (4, 5). The term oxysterol usually
means oxidized sterols that are produced from cholesterol
enzymatically or by auto oxidation (Figure 1). However, also
other sterols, including intermediates of cholesterol synthesis
can be oxidized at least enzymatically by cytochrome P450 (CYP)
enzymes (6). Auto oxidation of cholesterol usually happens in
the presence of reactive oxygen species and oxidation occurs
on the B ring of sterol nucleus, mainly at positions C7 or C6.
With this process 7α/β-hydroxycholesterol, 7-ketocholesterol
and 6-hydroxycholesterol are formed (7, 8). Enzymatic synthesis
includes the side chain oxidation by CYP or non-CYP. For
example, 24- hydroxycholesterol is synthesized by CYP46A1,
25-hydroxycholesterol by 25-hydroxylase (non-heme iron-
containing protein) and 27-hydroxycholesterol by CYP27A1
(7, 9). Other oxysterols are formed by oxidation of the sterol
nucleus, like 4β-hydroxycholesterol synthesized by CYP3A4
or 7α-hydroxycholesterol by CYP7A1 (10). The concentration
of oxysterols in normal healthy tissue and blood is 104- to
106-fold lower compared to cholesterol (11). In addition
to endogenous synthesis, oxysterols can also derive from
the diet. The cholesterol-rich food contains 10 to 100µM
concentration of oxysterols. Most common are 7α- and 7β-
hydroxycholesterol, 7-ketocholesterol, cholestane-3ß,5α,6ß-triol,
5α,6α-epoxycholesterol, and 5β,6β-epoxycholesterol (12). When
oxysterols were fed to humans, they were found in chylomicrons
and lipoproteins (13).

SREBPs are transcription factors that activate transcription of
genes necessary for cholesterol synthesis and uptake. Mammalian
cells express three SREBP isoforms, SREBP-1a, SREBP-1c, and
SREBP-2, which are responsible for expression of different lipid
associated genes. SREBPs are located in endoplasmic reticulum
(ER) together with SCAP (SREBP cleavage-activating protein)
the escort protein, and INSIGs, the inhibitors of translocation.
When cholesterol level declines, SREBPs are translocated to
Golgi apparatus together with SCAP where they are proteolytic
cleaved. A smaller SREBP is translocated to nucleus where it
induces transcription of target genes (14). The major regulator
of cholesterol homeostasis is SREBP-2 (15) as shown by the early
mouse knockout experiments as well as in follow-up studies (16,
17). When SCAP is bound to INSIG, the vesicular transport of
SREBP from ER is disabled. The cholesterol and oxysterols level
regulate the INSIG inhibition of SCAP/SREBP transport (18, 19).
Interestingly, cholesterol and oxysterols both induce the SCAP-
INSIG interaction but by different mechanisms. Cholesterol acts
by binding to SCAP and causing its conformational change that
promotes binding to INSIG. Oxysterols, on the other hand, act
directly on INSIG. For INSIG-2 it was shown that hydroxyl

group on the side chain of sterols (22, 24, 25, or 27 position)
is necessary for successful binding. A study confirmed these
results, when 27-hydroxycholesterol levels were upregulated by
CYP27A1 overexpression in mice or when primary hepatocytes
were treated with 27-hydroxycholesterol, Insig-2 expression was
induced and SREBP-1 translocation was prevented (20). In this
way, oxysterols regulate cholesterol synthesis and uptake through
regulation of SREBP signaling pathway (18).

All these pathways are regulated by cholesterol and cholesterol
synthesis intermediates but also by oxysterols themselves.
Oxysterol synthesis itself is regulated in a similar manner
as cholesterol and bile acid synthesis since many enzymes,
transporters, and transcription factors are common. The excess of
oxysterols is toxic for cells; therefore, oxysterols are transported
to the liver, where they are metabolized to bile acid products
and excreted from the body (21). FXR is a nuclear receptor of
bile acids and is also the major regulator of bile acid synthesis.
Hence, FXR regulates directly or indirectly expression and
activity of oxysterol producing enzymes (CYP7A1, CYP27A1,
CYP3A) (22). Also 22(R)-hydroxycholesterol has been shown to
regulate expression of ABCB11 (ATP binding cassette subfamily
B member 11, alternatively also BSEP- bile salt export protein)
through FXR in hepatocytes (23). Since bile acids can act through
different signaling pathways not connected to oxysterols, we will
focus only on FXR direct involvement in selected cancers.

Circadian Rhythm
Circadian clock as the inner rhythm in mammals is recognized
as a cell-autonomous and self-sustaining mechanism, which
controls almost every aspect of our life. The period of these
rhythms is ∼24 h long, thus circadian (from latin circa—
approximately; diem—day) (24). The circadian rhythmicity is
known to be a crucial endogenous process of organisms,
described in almost every live species from cyanobacteria to
human, and is capable to adapt to the environmental rhythm
of the day. Circadian homeostasis in mammals is maintained by
the central clock located in the suprachiasmatic nucleus (SCN)
of the hypothalamus which orchestrates numerous clocks in
peripheral tissues. The peripheral clocks have been observed
in cells and tissues all over the mammalian body. Light,
however, is not the only signal for entrainment of internal
clocks. Systemic cues including hormones, body temperature,
feeding/fasting cycles also influence the circadian rhythm in
tissues throughout the body (25). The molecular basis of clock
is constituted of periodical expression of clock genes driven
by the autoregulatory transcription-translation feedback loops
involving cis-regulatory elements such as E-boxes, D-boxes,
and ROREs (ROR-elements) (26). The positive transcriptional
loop is formed by transcriptional activators ARNTL/BMAL1
(Aryl Hydrocarbon Receptor Nuclear Translocator Like) and
CLOCK (Clock Circadian Regulator, NPAS2 in neuronal
tissue, Neuronal PAS Domain Protein). The CLOCK:BMAL1
heterodimer binds to conserved E-box sequences in target
gene promotors of PER1,2,3 (Period Circadian Regulator 1,
2, 3), CRY1,2 (Cryptochrome 1, 2), and DEC1,2 (Deleted In
Esophageal Cancer 1, 2) genes contributing to the activation of
their expression (27). PER and CRY proteins dimerize in the
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FIGURE 1 | Synthesis of oxysterols and catalyzing enzymes.

cytoplasm and after translocation to the nucleus inhibit further
CLOCK:BMAL1 transcription, forming the negative feedback
loop. Also DEC1 and DEC2 can interact with the component of
the SCN core clock genes. DEC1 and DEC2 proteins form dimers
and translocate to the nucleus where they inhibit the activity of
CLOCK:BMAL1 heterodimer (28). The degradation of PER, CRY
and DEC proteins is essential for the restart of a new cycle of the
transcription with ∼24 h periodicity. An additional regulatory
loop of BMAL1 and CLOCK dimer activity is through interaction
with RORs and REVERBA (Nuclear Receptor Subfamily 1 Group
D Member 1, NR1D1). RORs and REVERBA compete for
ROR response element in the promotor region of BMAL1,
where REVERBA acts as inhibitor and RORs as activators of
BMAL1 transcription. In turn, CLOCK:BMAL1 heterodimers
activateREVERBA transcription. Besides E-boxes and ROREs, D-
boxes play an important role as well. Transcription regulation
through D-boxes goes via different transcription factors, such
as DBP (albumin gene D-site binding protein) expressed in
the SCN with a clear rhythm in the light-dark or constant
dark conditions. The role of TIMELESS (timeless circadian
regulator gene), which is mammalian ortholog of Drosophila
TIM, remains ambiguous (29). In Drosphila TIM protein plays
an important role and entrains the internal clock through
light. After heterodimerization with PER, translocation to the

nucleus occurs and transcription of core clock cycle genes
is inhibited.

Regulation of circadian rhythm, however does not stop with
transcription-translation regulatory loops. Post-translational
changes such as phosphorylation, ubiquitination and acetylation
as well as epigenetic changes have been proven to play an
important role in regulation of circadian rhythms (30–32). PER1-
3 proteins are subjects to temporal changes in phosphorylation
by CKIε (casein kinase Iε) and CKIδ, reaching a peak right
before its destruction. Their reversible phosphorylation is a
dynamic process with kinases and phosphatases as counterparts,
their net effect leading to altered PER2 protein stability and
cellular location, ultimately affecting the length of circadian
period (33). Additionally, CLOCK has been found to have
HAT (histone acetyltransferase) activity (34). While HAT
activity results in transcription chromatin states, its counterpart,
histone deacetylase, would condense chromatin and silence gene
expression. Indeed, SIRT1 (sirtuin 1), a NAD+ (nicotinamide
adenine dinucleotide) dependent protein deacetylase, is a
representative of HDAC (histone deacetylase) family, whose
deacetylation is under circadian control. In the liver, SIRT1
deacetylates BMAL1 and PER2 as well as histone H3 in
promotors of clock controlled genes (31, 35). With its reaction
depending on NAD+, SIRT1 scopes far beyond its circadian
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FIGURE 2 | Intertwined oxysterol and circadian clock networks with multiple

negative feedback loops and several contact points between oxysterol

network and circadian clock regulation through RORA-LXR, REVERBA-INSIG,

and DEC-FXR/LXR/SREBP interactions. Through contact points circadian

network regulates circadian expression of oxysterol network genes and

metabolites and vice versa.

regulation. Primarily known physiological effects of SIRT1
deacetylation were regulation of metabolism and response to
oxidative stress. It therefore represents a functional link between
cellular metabolic activity and stress response, cell proliferation
and genome stability, standing at crossroads of the processes we
are tackling (31, 36–38).

Cholesterol and Oxysterols Around
the Clock
Disorders of lipid metabolism are responsible for many adverse
pathologies, including tumor development. It is already well-
established that circadian clock controls every aspect of our
life, also the lipid metabolism (Figure 2). The core circadian
machinery is placed in the hypothalamus and orchestrates other
peripheral clocks in tissues like liver, colon, and pancreas.
Peripheral clocks can be synchronized trough different channels.
They can be directly synchronized by SCN (neural and hormones
signals), trough food entrainment or body temperature (39).
Lipid metabolism focusing on cholesterol metabolism is under a
daytime specific regulation. Recently it was shown that adropin,
identified as a protein that has a role in maintaining the energy
homeostasis, could represent a link between circadian clock and
cholesterol metabolism. Expression of adropin is diminished
by cholesterol and 7-oxygenated sterols that can modulate the
RORA/C signaling. The RORA/C and REVERB receptors might
thus link adropin and its synthesis to circadian rhythm of lipid
metabolism which is a novel and important connection (40).

Liver X receptors whose natural ligands are oxysterols
have been found to regulate Dec1, a transcription factor
involved in hepatic clock system and metabolism (41). In vivo
observation showed reciprocal suppression between RORA and

LXR (42). Research on Reverbα mutant mice showed a circadian
controlled expression of Cyp7a1. Furthermore, Martelot et al.
also demonstrated that REVERBA cooperates in modulation of
cholesterol and bile acid synthesis through control of SREBP.
Thus, REVERBA control the rhythmic abundance of Insig2
and is further responsible for diurnal translocation of SREBP
to the nucleus. The circadian activation of SREBP drives the
circadian transcription of cholesterol biosynthesis genes and
hence the oxysterols, which activate LXR. The cyclically activated
LXR is responsible for cyclic expression of CYP7A1 (43). Both,
Cyp7a1 and Cyp27a1 showed circadian expression where sex
differences in circadian variation were observed, indicting the
importance of sex when planning the therapy (44). In the Clock
mutant mice on a diet containing cholesterol and cholic acid
showed reduced and disrupted Cyp7a1 expression and high liver
cholesterol accumulation (45). Timed high fat diet in mice,
on the other hand, resulted in changed Cyp7a1 expression via
PPARα (peroxisome proliferator activated receptor alpha) as well
as increased hepatic cholesterol (46). Cyp7a1 anomalies were
found in Reverbα deficient mice as well as Per1−/− and Per2−/−

mice, where bile acid homeostasis was disrupted (47, 48). Other
CYP enzymes involved in cholesterol biosynthesis have been
reported in association with circadian clock metabolism. CYP3A
has a circadian pattern, but researched did not find it to be
important for drug therapy due to small changes observed
(49). mRNA levels and metabolic activity of CYP3A4 in serum-
shocked HepG2 cells showed a 24 h rhythmicity. DBP was
responsible for CYP3A4 activation (50). CYP8B1, an important
player in bile acid and liver metabolism, is also under the RORA
regulation resulting in its diurnal rhythm and fasting induction
(51). Furthermore, DEC2 was shown as an important regulator
that convey the circadian signal to the liver that has role in
CYP7A, CYP8B, and CYP51A1 expression (52).

HEPATOCELLULAR CARCINOMA (HCC)

Hepatocellular carcinoma (HCC) is one of the most common
causes of death worldwide and represents the most common
primary malignancy in the liver. It is commonly associated
with chronic hepatitis B virus (HBV) or hepatitis C virus
(HCV) infection, aflatoxins and alcoholic cirrhosis (53). It is a
global health problem and over 80% of HCC cases are seen in
developing countries with the highest incidence in areas endemic
for HCV and HBV (54). Most patients with HCC have liver
cirrhosis but there is also a number of cases where patients
with non-alcoholic fatty liver disease (NAFLD) and without
cirrhosis develop HCC, demonstrating the role of NAFLD in its
pathogenesis (55, 56). The incidence is increasing rapidly and
is higher in men compared to women (57). Other types of liver
cancers like intrahepatic cholangiocarcinoma, hepatoblastoma,
and angiosarcoma are not so common in comparison to HCC.
The molecular pathogenesis of HCC is extremely complex where
circadian clock and lipid metabolism play an important role (58).
Genetic and epigenetic alterations have been shown to also drive
hepatocarcinogenesis. Knowing the crucial signaling pathways in
HCC will enable us to provide better therapies to treat this cancer
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TABLE 1 | Oxysterol-circadian factors influencing HCC development.

Factor Notes Proposed function References

Oxysterols Increased in serum of NAFLD, HCV infected patients Potential biomarkers (60, 61)

Treatment of HepG2 Cytotoxicity (62)

25-hydrohycholesterol Treatment of rat hepatoma cells Pro-apoptotic (62, 63)

25-hydroxycholesterol and OSBPL8 Treatment and overexpression in HepG2 Pro-apoptotic

OSBPL8 Downregulation in Huh7 and HepG2 Pro-proliferative (62)

Overexpression in HCC cell line Pro-apoptotic (64)

LXR Lower expression in HCC tumors Lower post-operative survival rate (65)

Activity Anti-proliferative via SOCS3 (66)

FXR Lower expression and activity in HCC tumors Association with multiple malignant characteristics (67–72)

Overexpression in HCC cell lines Anti-proliferative, suppressed tumor growth in nude

mice

(69)

Downregulation in HCC cell lines Pro-proliferative, increased migration and invasion,

accelerated tumor growth in nude mice

(70)

SREBP1 Increased expression in HCC cell line Required for tumor proliferation (73)

CLOCK (NPAS2) Increased expression in HCC tumors (74)

SNPs Associated with increased risk for HCC, survival of

TACE treated patients

(75)

PER3 SNP Association with survival (76)

PER2 Knockout mice Higher diethylnitrosamine induced carcinogenesis (77)

Chronic circadian disruption Spontaneous hepatocarcinogenesis in mice Metabolic disruption, CAR activation (77–79)

TIMELESS HepG2 Oncogenic (80)

(59). The overview of factors associated with HCC are presented
in Table 1.

In patients infected with HCV, the cholesterol transport in
the liver is modified and serum concentration of cholesterol
was lower compared to healthy individuals. Interestingly,
the serum levels of oxysterols 4β-hydroxycholesterol, 25-
hydroxycholesterol, and 7α-hydroxycholesterol were elevated
despite lower cholesterol concentration. When patients with
HCV were treated with anti-viral therapy the oxysterols where
reduced back to normal values. Further analyses indicated
that these oxysterols were probably not elevated because of
the activity of liver enzymes CYP3A4 and CYP7A1. CYP7A1
expression was unchanged in patients with HCV (61) and
CYP3A4 activity was even downregulated (81). Direct effect
of higher oxysterol concentrations on the development of
HCC remains unknown, but oxysterols may be potential
biomarkers and even potential novel targets for inhibiting
disease progression (61). One of the major primary risk factors
for HCC is NAFLD. With increasing control over hepatitis
infections, it is predicted that NAFLD will soon become
the major risk factor for HCC development. NAFLD is a
complex multi systemic disease, caused by many factors such
as genetics, dietary, environmental, and others (82, 83). In
NAFLD patients, serum cholesterol is elevated and consequently
some oxysterols (4β-, 25-, and 27-hydroxycholesterol) are also
elevated. These oxysterols can affect the resorption of cholesterol
in some tissues, through LXR activation, which regulates ATP-
binding cassette transporters. In this way oxysterols affect
the cholesterol concentration in NAFLD, which can evolve in
HCC (60). In rat model with induced hepatoma tumor in the

liver, the measurements showed elevated levels of following
oxysterols: 24S-, 25- and 27-hydroxycholesterol, and 24S,25-
epoxycholesterol, which are all known to bind to LXR. In
these tumors, the ABCA1 (ATP binding cassette subfamily A
member 1) and ABCG1 (ATP binding cassette subfamily G
member 1) cholesterol transporters were elevated on mRNA
and protein levels, most likely through LXR activation. There
is some data indicating that 25-hydroxycholesterol has a pro-
apoptotic function in rat hepatoma cells and is able to induce
sub-Gl apoptosis (63). Authors suggested that local addition of
25-hydroxycholesterol in combination with other drugs could
be potentially used in treatment of hepatoma patients. HCC
cells have changed metabolism to sustain the fast proliferation.
Because of this, many cellular functions are altered, including
cholesterol metabolism and transport. It was shown that
oxysterols are cytotoxic, can induce cell death in HepG2 cells,
and can suppress the growth of HCC cells by inhibiting ACAT2
(Acyl-coenzyme A:cholesterol acyltransferase) enzyme, which
results in intracellular unesterified oxysterol accumulation (62).
When OSBPL8 (also known as ORP8) is downregulated, cell
proliferation is promoted. When ORP8 was overexpressed in
HepG2 cells and 25-hydroxycholesterol was added, the ER stress
and apoptosis were promoted (62). ORP8 overexpression was
already enough to trigger apoptosis in primary HCC cells isolated
from human liver and cell lines (64). Lower LXR expression
was associated with lower post-operative survival rate (65).
LXR regulated HCC response to TGFβ1 (transforming growth
factor beta 1), which acts as cytostatic and pro-apoptotic (84).
LXR suppressed HCC proliferation through activation of SOCS3
(suppressor of cytokine signaling 3) (66).
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FXR’s role in HCC development was indicated when whole
body Fxr knockout mice developed spontaneous HCC by the age
of 14months (85, 86). Thesemice had abnormal level of bile acids
in the serum and administration of cholestyramine decreased
HCC incidence (85). Many studies confirmed a significant
decrease in FXR expression and activity in human HCC tumors
and this was associated with multiple malignant characteristics
(67–72). However, intestine-specific Fxr reactivation in Fxr
knockout mice restored bile acid enterohepatic circulation,
limiting hepatic inflammation and proliferation while preventing
spontaneous hepatocarcinogenesis (87). Also only 20 and 5%
incidence of hepatic tumors was observed in hepatocyte specific
and enterocyte specific Fxr knockout mice, respectively. No
serum or hepatic increase in bile acid level was observed in either
of cell specific knockout models and no change in expression of
cell-cycle regulators (88). These results lead to a hypothesis that
high bile acid levels and FXR deregulation are needed for HCC
development. There is, however, a mounting data pointing to a
direct involvement of FXR in tumor suppression.

Overexpression of FXR decreased proliferation of HCC cell
line and suppressed tumor growth in nude mice (69). Inhibition
of FXR expression resulted in enhanced cell proliferation,
migration and invasion in HCC cell lines and accelerated tumor
growth in nude mice. FXR was shown to directly interact
with β-catenin and repress its transcriptional activity (70). FXR
also directly upregulates NDRG2 (N-myc downregulated gene
family member 2) (72). NDRG2 is a known tumor suppressor,
whose expression is reduced in HCC samples and correlates
with aggressive tumor characteristics (72, 89). FXR also directly
inhibited gankyrin expression via C/EBPβ-HDAC1 (CCAAT
enhancer binding protein beta/ histone deacetylase 1) complex
(90). Gankyrin is a known oncogene and is increased in HCC
(91). In this study, they also showed that long-lived Little mice,
which have high FXR liver expression, do not develop liver
cancer after diethylnitrosoamine injection in comparison to wild
type mice (90). FXR upregulated mir-122 which suppressed
proliferation of HCC cells and the growth of HCC xenografts
in vivo (71). In HCC human tumors miR-122 was significantly
downregulated and this correlated with FXR expression (71).
FXR and its agonist waltonitone repressed HCC cell proliferation
by activating mir-22 repression of CCNA2 (Cyclin A2) (92).
In HCC tumors FXR and miR-22 were downregulated while
CCNA2 expression was opposite (92, 93). FXR also repressed
inflammation via SOCS3 and via inhibiting NFκB (nuclear
factor Kappa B) signaling (94, 95). FXR is a direct regulator
of SOCS3, which enabled FXR-mediated cell growth repression,
and their expression is correlated in HCC human samples
(96). In summary, a direct role of FXR in protection against
hepatocarcinogenesis could also be via defense against bile
acid-induced injury, prevention of liver injury and apoptosis,
prevention of ROS generation, promoting liver repair and
generation after injury, suppressing cancer cell proliferation, etc.
(97). There are some potential explanations available for the
mechanisms behind FXR downregulation in HCC. In HCC cell
lines miR-421 downregulated FXR and by this promoted cell
proliferation, migration and invasion (98). Increased expression
of miR-421 and its correlation with patient’s survival was

confirmed in HCC patients (99). Another factor decreasing the
expression and activity of FXR is inflammation and inflammatory
cytokines were shown to inhibit HNF1A (HNF1 homeobox A)
binding to FXR promotor (68). SIRT1 overexpression leads to
deacetylation of FXR in the mouse liver, and inverse expression
of SIRT1 and FXR was confirmed in human HCC samples
(100). In spite of many tumor suppressor actions discovered,
there is also some caution needed. FXR also upregulates FGF19
(fibroblast growth factor 19) which is anti-cholestatic and anti-
fibrotic factor in the liver and was proposed for the treatment of
NASH. However, FGF19, but not its rodent counterpart FGF15,
is potentially pro-tumorigenic as shown by ectopic expression in
mice (101). FGF19 expression is upregulated in HCC samples
and correlates with poor prognosis (102). This is an important
factor to consider when translating results from studies in rodent
models to humans. However, new engineered FGF19 variants
have been developed excluding pro-tumorigenic activity and are
currently in evaluation for the treatment of NASH (103).

More and more results show the importance of SREBPs,
especially SREBP-1, as a link between oncogenic signaling and
tumor metabolism. It was shown that cancerous cells have
higher de novo lipogenesis, which is required for rapid tumor
proliferation. In the cancer cells, SREBP-1 is highly activated
and it was shown, that pharmacological targeting of SREBP-
1 greatly inhibits tumor growth. This rises hope for SREBP-
1 to be potential anti-cancerous target (73). Higher expression
of SREBP-1 was shown in different cancer cell lines (104) and
higher expression of SREBP-1 is associated with many metabolic
diseases; including NAFLD and NASH. One of the factors
activating SREBP-1 in HCC is hepatoma-derived growth factor
(HDGF). Co-expression of HDGF and SREBP-1 is an indicator
of poor HCC prognosis. HDGR knockdown or its mutation
in HepG2 cells resulted in decreased expression of SREBP-
1 targeted genes (105). A study on a mouse model of HCC
showed that lipid biosynthesis (fatty acids and cholesterol) is
crucial for HCC development and that targeting SREBP pathway
can be used as an anti-tumor strategy (106). Study on hepatic
stellate cells, which have an important role in liver fibrosis,
showed that in these cell line INSIG-1 and INSIG-2 expression is
downregulated. By downregulation of INSIGs, SREPB signaling
is promoted, which is the characteristic of HCC and crucial for
cancer proliferation (107). Bioinformatics analysis showed that
two miRNA (has-miR-221 and has-miR-29c) are potential HCC
diagnostic markers and that they have one common target, which
is INSIG1 (108). All these data show the importance of SREBP
signaling and its potential as drug target.

Data on human and mice reported a connection between
circadian rhythms and liver disease where alterations in
rhythmicity had a profound effect on metabolic pathways
resulting also in adverse outcomes, like HCC. NPAS2 or
CLOCK was shown to have a critical role in HCC and
expression of the protein was significantly upregulated in HCC
patients (74). In other study, single nucleotide polymorphisms
(SNPs) in NPAS2 were associated with the increased risk
for HCC or with overall survival in HCC patients treated
with transcatheter arterial chemoembolization (TACE) (75).
The rs2640908 polymorphism within PER3 was also associated
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with overall survival in HCC patients treated with TACE
(76). SNPs from circadian negative feedback loop genes were
further studied and were suggested to have an independent
role as prognostic biomarkers for prediction of HCC clinical
outcome (109). Study on mice showed that circadian disruption
due to Per2 mutation or jet lag has a profound role in
liver carcinogenesis induced by diethhylnitrosamine (77). Other
research addressed the importance of the circadian clock
metabolism in hepatocarcinogenesis where the changes in
expression of several core clock genes were downregulated
(BMAL1, CLOCK, PER1, PER2, CRY1, CRY2), while upregulation
of clock related genes (NR1D1 and DBP) was observed
(110). Circadian metabolism and carcinogenesis are highly
interconnected and the connection is complicated. Kettner et al.
demonstrated that chronic circadian disruption induces NAFLD
and spontaneous hepatocarcinogenesis, promotes genome-
wide deregulation and metabolic disruption, and activates
CAR (NR1I3, constitutive androstane receptor) which drives
NAFLD to NASH, fibrosis and HCC progression (78). Chronic
circadian disruption in mice had a profound effect on
metabolism, what was also observed in humans and circadian
disruption with or without steroid receptor Coactivator-2
(SRC-2) ablation showed association with human HCC gene
signature (79). The TIMELESS protein has oncogenic function
in human HCC as well (80). Studies on HepG2 cell line
demonstrated the importance of RORA in different steps in liver
carcinogenesis (111).

PANCREATIC CANCER (PC)

Pancreatic cancer is one of the most malignant cancers, estimated
to cause 432 242 deaths in 2018 and ranking seventh among
estimated cancer deaths in the world (112). Estimated 5-
year survival rate is extremely low and only 4% of patients
will live 5 years after diagnosis. An important risk factor
is smoking, since around 20% of tumors are attributable to
smoking. Other risk factors include family history of chronic
pancreatitis or pancreatic cancer, male sex, advancing age,
diabetes mellitus, obesity and occupational exposure (113, 114).
Novel epidemiological studies propose that dietary factors
also impact pancreatic cancer risk. In a large population
saturated fatty acid intake was linked to higher pancreatic
cancer risk, while omega-3 fatty acids, increased vitamin C
and vitamin E intake lowered cancer risk (115). Pancreatic
cancer patients have unspecific signs, making the diagnosis
difficult, often discovering already advanced stages of the disease.
The overview of factors associated with PC are presented
in Table 2.

Very little is known about the oxysterol role in the
development of pancreatic cancer. Serum cholesterol, 5α,6α-
epoxide, and lanosterol were identified as highly discriminating
between pancreatic cancer patients and healthy subjects (116).
Two meta-analyses showed that dietary cholesterol may be
associated with pancreatic cancer in worldwide populations (128,
129). OSBPL have been shown to be involved in pathology of
PC. Increased expression of OSBPL5 was associated with higher

invasion and poor prognosis of pancreatic cancer patients (117,
118). In pancreatic ductal adenocarcinoma (PDAC) patients,
OSBPL3 was found as differentially expressed in four studies and
was correlated with poor prognosis of these patients (119). The
role of nuclear receptors also remains unknown. Activation of
LXR by synthetic ligands had anti-proliferative effects on PDAC
cells (120). Very few studies measured the expression FXR and
its role in pancreatic cancer. Moreover, there are conflicting
results available. The increase in FXR mRNA and protein
expression was confirmed in pancreatic tumors in comparison
to adjacent tissue, and high FXR expression was correlated with
the poor prognosis. FXR inhibition reduced cell proliferation,
migration and invasion in pancreatic cancer cell lines (121,
122). It was proposed that FXR induced phosphorylation of
SP1 (Sp1 transcription factor) and by this promoted cancer
progression (122). While another study found correlation
between high FXR expression with less aggressive phenotype,
smaller tumors, absence of metastases and better prognosis
(123). The difference in FXR expression and correlation between
studies can simply be attributed to a low sample number,
different groups of patients, different length of time in survival
analyses, correlation with other factors etc. However, bile acids
were increased in plasma and pancreatic juice in PC patients,
and the mouse model confirmed the correlation between the
increase in serum bile acids level with the severity of the disease
(124). FXR was significantly increased in pancreatic cancer
cell lines in comparison to normal pancreatic cells and FXR
was found as the regulator of FAK (PTK2, protein tyrosine
kinase 2)/c-Jun (JUN, Jun proto-oncogene, AP-1 transcription
factor subunit) / MUC4 (mucin 4) signaling pathway (124).
Similar to HCC, SREBP1 pathway and de novo lipogenesis
is upregulated in PC. Study on 60 PC patients showed high
correlation between elevated SREBP1 expression and poor
disease prognosis. Inhibition of SREBP1 in a mouse model lead
to decreased in vivo weight of tumor, indication the importance
of SREBP1 upregulation for cancer cell growth (130). Study
on PC cell model showed that inhibitors of SREBP1 decrease
PC cell viability and proliferation. This indicate that targeting
SREBP1 pathway is potential target for PC disease management
and should be further explored (131). One of the potential
molecules for targeting SREBP1 is resveratrol. Recent study
on mouse model of PC and human cell lines treated with
gemcitabine (chemotherapy medication) showed that resveratrol
suppressed stemness induced by gemcitabine. Resveratrol should
be considered as an additive for chemotherapeutic drugs (132).

Circadian activity in pancreas is also controlled by SCN (133,
134). The clock genes expression (BMAL1, PER1, PER2, PER3,
CRY2, TIMELESS, and CK1ε) is altered in PDAC which is the
most common type of pancreatic malignant tumors (135, 136).
In humans, lower BMAL1 expression was associated with poorer
survival rate, and correlated with higher tumor stage, poorer
histological differentiation, and increased vascular invasion in
PDAC (125, 126). Since knockdown of Bmal1 resulted in an anti-
apoptotic and pro-proliferative profile, while its overexpression
had the opposite effect, Bmal1 can act as an anti-oncogene by
binding directly to p53 promoter region (126). Since circadian
rhythms and metabolic pathways go both ways, and pancreatic
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TABLE 2 | Oxysterol-circadian factors influencing PC development.

Factor Notes Proposed function References

Cholesterol, 5α,6α-epoxide,

and lanosterol

Increased in serum of PC patients Potential biomarkers (116)

OSBPL5 Increased expression in PC tumors Higher invasion and poor prognosis (117, 118)

OSBPL3 Increased expression in PDAC tumors Poor prognosis (119)

LXR Activation by ligands in PDAC cell lines Anti-proliferative (120)

FXR Increased expression in PC tumors Poor prognosis (121, 122)

Increased expression in PC tumors Better prognosis (123)

Inhibition in PC cell lines Anti-proliferative, lower migration and

invasion

(121, 122)

Increased expression in PC cell lines Regulator of FAK/JUN/MUC4 pathway (124)

BMAL1 Lower expression in PC tumors Poor prognosis (125, 126)

Knockdown in PC cell lines Anti-apoptotic, pro-proliferative (126)

SIRT1 Significant down regulation in PC tumors Lower mortality rate (127)

cancer risk is increased in people with metabolic syndrome (137),
the role of metabolism and its disruption plays an important
role in pancreatic cancerogenesis. A recent study evaluating
dietary influence on cancer risk in women confirmed the role
of obesity (138). Bmal1 and its downstream regulation seems
to play a crucial role in pancreatic regulation of metabolic
processes, as Bmal1 knock out in mouse β-cells led to glucose
intolerance and development of diabetes (139). Since glucose
metabolism is also under the circadian control, it is not surprising
that alterations in clock genes (Clock, Bmal1) lead to impaired
glucose tolerance (140), with a profound role in pathogenesis of
pancreatic cancer (141). Deregulation of SIRT1, which regulates
the central and peripheral clock, has an important role in PDAC
as well (127).

COLORECTAL CANCER (CRC)

Colorectal cancer is the third most commonly diagnosed cancer,
the second most common cause of oncological death in the
world estimated in 2018 (112) and as such represents a
major public health issue worldwide. About 6% of CRCs are
predetermined by a defined hereditary syndrome, while around
25% of CRCs are familial, the latter being tightly intertwined
with many of the modifiable risk factors as well as genetic
factors. Non-modifiable risk factors for CRCs include increasing
age, male gender, African American race and residence in
high-income countries (142), while modifiable factors include
obesity, moderate to heavy alcohol consumption, smoking, high
consumption of red or processed meat and a diet with low
fiber, fruit, and vegetables intake (112, 142). Also, genetics plays
an important role in its pathogenesis (142). In CRC one of
the most commonly dysregulated pathway is the Wnt/β-catenin
signaling, leading to β-catenin accumulation, ultimately resulting
in activation of several gene targets, including oncogenes that
contribute to the development of cancerous phenotype (143).
Its component APC (APC regulator of WNT signaling pathway)
mutations are present in majority of sporadic CRCs (144).
Since onset and progression of CRC are tightly intertwined

with its mutational pathways, detailed knowledge of their
regulation is crucial for obtaining new markers in order to
better understand risk factors as well as treatment and prognosis.
The overview of factors associated with CRC are presented in
Table 3.

High total cholesterol level is associated with a higher risk
for colon cancer in men (145). Another study taking into an
account also genetic factors again confirmed a link between
hypercholesterolemia and colorectal cancer risk (146). ACYP7A1
haplotype and SNPs were significantly associated with colorectal
cancer and it was proposed to be the effect of fecal bile acids
(147–150). Whole grain food significantly reduces colon cancer
risk and phytochemicals that are involved in this protection are
especially interesting (182).

Studies in colon cancer cell lines indicate that different
oxysterols are cytotoxic and induce apoptosis. A study of wheat
bran showed that it contains several different oxyphytosterols
with anti-proliferative effect on colon cancer cell lines, some
could also induce apoptosis (151). Dietary-representative
oxysterol mixture induced apoptosis in differentiated colonic
CaCo-2 cells (152). A study in major cell line models for CRC,
Caco2 and SW620 cells, showed that 27-hydroxycholesterol
decreased proliferation of these cells (153). This effect was
not due to cellular cytotoxicity or induction of apoptosis and
it was independent of nuclear receptors LXR and ESRs. 7α-
and 7β-hydroxycholesterol, 5α,6α-epoxycholesterol and 7β-
hydroxysitosterol were all able to induce apoptosis in human
colon cancer cell line Caco-2 (154, 155). 7β- hydroxycholesterol
was cytotoxic to colon cancer cell lines in concentrations from
3 to 10µM (156). 7-ketocholesterol and 25-hydroxycholesterol
reduced barrier functions, apoptosis and induced viability
of Caco-2 cells (158). 7-ketocholesterol besides decreasing
epithelial barrier also induced inappropriate development
of inflammatory response to food (159). 7-ketocholesterol
induced ER stress in HT-29 colon cancer cell line (160)
and affected mitochondrial functionality in Caco-2 cells,
while co-treatment with 7-ketostigmasterol reduced the
toxic effect (161). Only 25-hydroxycholesterol, but not the
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Kovač et al. Oxysterols and Gastrointestinal Cancers Around the Clock

TABLE 3 | Oxysterol-circadian factors influencing CRC development.

Factor Notes Proposed function References

Total serum cholesterol Increased in humans Higher risk for CRC (145, 146)

CYP7A1 SNP and haplotype Associated with CRC (147–150)

Oxyphytosterols Treatment of CRC cell lines Anti-proliferative, pro-apoptotic (151)

Dietary oxysterols Treatment of Caco-2 Pro-apoptotic (152)

27-hydroxy cholesterol Treatment of CRC cell lines Anti-proliferative (153)

7α- and 7β-hydroxycholesterol,

5α,6α-epoxycholesterol, and

7β-hydroxysitosterol

Treatment of Caco-2 Pro-apoptotic (154–156)

7β-hydroxycholesterol Treatment of Caco-2 Induced expression of inflammatory and chemotactic cytokines (157)

7-ketocholesterol Treatment of Caco-2 Reduced barrier functions, anti-apoptotic, induced viability,

lower inflammatory response

(158, 159)

Treatment of HT-29 Induction of ER stress (160)

Treatment of Caco-2 Mitochondrial functionality (161)

25-hydroxycholesterol Treatment of Caco-2 Reduced barrier functions, anti-apoptotic, and induced viability (158)

Treatment of DLD-1 Induction of cell death, anoikis (162)

Treatment of Caco-2 Enhanced IL1B induction of IL8 (163)

LXR Induction by agonist in CRC cell

lines

Anti-proliferative (164)

CYP8B1, CYP46A1, CYP2R1 Higher expression in CRC Poor prognosis (165)

CYP7B1 Higher expression in CRC Good prognosis (165)

OSBPL9 Downregulation in CRC tumors Poor prognosis (166)

LXR Increased expression Good prognosis (167)

Activation in HT-92 Anti-proliferative (168, 169)

FXR Decreased expression in CRC

tumors

Poor prognosis (170–175)

Knockout in mice Increased susceptibility to chemically-induced (171, 176)

Overexpression in CRC cell lines Reduced tumor growth, anti-proliferative, pro-apoptotic (92, 171, 175–177)

PER1, PER3 Decreased expression in CRC

tumors

Poor prognosis (178)

PER1, BMAL1 Decreased PER1 and increased

BMAL1 in CRC tumors

Poor prognosis (179)

PER2 Increased in CRC tumors Good prognosis (178)

RORA SNPs Risk of development of CRC (180)

Lower expression in CRC tumors Good prognosis (180)

SIRT1 Transgenic mice and human tumor

specimens

Suppression of in vivo tumor formation (181)

22-(R)-hydroxycholesterol and other oxysterols (7 beta-
hydroxycholesterol and 5-cholesten-3beta-ol-7-one) induced
anoikis, a type of programmed cell death, in DLD-1 cells (162).
Some of these effects could be through activation of LXRs, since
LXR induction by GW3965 had anti-proliferative effects on
colon cancer cells (164).

On the other hand, oxysterols also affect expression of
inflammatory molecules in colon cancer cells. Inflammatory
bowel disease is an important risk factor for development of
CRC and chronic inflammation and oxidative stress are part of
pathogenesis (183). 7β-hydroxycholesterol induced expression
of key inflammatory and chemotactic cytokines in CaCo-2 cell
line (157). 25-hydroxycholesterol pre-treatment enhanced IL1B
(interleukin 1 beta) induced IL8 (interleukin 8) production
in Caco-2 cells (184). Representative mixture of oxysterols
increased oxidative stress in differentiated Caco-2 cells and

was followed by the production of cytokines IL6 (interleukin
6) and IL8 (163). In CRC patients, serum level of IL8 was
increasing with the progression of cancer (185). Expression
of enzymes and oxysterol receptors is modulated in CRC.
Human tissue microarray analyses revealed significantly higher
protein expression of CYP2R1, CYP7B1, CYP8B1, CYP46A1,
CYP51A1, while CYP27A1 and CYP39A1 had no significant
change, in primary colorectal tumor compared to normal
colonic mucosa (165). In this study, they also showed a
significant association between patient prognosis and survival
with CYP expression. For example, higher expression of CYP8B1,
CYP2R1, CYP27A1, and CYP46A1 in tumor was associated with
poor prognosis, while high CYP7B1 expression correlated with
good prognosis. OSBPL1A short transcript variant was down-
regulated in colon cancer tumors, but the long variant was
unchanged in comparison to normal samples (186). OSBPL9 was
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included in a gene expression signature as a predictor of survival
in colon cancer and was downregulated in poor prognosis
patients (166).

LXR expression was proposed to be a prognostic indicator
for CRC and its expression was associated with favorable clinical
outcome. Positive LXR expression was associated with better
survival rate and there was a significant negative association
between LXR expression and vascular invasion, but no
association was found between LXR expression and the patient’s
age, sex, tumor size, grade or TNM (tumor/node/metastasis)
stage (167). A genome wide analyses revealed regulatory
programs of LXR activation which lead to inhibition of HT29, a
colorectal cancer cell line, proliferation (168). LXR was shown to
directly bind to β-catenin and suppress its activity and cellular
proliferation (169). A recent review has already summarized
FXR and bile acids role in the development of colon cancer
(187). Several studies showed that FXR expression is reduced in
intestinal tumors in humans and that it is inversely correlated
with the degree of malignancy and clinical outcome (170–
175). The FXR knockout mice have increased susceptibility
to chemically-induced colorectal carcinogenesis, while FXR
overexpression in gut cells reduced tumor development and
growth (171, 176). The activation of FXR was shown to suppress
proliferation and induce apoptosis in colon cancer cell lines
(171, 177). The observed downregulation of FXR expression is
due to increasedmethylation of FXR promotor by the loss of APC
function, which was confirmed in CRC cell lines, animal models
and colonic tumors from patients (174, 188, 189). However,
FXR is also downregulated by intestinal inflammation, western
diet, and microRNA (187, 190). The current hypothesis is that
the decreased FXR regulation in combination with Western
diet and hence higher levels of secondary bile acids results in
pro-tumorigenic colon environment leading to the development
of colon cancer. Moreover, recent studies showed that FXR
exhibits anti-cancerogenesis effects beyond regulation of bile
acid level, by also affecting other cellular signaling pathways in
colon cells. A study in mouse and organoid models, showed
that FXR regulated proliferation of intestinal cancer stem cells
(191). FXR repressed proliferation of colon cells by inhibiting
the MMP7 (matrix metallopeptidase 7), a known intestinal
tumor promotor expression; by activating mir-22 repression of
CCNA2 (Cyclin A2); and by activating the EGFR/SRC (epidermal
growth factor receptor/SRC proto-oncogene) pathway in colon
cells (92, 175, 177). Upregulation of SREBP1 pathway is also
present in CRC (192). Inhibition of SREBP1 in CRC shows
promising result for cancer management. It was shown that
ordonin (diterpenoid isolated from Rabdosia rubescens) reduced
expression of SREBP1 and induce apoptosis in CRC cells
cultures (193).

Epidemiological studies have shed light on connection
between circadian disruption and elevated risk of cancer,
including colorectal cancer (128, 194, 195).Meta-analysis showed
increased incidence of colorectal cancer in people with long-
term exposure to night light (shift work). The proposed
mechanism for circadian disruption on oncogenesis is melatonin
suppression and loss of its protective effect against cancer
via apoptosis, anti-angiogenesis, anti-oxidation and regulation

of the immune system. One of the proposed additional
factors is low level of 25-hydroxyvitamin D due to lower
sun exposure (128). In mouse models, physical destruction
of the SCN as well as functional disturbance of circadian
rhythms (chronic jet lag) resulted in accelerated tumor growth
in transplantable tumor models (Glasgow osteosarcoma and
Pancreatic adenocarcinoma), indicating a role of circadian
system in controlling malignant growth (196). In human CRC,
there are multiple studies reporting abnormal expression of
circadian genes including altered expressions ofCLOCK, BMAL1,
PER1, PER2, PER3, and CK1ε (179, 197–200). Whether the
disruption originates in core clock genes and drives tumorous
transformation or measured disruption is a consequence of
cancer, remains unclear. However, studies suggest that clock
genes have an important role in tumor suppression (201).
Although clinical correlations between specific mechanisms
of clock gene disruption and colorectal cancer phenotype
and prognosis have not been conclusive, some pathways
show typical clinical and pathological features. Decreased
expression of PER1 and PER3 in tumor tissue as such
indicate poorer survival rate (178), decreased PER1 and high
BMAL1 expression correlate with poorer outcome and liver
metastasis (179), and high PER2 expression correlate with
significantly better disease outcome (178). In recent systematic
evaluation of genetic variants in the circadian pathways
connected with CRC, examining 119 SNPs in RORA was
proposed as potentially important marker for CRC risk and
prognosis. While people carrying SNP in RORA were much
more inclined to developing CRC, lower RORA correlated
with better differentiated tumors and better disease outcome
(180). On the other hand, changes in cellular metabolism may
cause circadian disruption, further influencing colorectal cancer
phenotype (202). It has been shown that SIRT1 suppresses
colorectal tumor formation in vivo by β-catenin deacetylation
(181). A recent study showed that both metabolic and
circadian dysregulation progressed during cancer progression.
Their findings suggested that clock-related glycolysis genes
alterations might add to a clock-driven rewiring of metabolism,
connected to cancer progression and altering response to cancer
therapy (203).

NEW THERAPEUTIC STRATEGIES

Targeting Oxysterol-Cholesterol Network
Statins are widely used lipid-lowering drugs which inhibit
HMGCR, a rate limiting enzyme from cholesterol synthesis.
Statins have been proposed in several studies as potential
drugs used for reducing the risk of development and mortality
in gastrointestinal cancers. Statin use was associated with a
decreased risk of mortality in several cancers also colorectal
cancer (204). However, another study showed no association
with colorectal cancer incidence in United States cohort (205).
Longer statin use was connected to a reduction in all-cause
mortality in patients after colorectal diagnosis (206). However,
overall conclusion of meta-analyses of 42 studies was that
statin use was associated with a modest reduction in risk
of CRC (207). This association was confirmed for lipophilic
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statins but not for hydrophilic statins. In addition, long-
term statin use (>5 years) did not significantly affect the
CRC risk.

HCC occurs mainly in cirrhotic liver and statins may affect
the risk of HCC by their anti-fibrotic effect. Three meta-
analyses confirmed that statin use is associated with lower risk
of HCC in different populations (58, 208, 209). Fluvastatin was
pointed out in one of these studies. A registry-based study
also confirmed an association between statin use and the risk
of HCC and additionally showed a dose response relationship
(210). Stain use also significantly decreased the risk of HCC
in patients with HBV (211, 212). Studies suggest that statins
lower the risk of cancer in general in chronic hepatitis patients
(213). Overview of studies on statin effect on mean survival
rate revealed a link to extended survival, but the length of
survival was variable among studies (214). Perioperative statins
have been associated with improved recurrence-free survival in
HCC patients (215, 216). Meta-analysis confirmed an association
between statin use and decreased risk in mortality in pancreatic
patients, but other studies found no association (217, 218). A
review of studies revealed that observational studies found the
association but randomized controlled trials did not. Statins
have anti-neoplastic properties through anti-proliferative, pro-
apoptotic, anti-angiogenic and immunomodulatory effects and
can affect multiple signaling pathways in cells (219). Most
important is the inhibition of HMGCR and by this synthesis of
mevalonic acid. HMGCR genetic variant significantly modified
the protective association between statins and CRC risk (220).
Mevalonate pathway is upregulated in several cancers, also
pancreatic and hepatic, and is responsible for activation of small
G proteins (221). All these data make statins compelling therapy
for decreasing the risk of cancer and lowering mortality of
patients, but due to conflicting results, it is difficult to form
final recommendations. An important issue in prescribing statins
are the side effects of statins such as hepatotoxicity and drug-
induced myopathy.

Since SREBPs target genes are upregulated in many cancers,
SREBPs could have therapeutic potential (106). Several studies
showed a successful targeting of SREBP pathway and suppression
of lipid metabolism with substances like TAK1, Emodin
and using different miRNA (222–225). Since oxysterols bind
to INSIG and affect SREBP signaling pathway, oxysterols
also have a potential to be used in cancer proliferation
inhibition, but more studies on oxysterol-INSIG interaction
are needed.

Oxysterols activate several nuclear receptors most importantly
LXR, which is hypothesized to exert their anti-cancerogenic
effects. Targeting LXR for prevention and therapy of cancers
is already evaluated in clinical studies. LXR is an interesting
target, because it is activated by phytosterols, which can reduce
the incidence of colon cancer (226). LXR is connected to
TGFB1 actions and was also proposed as a potential target
for treatment of HCC (84). Bergapten, a LXR agonist, was
already evaluated for HCC treatment (227). LXR agonists were
proposed also for treatment of CRC since LXR activation
reduced intestinal tumor formation in a mouse (APCmin/+) CRC
model and also blocked proliferation of human colorectal cells

(228). LXR is a promising target, but majority of evidence was
gathered through studying the effects of LXR activation in cell
lines (4).

FXR is also a promising target for cancer treatment. Activation
of FXR would prevent toxic bile acids build up, but also
repress other tumorigenic proteins. In preclinical and clinical
trials FXR agonists show a potential for treatment of different
liver disease among them also HCC (175, 229, 230). In the
mouse (APCmin/+) CRC model on high fat diet, treatment with
FexD, a deuterated analog of fexaramine with the gut-restricted
activity, resulted in slower tumor progression, improved bile acid
homeostasis and improved survival (191). However, FXR’s role
in pancreatic cancer is conflicting and the fact that in humans
it activates a potentially pro-tumorigenic FGF19 emphasizes the
needed for more studies that will confirm the positive role of
FXR agonists.

Chronotherapy as a New Therapeutic
Strategy
Cancer represents the second leading cause of dead worldwide
(231). The available treatment is not always the most efficient
thus new therapeutic strategies are needed to be developed.
In addition to standard therapy (chemotherapy, radiation, and
surgery), additional factors need to be taken into consideration,
such as lifestyle and biology, when providing integrative
treatment for different cancer types (232). Since the circadian
clock metabolism has a profound role in pathogenesis of
cancers, chronotherapy might be a better therapeutic strategy.
We need to adjust the pattern of drug delivery to improve the
treatment efficiency, by reducing the drug at the time point
where tissue is most susceptible to toxicity, and increasing the
dose at times with most susceptibility to the positive drug
effect (233).

Therapeutic strategy for HCC is well-established. Since the
incidence is rising drastically, early diagnosis and definitive
treatment is currently the only way to increase the survival rate
of HCC patients. Great research breakthroughs in chronobiology
led to the development of this field. Recently it was demonstrated
that isoform of the HNF4A (nuclear factor 4 alpha) plays a
crucial role in HCC progression. Forced expression of BMAL1
in HCC that is positive for HNF4A stops the growth of tumors
in vivo (234). Furthermore, SULT1A1 (sulfotransferase 1a1) that
has a circadian pattern at the mRNA and protein level and
is responsible for detoxifications of various drugs in the liver
is regulated trough BMAL1. Knockdown of Bmal1 resulted
in changed rhythmicity in Hepa-1c1c7 cells (235). The role
of IFNA (interferon alpha) was assessed in circadian manner
in HepG2 cells as well. It was proposed that IFNA could
have pharmacological role, since its continuous administration
resulted in significantly decreased levels of CLOCK and BMAL1
protein (236).

Pancreatic cancer is one of the most aggressive tumors,
responding poorly to therapy; therefore, new therapeutic
strategies are in high demand. Circadian gene Per2
overexpression increases the sensitivity to cisplatin, possibly by
inducing a reduction in of the BCL (B-cell lymphoma) proteins
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(237). In search of cancer cell growth inhibitors downstream
circadian controlled pathways, ligands of PPARG (peroxisome
proliferator activated receptor gamma) showed to be reducing
tumor aggressiveness and enhancing cytotoxic action of anti-
cancer agents (238, 239). Another mechanism showing promise
in pancreatic cancer treatment might be TIMELESS, involved
in DNA damage response, whose expression was found to be
altered in pancreatic cancer (135).

Chronotherapy has also proven to be effective in CRC.
In metastatic CRC patients chemotherapy induced circadian
disruption correlated with poorer disease outcome, suggesting
its prevention could improve treatment results (240).
Furthermore, a meta-analysis of five randomized controlled
trials showed a significant improvement in overall survival
in metastatic CRC patients treated with chronobiologically
timed chemotherapy compared to conventional chemotherapy
(241). Chronomodulated hepatic arterial infusion also showed
promise as a possible drug administration strategy in heavily
pretreated patients with CRC liver metastases (242). Recent study
examining the role of PER3 in CRC found that its overexpression
enhanced fluorouracil sensitivity in CRC cells, proposing it as
a potential target in CRC treatment (243). Moreover, another
study showed sex-specific expression and sex-specific prognostic
value of clock and clock-controlled genes, shedding light on
colorectal cancer and patient characteristics that have to be taken
into consideration in order to provide optimal treatment (244).

CIRCADIAN-OXYSTEROL NETWORK
IN CANCEROGENESIS

Members of the oxysterol and circadian clock networks were
exposed as the new promising prognostic biomarkers, genetic
risk factors and potential therapeutics in gastrointestinal cancers.
The roles of oxysterols in various cancers have been reviewed
previously and mechanisms by which oxysterol can affect cancer
pathogenesis and disease development were pointed out (8).
Oxysterols activate different signaling pathways in cells which
can either promote or inhibit cancer development. For example,
22(R)-, 24-, 25-, and 27-hydroxycholesterol are in vivo ligands of
LXR and act as tumor suppressor in selected cancers. Increased
LXR activity was shown to be beneficial in all three presented
cancers exposing LXR as a promising drug target in oncology.
However, one oxysterol can have a different role depending
on the tissue. Current hypothesis is that the dual role of
oxysterols is due to activation of different signaling pathways
resulting in tumor suppressor LXR-dependent or oncogenic
LXR-independent actions (245). Oxysterols also interact with
OSBP/L proteins and these have been connected to many human
diseases, such as dyslipidemia and cancers (246). Studies indicate
that OSBPL family members could also have a dual role. In HCC
and CRC their expression is downregulated and this is correlated
with a poor prognosis. While in PC their expression is increased
and correlates with a poor prognosis. The opposite roles could
be explained by the fact that members of OSBPL family have
tissue specific expression, which is disturbed in tumors, and
also have different roles in cell physiology. Enzymes involved in

oxysterol synthesis are also potential new prognostic biomarkers
and drug targets in gastrointestinal cancers. The expression and
the SNPs in cytochromes P450 enzymes are associated with
the risk for development and prognosis of selected cancers.
The level of serum cholesterol itself is a prognostic biomarker
associated with a higher risk for development of numerous
cancers. The association is consolidated by the fact that statins are
emerging novel therapies in gastrointestinal cancers. Cholesterol
is the key player not only due to being the oxysterol progenitor
molecule but also one of the key cellular ingredients needed
in growing cancerous cells. The oxysterol metabolites, the bile
acids, and their receptor FXR are emerging new biomarkers
and therapeutic targets in gastrointestinal cancers. The role
of FXR in these cancers is two faced. FXR downregulation
is observed with progression of cancerogenesis and FXR role
in suppression of proliferation, migration and invasion in
colon cells and hepatocytes was confirmed. However, FXR role
in pancreatic cancer seems to be the opposite. These data
indicate that FXR activity is essential in tissues with high
FXR expression such as liver and colon, while FXR activity
in tissues where FXR and bile acids are not common is
potentially tumorigenic.

Disruptions of circadian rhythm are clearly tumorigenic
in gastrointestinal cancers as indicated by rodent models.
The circadian molecular clock genes are also new emerging
prognostic biomarkers and therapeutic targets. Several genes
involved in regulation of cellular circadian expression have
direct oncogenic or tumor suppressor roles. Not only their
expression correlates with prognosis in patients, knockouts
in rodent models lead to spontaneous cancerogenesis and
SNPs are associated with the risk of cancer development and
prognosis. They are interesting therapeutic targets, moreover,
the time of the therapy must also be considered and
chronotherapy has already been shown to be effective in
gastrointestinal cancers.

SUMMARY

Summary of reviewed data revealed that circadian regulatory
network, cytochromes P450, nuclear receptors, cholesterol
biosynthesis and oxysterols have overlapping roles in
gastrointestinal cancers. Several factors from sterol homeostasis
and circadian rhythm have been identified as potential
novel prognostic biomarkers, genetic risk factors and drug
targets. However, there are still several issues that remain
open. The role of oxysterols in carcinogenesis is far from
being conclusive. The cells are dealing with a variety of
oxysterol molecules that promote their actions through
modulation of transcription factors, such as LXR, RORs
and others. Depending on the type of cancer, an oxysterol
modulated pathway can have beneficial or damaging effect
on carcinogenesis. This is one of the obstacles in developing
new therapeutic strategies, besides statins, where it is clear
that a more personalized approach is essential to increase
the positive drug effects. The link between cholesterol,
oxysterol synthesis and circadian rhythm was until recently
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mostly unidirectional: the clock controlled the expression of
lipogenic genes. It now becomes evident that both pathways
are interconnected by energy metabolism where RORA/C and
LXR are at the crossroad. The ROR receptors are circadian
regulators, being co-responsible for the rhythmic expression
of output metabolic genes. However, their own transcriptional
activity depends on sterols and oxysterols whose endogenous
synthesis is regulated by the clock. This is again a new
field of translational research termed chronotherapy which
was proven to be successful particularly in treatments of
colorectal cancer.
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Kovač et al. Oxysterols and Gastrointestinal Cancers Around the Clock

Design. (2014) 20:2619–26. doi: 10.2174/13816128113199
990486

74. Yuan P, Li J, Zhou F, Huang Q, Zhang J, Guo X, et al. NPAS2 promotes cell
survival of hepatocellular carcinoma by transactivating CDC25A. Cell Death
Dis. (2017) 8:e2704. doi: 10.1038/cddis.2017.131

75. Yuan P, Wang S, Zhou F, Wan S, Yang Y, Huang X, et al. Functional
polymorphisms in the NPAS2Gene are associated with overall survival in
transcatheter arterial chemoembolization-treated hepatocellular carcinoma
patients. Cancer Sci. (2014) 105:825–32. doi: 10.1111/cas.12428

76. Zhao B, Lu J, Yin J, Liu H, Guo X, Yang Y, et al. a functional polymorphism
in per3 gene is associated with prognosis in hepatocellular carcinoma. Liver
Int. (2012) 32:1451–9. doi: 10.1111/j.1478-3231.2012.02849.x

77. Filipski E, Subramanian P, Carrière J, Guettier C, Barbason H, Lévi
F. Circadian disruption accelerates liver carcinogenesis in mice.
Mutat Res Genet Toxicol Environ Mutagenesis. (2009) 680:95–105.
doi: 10.1016/j.mrgentox.2009.10.002

78. Kettner NM, Voicu H, Finegold MJ, Coarfa C, Sreekumar A, Putluri N, et al.
Circadian homeostasis of liver metabolism suppresses hepatocarcinogenesis.
Cancer Cell. (2016) 30:909–24. doi: 10.1016/j.ccell.2016.10.007

79. Fleet T, Stashi E, Zhu B, Rajapakshe K, Marcelo KL, Kettner NM, et
al. Genetic and Environmental models of circadian disruption link src-2
function to hepatic pathology. Journal of Biol Rhythms. (2016) 31:443–60.
doi: 10.1177/0748730416657921

80. Elgohary N, Pellegrino R, Neumann O, Elzawahry HM, Saber MM,
Zeeneldin AA, et al. Protumorigenic role of timeless in hepatocellular
carcinoma. Int J Oncol. (2015) 46:597–606. doi: 10.3892/ijo.2014.2751

81. Morcos PN, Moreira SA, Brennan BJ, Blotner S, Shulman NS, Smith PF.
Influence of chronic hepatitis C infection on cytochrome P450 3A4 activity
using midazolam as an in vivo probe substrate. Eur J Clin Pharmacol. (2013)
69:1777–84. doi: 10.1007/s00228-013-1525-5

82. Jepsen P, Turati F, La Vecchia C. NAFLD and cancer: more cause for
concern? J Hepatol. (2018) 68:10–2. doi: 10.1016/j.jhep.2017.10.008
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