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INTRODUCTION

Homeothermicmammals including humans produce heat (also termed thermogenesis) inside their
body to maintain constant body temperature. It has been shown that thermogenesis is elevated by
several external factors; prominent being cold, diet, and physical exercise. This modulation ability
is termed as “Adaptive Thermogenesis (AT).” Intake of high calorie diet was also shown to increase
thermogenesis in laboratory animals, a phenomenon termed as diet-induced thermogenesis (DIT)
(1). Research on finding out the mechanisms of DIT intensified in the recent years, as obesity and
associated metabolic disorder increased rapidly all over the world. It is hoped that mechanisms
of AT can be targeted to increase energy expenditure and provide protection against metabolic
diseases including obesity. Brown adipose tissue (BAT) and skeletal muscle have emerged as
the two major sites of AT. Major heat producer in BAT is a protein called uncoupling protein
(UCP) 1 that dissipates proton gradient in mitochondria and thereby resulting in heat production
(2). Few additional thermogenic mechanisms have also been reported in BAT such as futile TG
lipolysis/esterification, creatine/phosphocreatine cycling, and ATP-dependent Ca2+-cycling (3–5).
The understanding of mechanisms of AT in the skeletal muscle has been slow and forms the major
focus of this review.

POTENTIAL CONTRIBUTORS OF AT IN THE SKELETAL MUSCLE

In the skeletal muscle, contributors to AT can be proteins of (i) Calcium (Ca2+)-handling, (ii)
contractile apparatus, and (iii) mitochondrial metabolism. ATP utilization by these proteins can
vary due to their relative expression and post-translational modification. This is additionally
regulated by the abundance of signaling molecules (ions, lipids, etc.) in the micromilleu which
in turn is determined by their transporter proteins. The term epigenetic has been classically
applied to describe changes in protein expression via differential chromosomal compaction without
genetic alteration. Herein, a more liberal interpretation of “epigenetics” is taken that encompasses
all functional alterations irrespective of inheritance and genetic modifications. Such changes
include transcriptional, post-transcriptional, translational, post-translational. We additionally
discuss about the modulation of AT in the skeletal muscle by factors like microRNA, vitamins,
and hormones.

CALCIUM SIGNALING AND EPI-GENETICS IN SKELETAL
MUSCLE

Recent discoveries have made it clear that Ca2+-handling proteins are the key mediators of AT in
the skeletal muscle (6). Epigenetic modifications of these proteins alter their physiological function
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thereby influence whole body metabolism. Ca2+ signaling
proteins involved in different aspects of muscle function
are: Ca2+-release from Sarcoplasmic reticulum SR (Ryanodine
Receptor (RyR), IP3R); Ca2+-buffering inside SR (calsequestrin,
calreticulin, parvalbumin, and sarcalumenin); Ca2+-uptake into
SR (SERCA, SLN, PLB, and MLN); Ca2+-transport across the
membrane (PMCA, MCU, MICU, TRP channels, STIM, Orai1).
Function of these proteins can be regulated by epigenetic
mechanisms and contribute to adaptive thermogenesis.

SERCA DETERMINES
INTRAMYOCELLULAR CALCIUM
DYNAMICS

SERCA has emerged as the primary determinant of ATP
utilization in muscle (7–9), therefore is a key player in adaptive
thermogenesis. Mammals possess three distinct SERCA isoforms:
SERCA 1 is predominantly expressed in fast twitch fibers; SERCA
2 is expressed in cardiac and slow twitch skeletal muscles;
and SERCA 3 is found mostly in non-muscle cells (8, 10).
SERCA function is chiefly regulated by micropeptides and post-
translational modifications via factors including hormones (11).

Regulation of SERCA Activity by
Micropeptides
Among the micropeptide regulators of SERCA, phospholamban
(PLB) is the best characterized. PLB binds only to Ca2+ free state
of SERCA and acts as an inhibitor. Once Ca2+ concentration
in the microenvironment increases it gets dislodged from
the SERCA allowing its unhindered activity (12). In contrast,
SLN can interact with Ca2+ bound confirmations of SERCA
promoting futile Ca2+ transport thus enhancing higher ATP
utilization (10, 13, 14). This function of SLN leads to elevated
energy expenditure resulting in heat production in the muscle
and serves as a major regulator of non-shivering thermogenesis
(NST). Interestingly, SLN is predominantly found in atria and
skeletal muscle, while PLB expression is restricted to ventricle.
PLB inhibition of SERCA is regulated by its phosphorylation
at Ser-16 and Thr-17 residues by Ca2+/calmodulin- dependent
protein kinase (CaM kinase) and protein kinase-A, respectively.
On the other hand, SLN function is regulated by several factors;
like its differential expression, its phosphorylation at Thr-5
residue, ATP concentration and membrane lipid composition
(15–17). Recent studies have identified few more micropeptides
like DWORF, MLN, and Ankyrin1 as regulators of SERCA (18–
20). Although the exact function of these new regulators is not
fully understood, their contribution to AT of muscle has been
speculated. Interestingly, DWORF acts differently from all the
other micropeptide regulators, even though is conserved and
binds to the same SERCA groove as PLB and SLN. However,
the expression of DWORF is limited to heart and slow twitch
fibers like soleus, and it is proposed to be an activator of
SERCA function (18). The fine tuning of SERCA activity by
these micropeptide regulators might have a big impact on whole
body energy homeostasis (shown in Figure 1), and an unrealized
potential in adaptive thermogenesis.

Regulation of SERCA Activity by
Post-translational Modification
Several post-translational modifications including
glutathionylation, SUMOylation, O-GlcNAcylation,
glycosylation, nitration, and acetylation have been proposed
to modulate SERCA activity. Glutathionylation of SERCA
mainly occurs at Cys674 residue and has isoform specific
effects (11, 21, 22). Peroxinitrite, one critical molecule in
glutathionylation has different effects on distinct SERCA
isoforms. Peroxynitrite promotes SERCA2a glutathionylation
increasing Ca2+-transport during artherosclerosis whereas,
it inhibits Ca2+-uptake of SERCA1a by oxidizing it at
lower levels of glutathione (21, 22). Several investigations
addressed SUMOylation of SERCA, although SERCA2a is
better studied. In this type of modification small ubiquitin
like modifier (SUMO) 1 binds to SERCA at Lys 480 & 585
residues (11, 23). SUMOylation upregulates SERCA2a activity
and is cardioprotective, while its effects on SERCA1a are
still unknown. Literatures suggested SUMOylation-mediated
increased SERCA function is due to blocking of acetylation
of SERCA (11). Acetylation is another post-translational
modification that acts antagonistic to that of SUMOylation
(24). Glycosylation involves addition of carbohydrate molecules
to SERCA at elevated glucose levels in the muscle hindering
SERCA2a activity and therefore has been considered as a
pharmacological target in diabetes and cardiovascular diseases
(25). O-GlcNAcylation is one of the specific modification
among glycosylation in which N-acetylglucosamine is added
to SERCA2a at serine and threonine residues. Similar to other
glycosylation. O-GlcNAcylation reduces SERCA2a activity
directly as well as indirectly by increasing PLB expression
level during hyperglycemia (25). Another post-translational
modification of SERCA is nitration, where a nitro group is added
to tyrosine residues. Level of nitration in SERCA2a increases
during hyperglycemic condition as a result of higher oxidative
stress (26), hence might be critical in metabolic diseases like
diabetes. Although regulation of SERCA activity by various
epigenetic and post-translational modifications are important
in energy homeostasis but their individual roles in AT are yet to
be deciphered.

RyR

RyR is the primary Ca2+-release channel of SR; while RyR1
is dominant in skeletal muscle, RyR2 predominates in cardiac.
Genetic alterations of RyR that make the channel leaky are the
basis of diseases like malignant hyperthermia and central core
disease. Some studies have demonstrated epigenetic regulation
of RyR gene expression in health and disease, suggesting
that same regulations might play important role in adaptive
thermogenesis. Rokach et al. showed that in recessive RYR1-
linked myopathies, Histone deacetylase (HDAC4 and HDAC5),
and DNA methyltransferases (DNMT1 and DNMT2) are
upregulated leading to chromatin condensation and reduction in
RyR1 transcript level. Increased HDACs also sequester mef2, a
major muscle transcriptional factor that might affect expression
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FIGURE 1 | Mechanisms contributing to adaptive thermogenesis in the skeletal muscle and its regulation by epigenetic processes. The image was created by

Biorender.com.

of many genes including miRNAs. They have proposed that these
epigenetic regulators can be targeted pharmacologically to treat
several inherited muscular disorders (27). Thiol rich RyR protein
is responsive toward phosphorylation, oxidation, nitrosylation,
and glutathionylation (28–30). RyR1 phosphorylation at serine
and threonine residues by CamKII and PKA, respectively, has
been suggested to make the channel unstable and cause leak
of Ca2+ from the SR having severe consequences on Ca2+-
signaling in the cytosol. RyR1 phosphorylation plays a key role
in adaptation to cold (31). Nitrosylation of RyR at thiol groups is
facilitated by O2 level in the muscle and increases Ca2+-release
from the channel (29). Thus, RyR might play an important role
in AT either directly by Ca2+-induced bioenergetics or indirectly
via Ca2+-mediated signaling.

EPIGENETIC MECHANISMS REGULATE
ENERGETICS OF CONTRACTILE
APPARATUS

AT of skeletal muscle is highly dependent on ATP utilization
by the contractile apparatus. This can be regulated by
relative myosin isoform expression, their post-translational
modifications and bioenergetics of contractile apparatus.
Interestingly, all are affected during physical activity for AT

recruitment in the muscle. Exercise mediates conversion of
slow twitch-to-fast twitch fiber in soleus by myosin heavy chain
(MHC) gene expression via chromatin remodeling. During this
transition, histone deacetylation down-regulates the MHC-I
gene, whereas histone acetylation upregulate fast type IIx and IIb
MHC genes. Alteration in relative expression of myosin isoforms
has also been seen in condition that influence AT such as aging,
high fat/sugar diet; whereas in cold adaptation it is still less
explored. Interestingly, a newly characterized confirmation of
myosin called super relaxed state (SRX) by Stewart et al. throws
light on its potential role in cold adaptation (32). In normal
condition ATP turnover by myosin is <0.1 s, but in SRX, myosin
can slowly split ATP with turnover time (∼230 s at 24◦C) inside
the core myosin filament in skeletal muscle. Further, activity of
SRX myosin can be enhanced in cold through phosphorylation
by Myosin light chain kinase (MLCK) or by substitution of GTP
for ATP.

Energy used by myosin is also influenced by epigenetic
modifications of other partner proteins of contractile apparatus.
Troponin-T binds to tropomyosin and control acto-myosin cross
bridge formation thereby determining ATP usage by myosin.
Sumoylation of actin by SUMO-1 has been reported in the
skeletal muscle in response to exercise training indicating its
potential in adaptive thermogenesis (33). Resistance exercise
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training in older adults showed marked increase in the
expression of slow troponin-T isoforms by alternative splicing
of the pre-mRNA. Parallely differential expression of several
tropomyosin isoforms (Tpm1.6, Tpm1.7, Tpm2.1, etc.) distinctly
regulate myosin ATPase thus affecting energy expenditure and
thermogenesis by the muscle (34). Hence, epigenetic regulation
of contractile machinery proteins may serve as a mechanism
to influence energy usage in the muscle having an effect on
adaptive thermogenesis.

ROLE OF AT IN MODULATION OF
MITOCHONDRIAL METABOLISM

The SR Ca2+-handling machinery and contractile apparatus
determine the cytosolic Ca2+-level that can regulate the Ca2+-
signaling into the nucleus and mitochondria. Thus, all the
physiological functions of the skeletal muscle is intimately
coupled to mitochondrial metabolism, which in turn depend
on modulation of: (1) mitochondrial transcriptional machinery,
(2) nuclear gene expression, and (3) Ca2+-influx into the
mitochondrial lumen. Each of these components can be
affected by epigenetic mechanisms mediating the adaptive
changes in the thermogenic state of the skeletal muscle.
Mitochondrial metabolism is critically governed by PGC-1α,
a master transcriptional regulator encoded by a nuclear gene
(PPARGC1A). The activity of PGC-1α in skeletal muscle
regulates chromatin remodeling via by acetylation/deacetylation
(SIRT1, GCN5) and methylation (PRMT1) in response to
energetically drained energy/substrate conditions like fasting,
exercise, calorie restriction (35, 36). The PGC-1α function
is fine-tuned by post-translational modifications, including
phosphorylation (by AKT, GSK-3, CLK2, CAMKKB, PKA,
S6K, P38, and AMPK), dephosphorylation (calcineurin),
ubiquitination (SCF), and O-GlcNAc modification. Level of
PGC-1α protein and its activity is closely intertwined with
muscle metabolic status via epigenetic mechanisms that respond
to number of physiological cues like hypoxia, exercise, calorie
restriction, and aging.

AMPK serves as another key energy sensor and its activation
enhances glucose uptake (by increasing GLUT4 translocation),
fatty acid oxidation, and mitochondrial biogenesis in the
skeletal muscle. In fact, AMPK can also regulate PGC-1α
by direct phosphorylation at Thr177 and Ser538 residues
thereby increasing the transcription of PGC-1α-target genes (37).
Interestingly, AMPK is activated by high AMP/ATP ratio which
is usually associated with elevated cytosolic Ca2+-level in the
muscle, where Ca2+-dependent signaling is already induced.
Therefore, AMPK serves as a key integrator of Ca2+-dependent
and ATP-dependent pathways.

Activation of mitochondrial function in the skeletal
muscle is also influenced by Ca2+-regulated transcription
factors like (CaMK) isoforms and calcineurin/NFAT. Role
of calcineurin/NFAT in muscle fiber type determination is
well-known (38), but recent studies have shown that they
decode the local Ca2+-signal and mediate that to nucleus for
expression of mitochondrial metabolic genes (39). Another

important mitochondrial transcriptional regulator in the muscle
is myocyte enhancer factor (MEF) 2. It is suggested that MEF-2
strikes a balance between HDACs-mediated transcriptional
repression and activation by factors like NFAT, PGC-1α,
and MAPK.

The acute increase in oxidative metabolism in muscle
is achieved by Ca2+-influx into the mitochondria and the
same process can also be tapped for adaptive thermogenesis.
Mitochondrial Ca2+-influx is governed by two channels:
voltage-dependent anion channel (VDAC), located on the
outer mitochondrial membrane and mitochondrial calcium
uniporter (MCU) on the inner mitochondrial membrane.
It has been shown that MCU overexpression results in
increased protein synthesis leads to hypertrophic phenotype and
protects mice from denervation-induced atrophy in muscles
via IGF1/AKT and PGC-1α4 pathways. Important role of
MCU in skeletal muscle metabolism is further highlighted
by the identification of mutations in MICU1, an MCU
regulator, in patients with proximal muscle weakness (40).
On the other hand, VDAC1 expression was significantly up-
regulated in the skeletal muscle upon cold adaptation of mice
which suggest role for VDAC in adaptive thermogenesis (41).
Recent studies has also thrown light on Mitochondrial Ca2+-
influx due to SR-Ca2+-handling by the action of a small
protein called SLN that regulate SERCA-mediated Ca2+-uptake.
Evidences shows that mitochondrial metabolism is intertwined
with muscle thermogenic genes speculating its potential role
in AT.

OTHER FACTORS IN AT IN MUSCLE

AT can further be modulated by additional factors such as
miRNA, vitamins, and hormones. We chose to discuss them
separately as the role of these factors is broad and their role in
skeletal muscle AT is being updated every day.

MicroRNAs
The miRNAs are short non-coding RNA of 20-24 nucleotides
that modify target gene expression post-transcriptionally. Several
miRNAs have been discovered and characterized in the skeletal
muscle termed as myo-miRs (Table 1). Research has evidenced
that physiological responses like lipid utilization, endothelial
function andmitochondrial activity are modulated bymiRNAs in
skeletal muscle. Expression of NCX (sodium/calcium exchanger
1), inositol-1,4,5-trisphosphate receptor 1 (IP3R1), and SERCA-
2a (sarcoplasmic reticulum Ca+2 ATPase-2a) are targeted by
miR-1, miR-25, andmiR-214, respectively. A recent study showed
that miR-1a, miR-22, and miR-124 cause RyR1 down-regulation
in the skeletal muscles of multi-minicore disease. Interestingly,
miRNA has been shown to have additional role other than
mRNA regulation by directly interfering with protein-protein
interaction. Soller et al. have shown that miR-1 and miR-21 binds
to PLB with low dissociation constant reversing its inhibition
on SERCA (43). High-fat diet (HFD) induced modifications
of gene expression is in part mediated by miRNAs such as
miR-1a, miR-133a, and miR-206. Both miR-133a and miR-206
upregulated after HFD intake targeting insulin-growth factor
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TABLE 1 | MicroRNA-mediated regulation of protein expression in skeletal muscle.

miRNAs Expression Target proteins Physiological alteration Experimental setup References

miR-449a HDAC Diabetic skeletal muscle HDAC inhibition using suberoylanilide

hydroxamic acid (SAHA)

(42)

miR-22 RYR, HDAC-4, 5;

SERCA-2A

Methylation of RYR and impared calcium

homeostasis; decrease in cardiac

expression levels for SERCA-2A

Over-expressing HDAC-4 and HDAC-5 or

knocking down ryr1 by siRNA

silencing;miR-22−/− Mice, calcineurin

transgenic (CnA-Tg) mice and pressure

overload by transverse aortic constriction

(TAC)

(43, 44)

miR-7a, miR-8519 PxRYR High Ca2+ release from SR in Plutella

xylostella (L.)

PxRyR knockout (45)

miR-1, IGF-1, IGF-1R; PAX3,

HDAC4

Hypertrophy; angiogenesis, actin filament

assembly

Acute resistance exercise and chronic

resistance exercise, 12 weeks, functional

overload and cyclic exercise; MZdicer
+miR−430 and mono-miRNA-KO

(46–50)

miR-206, miR-23a,

miR-133a

miR-194 AKT, GSK3β,

OXPHOS

Insulin signaling, glucose uptake, oxidative

phosphorylation

miRNA knockdown strategy in high fat fed

rat

(51)

miR-696, Pgc-1α Metabolism, mitochondrial biogenesis Chronic treadmill running, 4 weeks (52, 53)

miR-761

miR-106b, miR-27a

and miR-30d; mir-17

GLUT4, MAPK-14

and PI3K

Glucose catabolism and glucose uptake (MTg-AMO) antisense oligonucleotides

technology and miRNA knockdown

strategy; knockdown of endogenous

miR-17

(54)

miR-696, (mtTFA) & (Foxj3);

NRF-1, Pgc-1α,

Mitochondrial biogenesis Acute swimming; voluntary wheel,

8 weeks

(55, 56)

miR-494,

miR-126

miR-16,

VEGF, VEGF-R2, Hypertrophy, vascularization Chronic swimming, 10 weeks (57, 58)

ACE2, PI3-K2

miR-21

miR-1 miR-21 SERCA, PLB Calcium signaling Purification and assay of SERCA and PLB

from rabbit skeletal muscle

(43)

(IGF)-1 and IGF-1R mRNA leading to drop in the IGF-1
signaling pathway (59).

Role of miRNA in various types of exercise training has
been studied in details (Table 1). Exercise training (both acute
and endurance) down-regulate and upregulate different sets of
miRNA that positively co-regulate the expression of HDAC4
and NRF-1 leading to muscle regeneration, and mitochondrial
biogenesis (60). Angiogenesis via VEGF-A expression are
regulated by opposing action of miR-206 and miR-1 (61).
The miR-1 suppress HDAC4, in turn, upregulates follistatin
(FLN), a fusion promoting factor and antagonize the myogenic
inhibitor myostatin (MSN) and SARS (seryl-tRNA synthetase)
contrary to the action of miR-206 (62). It has been studied
that muscle hypertrophy was enhanced by expression of c-
Met, HGF, IGF-1, SRF, and LIF genes by down-regulation
of miR-1 and miR-133a via functional overload in plantaris
muscle (49). Exercise upregulated PGC-1α mediates its effects
by downregulating miR-696 and upregulating miR-23 expression

leading to mitochondrial biogenesis in skeletal muscle (52,
63). Two miRNAs miR-499 and miR-208b coexpressed with
Myh7 and Myh7b genes in slow myofiber genes and regulated
by miR-208a (expressed in Myh6 gene) for slow to fast
twitch fiber type switching (64). Thyroid hormone upregulated
miR-133a1 in a Thyroid receptor (TR)-dependent manner
and promotes slow-to-fast muscle switch by repressing TEA
domain family member 1 (TEAD1) (65). Expression of the
phosphatase and tensin homolog (PTEN) and forkhead box
O1 (FOXO1) is suppressed by miR-486 to promote muscle
hypertrophy (66).

Hormones and Vitamins
Several hormones influencing muscle metabolism (like insulin,
leptin, GLP-1, thyroid) undergo drastic changes in their
circulating levels in conditions that can have impact on AT
(67). Steroids and thyroids are the best studied hormones to
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regulate protein expression in muscles and catecholamines are
known to enhance muscle energy expenditure (68). Similarly,
many vitamins (e.g., Vitamin D) directly or indirectly mediate
their effects by altering intracellular calcium dynamics. Their
conspicuous pleiotropic gene expression are known to modulate
energy status and also affect protein expression in different
muscle types (69). However, their specific role in regulating AT
in the skeletal muscle is still poorly defined. It is interesting
to note that few cytokines that were previously thought not to
regulate energy homeostasis have been demonstrated to do so
and are now reclassified as hormones. Defining their function
in regulation of muscle energy utilization will clarify their
role in AT.

CONCLUDING REMARKS

Epigenetic mechanisms significantly control AT in skeletal
muscle. Skeletal muscle constitute more than 40% of the body
weight and its energy status serves as a major determinant of
metabolic rate. Even a minute alteration in muscle metabolic
state can have remarkable change in the whole body energy
expenditure. So, epigenetic mechanisms regulating skeletal
muscle AT can hugely control energy homeostasis. Some of
these mechanisms can serve as good targets for manipulation
of energy expenditure to counter metabolic disorders such as
obesity and type 2 diabetes. Researchers have tried to develop
pharmacological agents to tap muscle metabolism for treatment
of obesity. However, these efforts have not resulted in any
product yet as epigenetic control of muscle AT is still not well-
defined. Another major direction that future studies should
address is whether epigenetic regulation of muscle AT affects

the functioning of other organs. Secretion of myokines and
their effect in modulation of many organs including white
fat depot, liver has recently been illustrated. Another poorly
defined area is role of vitamins in regulation of muscle
metabolism and NST capacity that can play a key role in
adaptive thermogenesis. Future studies in these directions will
unravel mechanisms of epigenetic regulation that will help in
designing strategies to counter metabolic disorders by activation
of AT.
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