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Thyroid hormones T3 and T4 (thyroxine) control a wide variety of effects related to

development, differentiation, growth and metabolism, through their interaction with

nuclear receptors. But thyroid hormones also produce non-genomic effects that typically

start at the plasma membrane and are mediated mainly by integrin αvβ3, although other

receptors such as TRα and TRβ are also able to elicit non-genomic responses. In the

liver, the effects of thyroid hormones appear to be particularly important. The liver is

able to regenerate, but it is subject to pathologies that may lead to cancer, such as

fibrosis, cirrhosis, and non-alcoholic fatty liver disease. In addition, cancer cells undergo

a reprogramming of their metabolism, resulting in drastic changes such as aerobic

glycolysis instead of oxidative phosphorylation. As a consequence, the pyruvate kinase

isoform M2, the rate-limiting enzyme of glycolysis, is dysregulated, and this is considered

an important factor in tumorigenesis. Redox equilibrium is also important, in fact cancer

cells give rise to the production of more reactive oxygen species (ROS) than normal cells.

This increase may favor the survival and propagation of cancer cells. We evaluate the

possible mechanisms involving the plasma membrane receptor integrin αvβ3 that may

lead to cancer progression. Studying diseases that affect the liver and their experimental

models may help to unravel the cellular pathways mediated by integrin αvβ3 that can lead

to liver cancer. Inhibitors of integrin αvβ3 might represent a future therapeutic tool against

liver cancer. We also include information on the possible role of exosomes in liver cancer,

as well as on recent strategies such as organoids and spheroids, which may provide a

new tool for research, drug discovery, and personalized medicine.
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INTRODUCTION

Thyroid hormones 3,5,3′-triiodothyronine (T3) and 3,5,3′,5′-
tetraiodothyronine (T4) play an essential role in the regulation
of cell function during growth, development and metabolism,
through two different mechanisms: genomic and non-genomic.
The genomic action takes place through the classical nuclear
receptors TRα and TRβ, together with modulatory factors such
as coactivators and corepressors to regulate gene expression
and protein synthesis (1). TRα can stimulate both proliferation
and differentiation through β-catenin, while TRβ shows
antiproliferative effects in cancer cells and is a differentiation
factor. Loss of TRβ is followed by oncogenic transformation.
Thyroid hormone receptors and estrogen receptors can cross-
talk to modulate physio-pathological responses (2, 3). But
thyroid hormones may also give rise to non-genomic effects
mediated by integrin αvβ3. These non-genomic effects mainly
occur at the plasma membrane level and involve membrane
transport systems such as the transporters for glucose and
amino acids, the Na+/H+ exchanger, Na+/K+-ATPase activity,
and kinase activities such as Mitogen-Activated Protein Kinase
(MAPK) and Phosphatidyl Inositol 3-Kinase (PI3-K) (4–6), thus
increasing angiogenesis and tumor cells proliferation. Integrins
are plasma membrane integral proteins that bind extracellular
matrix (ECM) proteins such as vitronectin, fibronectin and
osteopontin, and regulate cell-cell adhesion (7). Both hormones
bind to integrin αvβ3, but T3 binds to the S1 receptor site,
activating PI3-K through src, whereas both T3 and T4 bind to a
second site S2, leading to the activation of the MAPK pathway
and cell proliferation (8). Integrin αvβ3 can also bind other
small molecules, such as resveratrol and the steroid hormones
(estrogens and androgens) and cancer growth may be modulated
by this type of interaction [(9); Figure 1].

THE LIVER

The liver can be considered privileged from an immunological
point of view because it receives 75% of its blood from the
portal vein coming from splanchnic districts and about 25% from
hepatic artery blood. The major fraction from the portal vein is
blood coming from the intestine, stomach, spleen, pancreas, and
other organs. Therefore, the portal blood contains components
from intestinal uptake of nutrients without the lipid components
that go to the lymphatic vessels (10). This special feature of the
liver cells makes human hepatocellular carcinoma (HCC) the
second leading cause of death in the world.

The liver is composed mainly of hepatocytes, but there is also
a small fraction of cells that are important both in physiology
and pathology, such as Kupffer cells of the immune system with
phagocyte activity, endothelial cells, and Hepatic Stellate Cells.
The liver, unlike other tissues in the body, is capable of renewing
itself in a very efficient way, andmany papers have been published
on liver regeneration after partial hepatectomy. The pathways
followed in the regenerative process have turned out to be
interesting because it is possible in this way to obtain knowledge
on cell proliferation, differentiation and tumor growth (11). The
first phase of regeneration, called the “priming phase,” prepares

the cells to respond to growth factors. The second phase is
initiated by the activation of growth factor receptors, and among
these the most important appears to be the Epidermal Growth
Factor Receptor (EGFR) and c-MET or Hepatocyte Growth
Factor Receptor (11). They act in concert until the end of the
regenerative process, and then proliferation stops. Important
inhibitors of liver regeneration are transforming growth factor-
β (TGF-β) and the integrins, which allow the communication
between ECM proteins and the cells. Thus, thyroid hormones are
important modulators of the regeneration process, because they
are able to cross-talk with growth factors such as EGF, TGF-β,
and IGF-1 as well as with the integrins, essential players in the
mechanism of thyroid hormones (12).

The aim of the present paper is an evaluation of our
current knowledge of thyroid hormones in the liver and of the
mechanisms related to cell growth and metabolism that may
lead to liver cancer. We consider some particular features of
liver cells, such as regeneration and the capability to give rise to
several metabolic pathologies (fibrosis, cirrhosis, non-alcoholic
fatty liver disease).We also consider the possibility that exosomes
might modulate thyroid hormone responses in the context of
liver cancer, and we provide some information on the frontiers
of biotechnology concerning organoids and spheroids.

THYROID HORMONES AND LIVER
DISEASE

The liver represents a major target for thyroid hormones, which
are involved in the regulation of body weight, lipogenesis, lipid
metabolism, and insulin resistance. Therefore, they may have
a key role in the pathogenesis of several diseases that affect
the liver, such as Alcoholic Liver Disease and non-alcoholic
steatohepatitis (NASH), which may evolve into cirrhosis and
HCC. Among the thyroid hormone receptors, TRβ is the one
mainly expressed in the liver, while TRα is more common in the
cardiovascular system and in bone (13). The role of TRβ in mice
was demonstrated by the group of Cheng, studying a dominant
negative mutation in TRβ (ThrβPV/PV). These mice develop
hepatic steatosis within a few months and have significantly
larger livers (14). The mutated mice show increased activation
of Peroxisome Proliferator–Activated Receptor-γ signaling and
decreased fatty acid β-oxidation, leading to lipid accumulation
and increased hepatic triglyceride content (14). At variance
with this, mice with a mutation in TRα (ThrαPV/PV) showed
decreased weight and less hepatic lipid accumulation and also
decreased lipogenesis.

Thyroid hormones increase the levels of free fatty acids
by stimulating lipolysis from dietary fats, although they also
stimulate the uptake of free fatty acids by the fatty acid binding
protein and fatty acid translocase. The conversion of glucose
to fatty acids and de novo lipogenesis is stimulated by other
hormones and by the diet. Thyroid hormones also regulate the
expression and activities of many transcription factors involved
in lipogenesis, such as the Sterol Regulatory Element-Binding
Protein (SREBP)-1C, liver X receptors and Carbohydrate-
Responsive Element-Binding Protein (15). Despite the role of
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FIGURE 1 | Scheme of non-genomic and genomic actions of thyroid hormones. Non-genomic actions start at the integrin αvβ3, through MAPK/ERK1/2 they may go

to the cytoplasm and nucleus to modulate gene expression. The shuttling of the αv monomer to the nucleus is not shown for the sake of simplicity. The cross-talk of

thyroid hormones with growth factors is indicated by the double arrow and can be modulated by ERK1/2 activation. The modulation of the membrane Na/K-ATPase

pump, either in activation or inhibition depending on the cell type and context, and activation of the Na/H exchanger is also indicated. In the nucleus, interaction of T3

gives rise to the shedding of the corepressor and the interaction with coactivators. Downstream of the activation of TRβ1, Erα, STATS there is the activation of tumor

cell proliferation, angiogenesis, and growth factors (GF), but also cytokines through JAK1/2.

thyroid hormones in de novo lipogenesis, they do not increase
triglyceride levels but reduce the apolipoprotein B100 and
also Very Low-Density Lipoproteins (VLDL) and Low-Density
Lipoproteins (LDL) (16). Thyroid hormones also maintain
constant sterol levels by modulating all possible pathways of
synthesis, export, import, and the conversion to bile acids.
In particular, thyroid hormones induce the expression of
the limiting enzyme of the cholesterol synthesis, HMG-CoA
reductase (17).

Liver fibrosis and cirrhosis are characterized by chronic
damage to liver tissue, leading to chronic inflammation, and to
altered matrix tissue generation and vascularization. Therefore,
the liver progressively looses its functions and this may give rise
to the development of cancer. An important role in liver tissue
regulation and dysregulation is provided by the ECM proteins
that convey information from cell to cell and also from the
extracellular to the intracellular compartments. These proteins,
which include integrins and collagen, may be important for tissue
remodeling and also in the progression of fibrosis, cirrhosis, and
cancer (18, 19).

Alcoholic fatty liver disease and non-alcoholic fatty liver
disease (NAFLD) represent a major public problem all over the
world. Alcohol abuse is the primary cause of several diseases
such as fatty liver, alcoholic hepatitis, and cirrhosis (20, 21).
Alcohol is metabolized by the liver, which is the primary site of
damage. Alcoholic steatohepatitis follows Alcoholic Liver Disease

and is characterized by hepatic fat accumulation, infiltration
of inflammatory cells, and injury to liver tissue. The process
of infiltration by macrophages and neutrophils is mediated
by osteopontin produced by the liver. The effects of this
protein can be mediated by integrins (22), and osteopontin
also appears to be involved in NAFLD/NASH diseases. This
cytokine is increased in model systems of these pathologies.
Compared to wild type animals, osteopontin-knock-out mice
showed decreased liver injury and fibrosis (22). Osteopontin
levels are instead increased in some models of liver injury, such
as treatment with CCl4, although the mechanisms are not clear at
present (23).

Epidemiological and clinical reports show an association
between NAFLD/NASH and thyroid dysfunction in the
form of established or subclinical hypothyroidism. The
percentage of hypothyroidism was 15–36% among patients with
NAFLD/NASH (20). It has been suggested that NAFLD/NASH
are hepatic markers of insulin resistance and metabolic
syndrome (24, 25), and insulin resistance can in part be
prevented by treating hypothyroidism (20). Among the possible
mechanisms proposed is a role of adipocytokines in NAFLD
in the presence of hypothyroidism (26). An increased level of
leptin has also been reported for hypothyroid patients; this
may be responsible for the development of NAFLD/NASH.
Leptin is an adipocytokine; it is increased in obesity and
may give rise to insulin resistance (27). NAFLD patients
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show abnormal lipid profiles, with high levels of cholesterol,
LDL, and triglycerides. Thyroid hormones acting through
the β receptor may cause a reduction of body weight and
fat and a decrease in cholesterol and triglyceride levels in
hepatocytes (28, 29).

In the context of liver cancer and liver pathologies, the
possible effects of oxidative stress, mitochondrial dysfunction,
and reactive oxygen species (ROS) production should also be
mentioned. Oxidative stress alters the activity of deiodinases, as
discussed in the paragraphs that follow, and thyroid hormones
can modulate cell function through oxidative stress (30, 31).
The role of ROS in thyroid hormone signaling is well-known
from the cross-talk between thyroid hormones and the immune
system (32, 33).

Liver fibrosis begins with some damage to liver cells that
can be of different nature: physical injury, infection by virus
or bacteria (lipopolysaccharides), alcohol, etc. This gives rise to
mitochondrial dysfunction and an increase in free fatty acids and
ROS, leading to lipid peroxidation, activation of Kupffer cells and
Hepatic Stellate Cells. In the case of hepatic injury, expression
of the nuclear thyroid hormone receptor in Hepatic Stellate
Cells is inhibited, and the dominant hormone receptor becomes
TRα, which participates in the fibrogenic response, producing
a stronger wound-healing response and higher contractility
(34). The levels of inflammatory cytokines increase, causing a
further increase in ROS formation, impairment of deiodinase
activity, an increase in cell proliferation, and ultimately fibrosis
leading to cancer, as will be described in the following sections
[(20, 35); Figure 2].

Oxidative markers and inflammation actually appear
very early in younger populations as well. A recent paper
showed that Ox-LDL and the serum level of Triggering
Receptor Expressed on Myeloid cells-1 are associated with
cardiovascular risk and other health risks (36). In humans
the association of oxidative and inflammatory markers with
cholesterol levels, reported for a young healthy population,
indicates that it could be very important to start early with
an evaluation of these markers, in order to prevent future
cardiac pathologies (36). The paper cited does not deal with
liver diseases, but it draws attention to the condition of a
young human population and their lifestyle. Prevention of
some diseases such as liver diseases should start as soon
as possible.

In line with the previous topic, we want to recall another

pathology affecting more and more children and adolescents:

Celiac disease. This is an inflammatory disease of the gut
that may develop when persons are exposed to a gluten-

containing diet. The intestine as well as the liver are the
organs mainly involved, particularly in the young population

affected by NAFLD, the most common liver disease in school-age

individuals. Very often the diagnosis of Celiac disease precedes
that of liver disease (37). Celiac disease is often present in
hypothyroid patients, who are more prone to develop cancer and
in particular liver cancer (38, 39). Therefore, the development of
liver disease and hypothyroidism is becoming more complicated
for younger generations.

THYROID HORMONE PATHWAYS LEADING
TO PHYSIO-PATHOLOGICAL RESPONSES
IN LIVER DISEASES UP TO CANCER

Normal hepatocytes replicate by entering the cell cycle, and in
the presence of an injury the process is the same, but it may
become dysregulated following conspicuous tissue damage with
associated oxidative stress. In any case a regenerative response
takes place. In the period of injury-activated regeneration, genes
that normally are quiescent become activated through a processes
recalling fetal development. Among these processes is the
activation of deiodinases, seleno-dependent enzymes that are able
to both activate and inactivate thyroid hormone formation in the
peripheral tissues (40–42). In particular the levels of deiodinase
3, which hydrolyzes and inactivates both T3 and T4, become
upregulated following liver damage and oxidative stress, and the
result is a decrease in active T3 levels and increased formation
of reverse T3 (rT3) and increased cell proliferation (43–47).
Elevated levels of deiodinase 3, mediated by HIF-1, are also
reported in both fetal and cancer development (48–50). In liver
injury, hepatocytes show a decreased expression of deiodinase 1
and increased levels of deiodinase 3; these variations are regulated
by Hedgehog ligands (51). Deiodinase 3 is also more expressed
in non-differentiated tissues, such as the developing embryo and
cancer (45, 51). Tumor growth or HCC give similar responses
to development and injury, and hypothyroidism is associated
with a 2- to 3-fold increased risk of cancer development
in women. A similar association has not been reported
for men (52–54).

Deiodinase 2 is not highly expressed in the liver tissue of
an adult, although it is briefly expressed in mouse hepatocytes
around birth. This brief appearance seems to be important
for the future sensitivity to diet-induced lipid asset for the
posttranslational modifications involving DNA methylation and
leading to hepatic steatosis, hyperlipidemia and obesity (55).
This has been demonstrated by the development of D2-KO
mice (ALB-D2KO) with a selective inactivation of deiodinase
2, the resulting phenotype shows resistance to steatosis,
hyperlipidemia and obesity. The same researchers also studied
the molecular mechanisms involved in this mouse phenotype;
the results show that this decreased vulnerability to liver
steatosis and diet-induced obesity in the ALB-D2KO mice is
due to a reduction in the hepatocyte expression of liver zinc-
finger protein-125 (zfp125), a FoxO1-inducible transcriptional
repressor responsible for lipid accumulation through a reduced
secretion of VLDL. The situation is complicated from both
metabolic and hormonal points of view because Forkhead box
O1 (FoxO1) is known to be inhibited by insulin, which normally
decreases the lipidemia (56).

T3 acts as a mitogen via Protein Kinase A (PKA)/β-
catenin activation, leading to activation of cyclin D1 in
normal hepatocytes (50). Thyroid hormones have a very
complex interaction with their receptors and deiodinases.
T3/TR interaction leads to inhibition of the Wnt/β-catenin
pathway via Dickkopf Wnt signaling inhibitor 4 (DKK4),
resulting in the inhibition of hepatoma cell proliferation
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FIGURE 2 | Scheme showing the possible pathways from hepatic damage to fibrosis leading to cancer. The oxidative stress and ROS production follow mitochondrial

dysfunction and hepatic damage. The direct consequences are impairment of deiodinase activity leading to decreased T3 production, on the other hand deiodinase 3

is imbalanced with increased activity and increased rT3, which stimulates the proliferation of tumor cells. The ROS produced give rise to inflammatory cytokines that

increase the ROS and activate Hepatic Stellate Cells (HSC), leading to fibrosis and eventually cancer. The inhibition by tetrac of the fibrogenic process is only

suggested as shown by the question mark, with integrin αvβ3 being among the ECM components involved in the “activation” of the Hepatic Stellate Cells.

(43, 57–59). Hypothyroidism is also associated with human
cancer, although contradictory results have been reported
relating cancer progression and thyroid hormones (60, 61).
For example, primary hypothyroidism has been associated
with a decreased risk of breast cancer (61). This effect may
depend on non-genomic actions of thyroid hormones because
mutant TRs inhibit transactivation activity in glioma and breast
cancer (62). In fact, hypothyroidism is involved in different
metabolic pathologies, such as obesity, type 2 diabetes, insulin
resistance and cancer (60). The impairment of thyroid hormone
homeostasis is not considered sufficient for HCC development,
but other liver pathologies must be present in order to impair
this equilibrium and eventually start a pro-carcinogenic process,
such as inflammation, fibrosis or cirrhosis (3, 63, 64).

The downregulation of nuclear thyroid hormone receptors
may act as a signal for tumorigenesis, supporting the concept
that thyroid hormone receptors inhibit tumorigenesis (3). In
fact, a switch from hypo- to hyper-thyroid conditions can be
antitumorigenic (60). This clearly indicates that thyroid hormone
signaling and thyroid hormone receptors are important for HCC
progression (40). In particular T3 seems to have oncosuppressor
properties, although it stimulates proliferation in hepatocytes
and other cell types, but at the same time it inhibits the growth
of hepatoma cells by increasing the time of the G1 phase of
the cell cycle. This is related to a decreased expression of the

cell cycle mediator cyclin-dependent kinase 2 and cyclin E, and
increased gene expression of transforming growth factor TGF-
β (65). Other studies confirm these effects of TH receptor β,
although contradictory results have also been reported for a
human hepatoma cell line (66).

The liver is a major target for thyroid hormones, and in
fact, a higher number of mutations of the thyroid hormone
receptors α and β have been found in the liver, also in
association with the development of liver cancer. However,
so far no clear indication has been found, as the situation
of the signaling of the thyroid hormone receptor appears to
be quite complicated, not only because of the two different
typologies of signaling, non-genomic and genomic, but also
because non-genomic and genomic effects of thyroid hormones
can cross-talk. In addition, TR-α knockout mice are protected
from diet-induced hepatic steatosis and hepatic insulin resistance
(67). The TRα mutants in HCC act as dominant negative
inhibitors in spite of the concentration of T3, impairing
gene transcription (3, 68, 69). At variance with these results,
the TRβ mutants play a dominant negative effect only at
low-intermediate concentrations. In conclusion, TR mutants
may have different effects and roles in the development of
cancer (60).

TRβ1 can inhibit the nuclear signaling pathways in HCC
and breast cancer cells (70). In agreement with these data, a
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new role for TRβ1 as an anti-metastatic factor has been shown
because it inhibits activation of both ERK and PI3K pathways
(3, 69, 71). Mutants of TRα1 and TRβ1 from HCC show many
alterations from the WT receptors, which indicate that these
mutants may act as repressors or activators of specific genes. A
similar situation has also recently been shown in the development
of renal clear cell carcinoma, and this causes resistance to
thyroid hormones (72). In any case, hypothyroidism is associated
with the development of cancer in human beings, probably by
decreasing apoptosis, while v-ErbA transgenic mice develop liver
cancer because v-ErbA may be a dominant-negative receptor
(73). As mentioned above, hypothyroidism is also a risk factor for
other pathologies, such as NASH (74), and also for viral hepatitis
and alcoholic liver disease (52).

The demonstration that v-ErbA can give rise to tumor
formation first came from Barlow et al. (73) who created
a transgenic mouse with an ectopic expression of v-ErbA.
These animals are affected by hypothyroidism, reduced fertility,
decreased body weight and abnormal behavior. The male mice
also developed hepatocellular carcinoma. v-ErbA has oncogenic
potential through its ability to increase the transformation
capability of other oncogenes. Parallel studies have also shown
that v-ErbA promotes tumorigenesis by interfering with the
AP-1 pathway because v-ErbA prevents the inhibition of the
AP-1 pathway through thyroid hormone receptors. Estrogens
may block the v-ErbA effect and this could explain the
protective effects of estrogens toward neoplastic transformation
in females. At variance with this, androgens would be permissive
toward oncogenic transformation due to v-ErbA (73). Typically,
glucocorticoids inhibit the activation of AP-1 and in this way they
become potent anti-inflammatory agents (75).

As to the link between viral hepatitis and hypothyroidism,
it was found that in patients with chronic hepatitis there
was an emergency response shown by the increased levels of
thyroperoxidase antibodies (AbTPO), and the subjects positive
for AbTPO had a higher risk of hypothyroidism. In cells in
culture, HCV infection had a role in thyroid autoimmunity,
suggesting an interaction between HCV and the thyroid. At
variance with this, patients with chronic hepatitis B virus
infection were less prone to autoimmune thyroid disease (76, 77).

Several studies have suggested that thyroid hormones
stimulate tumor growth because they stimulate cell proliferation
in several types of cancer cells. Thyroid status also affects
tumor progression and metastasis both in animals and human
beings (60).

Hercbergs et al. showed that hypothyroxinemia can be a
compassionate strategy to prolong the life expectancy of terminal
tumor patients (78). This is based on a methimazole therapy,
to keep low Thyroxine, free T4 and TSH levels, and at the
same time to have a normal euthyroid condition through the
administration of T3. T3 inhibits tumor cell growth, but an
impairment of TH homeostasis alone is not enough to decrease
HCC development and invasion. In the liver in particular, HCC
develops after a slow progression from liver fibrosis, chronic liver
injury and cirrhosis, up to the pre-cancerous alterations with the
pre-symptomatic feature being the downregulation of nuclear
receptors, TRα and TRβ (3). Therefore, there is no contradiction

FIGURE 3 | Scheme showing diseases and factors leading to the

pathogenesis of Human Hepatocellular Carcinoma starting from Hepatic

Stellate Cells damage. Kupffer cells contribute to repair, but may also impair

the damage as well as hepatocytes. CHB, Chronic Hepatitis B; HCV, Hepatitis

C Virus.

between the data reported by Hercbergs et al. and the finding
of an association between hypothyroidism and liver pathologies
such as cancer (3, 78). Actually, among the patients participating
in the study of Hercbergs et al. only one was affected by a
liver tumor, and not all tissues behave in a similar way. The
compassionate therapy reported by Hercbergs et al. that can be
induced by either thyroidectomy or pharmacologically (by PTU
or methimazole, perhaps also TR-KO) is in agreement with the
association between thyroid hormone levels and liver cancer.
In fact, hypothyroidism leads to a delay in hepatic regeneration
as reported before (79, 80). It is difficult to summarize all the
contributions dealing with thyroid hormones and liver cancer
development. We refer the reader to an excellent review on the
epidemiology of liver cancer (81), and another very good recent
review where both in vitro studies as well as preclinical and
clinical studies report on thyroid hormones and cancer (82).

The factors possibly leading to HCC are reported in
Figure 3. As to possible genetic markers, microRNA and their
dysregulation are genetic factors strongly associated to the
pathogenesis of tumor growth and HCC. Exosomes with high
levels of miRNA exit the cell and contribute to the spread and
invasion of the tumor through activation of the Phosphatase and
tensin homolog/3-Phosphoinositide-dependent protein kinase
1/Akt signaling pathway, better known as PTEN/PDK1/Akt (83).

METABOLISM OF CANCER CELLS AND
THYROID HORMONES: PKM2

The progression of cancer also depends on metabolism. In
particular, tumor cells have an increased aerobic glycolysis and
lactic acid production; for cancer cells this process is called
the Warburg effect (84). It was later found that there is a
connection between mitochondria and thyroid hormones in the
modulation of this process (85, 86). Suhane and Ramanujan
evaluated different metabolic parameters and activities in breast
cancer cells, such as lactate generation, oxygen consumption,
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mitochondrial viability by the MTT assay, and hexokinase
activity as the first step of glycolysis. They found that T3 directly
increases the metabolism of mitochondria in breast cancer cells
and also the expression of one of the isoforms of pyruvate kinase
that is responsible for the Warburg effect (85).

Pyruvate kinase catalyzes the last step of glycolysis that
converts the phosphoenolpyruvate to pyruvate through the
transfer of one phosphate group to ADP (86, 87). Mammals
have four isoforms encoded by two genes: PKL is found in liver
and other tissues; PKM is present in two isoforms, PKM1 and
PKM2, that show the same catalytic activity. PKM2 is more
active in regenerating tissue, embryogenesis and cancer, but
is also present in non-proliferating and differentiated tissues
(88, 89). Therefore, active PKM2 is important for cancer
cell metabolism and survival. Cells transformed to express
PKM1 instead of PKM2 switched from aerobic glycolysis to
mitochondrial respiration and were unable to give rise to tumor
formation (90).

Recently Zhao et al. used a xenograft in a murine model to
show that PKM2 is able to activate the nuclear transcription
factor SREBP-1a, leading to cell proliferation and increased
tumor progression. The interaction appears to be highly specific
for this type of SREBP-1a (91, 92). This is an important result as
it confirms the role of lipid accumulation in cancer progression.
Gnoni et al. showed that in HepG2 cells, T3 activates SREBP and
the effect is inhibited by tetrac (93).

Hedgehogs (Hh) are a morphogen family that represents
an evolutionary highly conserved pathway, from Drosophila
to human beings. These proteins are able to move from the
cell membrane to the nucleus; they have an essential role in
embryonic development, and dysregulation of Hh may lead
to tumor development (94). The cAMP/PKA pathway is an
important negative modulator of the Hh pathway. PKA is
important for Sonic Hedgehog (Shh), the main Hh paralog,
in fact it phosphorylates Gli (glioma-associated oncogenes)
transcription factors repressing gene transcription (95).

Thyroid hormones are tumor suppressors and inhibitors of
Shh signaling in Basal Cell Carcinoma. This inhibition may
be mediated by deiodinase cross-talk, in particular an increase
in deiodinase 3 via Shh/Gli2 leading to a decrease in T3 and
increase of rT3, as reported above. Hedgehog-depleted mice
show elevated thyroid hormone levels because thyroid hormones
are tumor suppressors and inhibitors of Shh signaling in Basal
Cell Carcinoma (96). The cAMP/PKA pathway has the opposite
effects on Shh signaling. The sameHedgehog pathway is activated
in many other pathologies affecting the human liver, including
NAFLD and liver fibrosis (51, 97). The increase in deiodinase
3 leads to decreased T3 levels available to modulate gene
expression, including the conversion of PKM2 from tetramer
conformation to the dimer/monomer conformation that slows
cancer progression (88). cAMP (or forskolin) has the opposite
effects, activating D2 and therefore the production of T3 from
T4 (49, 88). In conclusion, hypothyroidism is a condition that
may lead to cancer progression due to rT3 stimulation of cell
proliferation, but also because the decrease in T3 leads to an
increased activity of the glycolytic pathway typical for cancer
cells (88).

MOLECULAR MECHANISMS MODULATED
BY THYROID HORMONES, THROUGH
INTEGRIN αVβ3 INVOLVED IN LIVER
CANCER

The family of metalloproteinases consists of more than 20

structurally related, zinc-dependent endopeptidases, that are

able to degrade (but also activate) different components of the

ECM, such as growth factors, cytokines, and chemokines that

reside in the ECM, nowadays considered an important player in

cancer progression (98). Through their proteolytic activity they

play a role in cancer metastasis and invasion by regulating the

signaling pathways involved in cell growth, survival, metastasis

and invasion, but also angiogenesis and inflammation (99).
Therefore, Matrix Metalloproteinases (MMPs), in particular
MMP-2 and MMP-9, are involved in cancer metastasis, and
inhibitors ofMMP are studied as possible antitumor tools. One of
the possible effects is the lysis of the ECM components. Thyroid
hormones increase the expression of these MMPs, and a nano-
formulation of tetraiodothyroacetic acid, Nano-diamino-tetrac,
is able to downregulate the expression of MMP-2 and MMP-9
(100, 101).

The growth of normal tissues, as well as the growth of
tumors, depend on the local formation of vasculature, and
research on cancer treatment has focused on vascular targets
and related growth factors, such as VEGF and basic fibroblasts
growth factors (bFGF). Both T3 and T4 are pro-angiogenic
as shown when using the chick-egg chorioallantoic membrane
model (102). MMP, VEGF, and other angiogenic growth factors
acting via miR-126 may be important therapeutic targets in
liver cancer (103). In the context of growth factors and cross-
talk with thyroid hormones, EGF should also be mentioned
because liver cells express high levels of the receptor for this
growth factor, which is associated with drug resistance and the
angiogenic processes.

Many papers have shown the role of microRNA in cancer

progression. MiR-21 and miR-15A play a role in metastasis,

but their expression is also modulated by thyroid hormones
(101, 104–107) and these effects on cancer progression start at the
integrin αvβ3. Tetrac also seems to act effectively on the miRNAs
(101); more information on this topic can be found in a very
recent review on miRNA in HCC (108).

Thyroid hormones can interact with and modulate the action
of growth factors and this may also be related to cancer
metastasis. Among growth factors, TGF-β seems to be involved in
liver fibrosis and cancer development. TGF-β is a pro-fibrogenic
cytokine upregulated in liver disease (109) and apparently there
is a direct relationship between thyroid hormones and TGF-β in
fibrosis (110). The role of TGF-β in oncogenic transformation has
been widely revised and appears to be mediated by the activation
of MAPKs and interaction with several types of integrins such as
integrin αvβ3 (111). The possible therapeutic approach has also
recently been evaluated (112).

Experiments carried out on a pituitary cell line, GH4C1,
showed the opposite effect of T3 on the SMAD binding element
(SBE) with respect to TGF-β in promoting transcriptional
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activation of SBE. A more recent paper shows that HEP-G2
treatment with Hexachlorobenzene (HCB), a hormone
interferent that gives rise to hypothyroidism, may be reverted by
statins through TGF-β, and it is also able to inhibit deiodinase
1, which is highly expressed in the liver, thus decreasing the
production of T3 from T4. This could be responsible for the
inhibitory effect on tumor promotion caused by statins (and T3
also) (113).

T4 promotes Epithelial Mesenchymal Transition (EMT)
through integrin αvβ3, and induction of β-catenin and
nanotetrac inhibits this pathway (114). Wnt/β-catenin is a
pathway involved in fibrosis and hepatic tumor, as reported
above. Wnt signaling inhibits glycogen synthase kinase (GSK-
3β), which prevents β-catenin phosphorylation, leading to
cytoplasmic accumulation of non-phosphorylated β-catenin
that can enter the nucleus to regulate gene expression (114,
115). We have recently shown that tetrac and Nanotetrac
downregulate β-catenin and High Mobility Group A2 in colon
cancer and the immune checkpoint PD/PD-L1 (106, 116–
119). It has been reported by Alvarado et al. (120) that T3,
and the agonist GC-1, stimulate cell proliferation in normal
hepatocytes, and the effect is dependent on β-catenin activation,
Wnt signaling and PKA activation. At the same time, pre-
treatment with either T3 or GC-1 after partial hepatectomy
leads to a higher increase in cell proliferation with respect
to non-treated cells (120). Wnt signaling is also involved in
liver fibrogenesis, a recognized risk factor for liver cancer (3,
121). In this case stroma (Hepatic Stellate Cells, macrophages,
endothelial cells) activation arising from inflammation due
to liver damage in turn leads to increased proliferation and
contractility, altered secretion and activity of ECM, leading to
a microenvironment that may favor the development of cancer
cells (19, 35).

Chemosensitization of cancer cells by tetrac, particularly

those resistant to other cancer therapeutic treatments, has
been reported. P-glycoprotein (P-gp, MDR1, ABCB1) is a

plasma membrane pump that gives rise to the efflux of cancer

therapeutic agents. This pump is mainly responsible for the
cell chemoresistance in HCC (122, 123). Thyroid hormones

are important modulators of this pump by increasing the

transcription of MDR1, thus increasing the activity of the

pump. The mechanism of this stimulation is not yet known
in detail, but it is known that thyroid hormones support

chemoresistance. Tetrac, instead, increases the retention
time of doxorubicin. Thyroid hormones stimulate the

Na/H exchanger, the integral plasma membrane protein
that exchanges sodium and protons according to the
concentration gradient, thus increasing intracellular pH,
and tetrac inhibits it, giving rise to cell acidification and
inhibition of MDR function and expression (124). Several
other factors inhibit the activity of the P-glycoprotein,
increasing the retention time of chemotherapeutic agents
(i.e., doxorubicin) besides tetrac, osteopontin, VEGF, and
calcium channels blockers (124). Most of these effects of
thyroid hormones in cancer are blocked by integrin αvβ3
inhibitors (Table 1).

DO EXOSOMES HAVE SOMETHING TO DO
WITH THYROID HORMONE’S ACTIONS IN
LIVER CANCER?

Exosomes are vesicles, structures derived from cells that are able
to modulate intercellular communication. They may contain a
wide variety of molecules: cytokines, growth factors and nucleic
acids. Exosomes are pivotal elements that make communication
between cells easier through “cargos” whose content may change
during diseases, particularly cancer, and this can be important
to understand the response to disease. The exosomes impact
the recipient cell by either epigenetic or translational and
transcriptional changes (130). Theymodulate tumor cell function
through apoptosis, differentiation, angiogenesis, or metastasis.
The exchange of small molecules such as miRNA is a main object
of study, in fact these miRNAs can be biomarkers with a wide
range of applications in the management of pathologies such as
cancer (131, 132). Modulation of exosomal miRNA represents a
target of the personalized medicine intensely pursued nowadays.
In Hepatic Stellate Cells treated with exosomes derived from
HCC, it was found that the exosomes were able to convert
Hepatic Stellate Cells to Cancer Associated Fibroblasts (CAF).
Exosomes from HCC, through miRNA-21, were able to activate
Hepatic Stellate Cells through the PTEN/PDK1/Akt pathway,
thus promoting cancer progression through the secretion of
cytokines that stimulated angiogenesis, such as VEGF, MMP-2,
and MMP-9 (83).

To our knowledge, modulation of thyroid hormones’ effect
through exosomes has not been reported on to date. However,
elements of the signaling of thyroid hormones, such as
the integrin αvβ3 and the already mentioned PKM2 are
known. PKM2, as reported above, is important for tumor cell
metabolism, helping the switch from oxidative phosphorylation
to the glycolytic pathway, typical of tumor cells. The thyroid
hormone is an inhibitor of PKM2 that catalyzes the last step of
glycolysis producing pyruvate and ATP (88). PKM2 is a tetramer
able to activate STAT3 by phosphorylation, and also SNAP-23,
important for the secretion of exosomes (133).

Other pathways involving integrin αvβ3 can be modulated
by the exosomes, in connection with the delivery of a
cargo of Oviductosome (OVS) to modulate sperm capacitation
and fertility (134, 135). Integrin αvβ3 and heparan sulfate–
proteoglycan in Hepatic Stellate Cells represent new receptors
for the exosomes of these cells (134). In prostate cancer the
integrin αvβ3 has been proposed as an easy marker of this type of
tumor (136).

Embryonic endothelial progenitor cells are able to produce
exosomes through stimulation of folliculogenesis in thyroid cells
due to the expression of laminin−1α (137). It has been proposed
that extracellular vesicles combined with iPSCs (EV-iPSCs) may
represent an easy method to slow down or inhibit liver fibrosis.
As reported before, there are many mechanisms involved in
Hepatic Stellate Cells activation such as cell injury, altered
ECM components, immune defense, metabolic dysregulation,
infection, and membrane signaling pathways such as kinases
and integrin αvβ3. Therefore, possible inhibitors of integrin
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TABLE 1 | Mechanisms of reported and possible chemotherapeutic actions of tetrac/Nanotetrac/Nano-diamino-tetrac.

Action Example Effects References

Chemosensitization Efflux of doxorubicin, P-gp effect; ↓ (81, 99, 117)

Efficiency of chemotherapeutic agents ↑ (124)

Radiosensitization Repair of radiation-induced DSB. Radiation-induced activation of integrin αvβ3 ↓ (101, 125)

Cell survival gene

expression

Antiapoptotic genes (XIAP, MCL-1) ↓ (101, 102)

Proapoptotic genes (e.g., CASP2, BC2L14) ↑ (106)

Stress-defense genes (e.g., HIF-1α) ↓ (5, 106, 122)

Oncogene K-ras WT and mutated ↑ (126, 127)

Cell cycle Cyclins and cyclin-dependent protein kinase genes ↓ (106)

Growth factors

pathways

EGFR gene expression and function ↓ (102, 122)

Vascular calcification, ectopic mineralization ↓ (102, 106, 107)

Wnt/β-catenin ↓ (106)

Cytokines IL-1α, IL-1β, IL-6 ↓ (101, 106)

IL-11 ↑

Chemokines CXCL2, CXCL3, CX3CL1, CCL20, CCL26, CXCL12 ↓ (128, 129)

CXCL10 ↑

miRNA miRNA15A ↑ (101, 104, 106)

miRNA21 ↓ (105)

Immunotherapy Immune checkpoint PD-1/PDL-1, HMGA2 ↓ (116–119)

Modified from Davis et al. (101). ↑ increase, ↓ decrease.

αvβ3 such as tetrac or Nanotetrac could prevent or inhibit the
fibrogenic process (138, 139).

THE FUTURE OF PHYSIOLOGY OR THE
PHYSIOLOGY OF THE FUTURE?

Monolayer cell cultures have long been used to study the
physiological and pathological mechanisms of cells and tissues
or organs and have also shown their limitations in not being
fully comparable to whole tissues, making them a limited model.
That is why, over the years, many different strategies have
been developed to cultivate cells that more closely resemble the
tissue or organ. The technology of 3D cultures has therefore
improved, with the idea of beingmore similar to the structure and
physiology of a tissue that is either healthy or cancerous. These
models are supposed to overcome the limitation of monolayer
cell cultures. Under defined culture conditions, cells may self-
assemble into 3D structures called spheroids. But they may
also reproduce the embryonic development and give rise to
3D cultures called organoids. Both spheroids and organoids
reproduce the morphology and physio-pathological properties of
normal and tumor cells, providing new tools for research, drug
discovery, and precisionmedicine. Among the different strategies
wemention the one developed and reported by Takebe et al. (140)
starting from human induced pluripotent stem cells (iPSCs). For
an extensive review on models for development and diseases
with organoids see (141). The liver is an extensively studied
tissue in the research of biomaterials (141), in particular for the
cytotoxicity of drugs and possible drugs (142). The organoids first
became popular in the 70s up to the 90s and were first used to
study Developmental Biology. Recently, there has been a revival

of organoids as 3D structures derived from stem cells made
from various organs—a specific cell type and self-organizing in
a specific structure (141).

At present the reports showing effects of thyroid hormones

on organoids or spheroids are quite limited. An earlier paper

on Endocrinology shows the modulation by T3 of the mRNA

of 5
′
-deiodinase reported either in primary hepatocytes or on

positively charged dishes for spheroid cultures. The activation

by T3 of mRNA D1 was higher in the spheroid structures than

in primary hepatocytes and was unaffected by the inhibitor of

protein synthesis cycloheximide (143). A few years later the same

group showed an increase of responsiveness to T3 in a spheroid

culture with respect to isolated hepatocytes, while the different
response may involve the Thyroid hormone response element
(TRE) complex (144). Another paper in the same years shows
that in a 3D collagen gel-culture, thyroid cells easily give rise
to folliculogenesis with the proper orientation and polarization,
whereas in the usual monolayer that is not possible (145). A paper
on recent advances in 3D cell cultures assessing liver physiology
and pathology was reported by Calitz et al. (146). For very recent
reviews on 2D, 3D, organoids and spheroids see (147, 148) as well
as an extensive Chapter on liver culture models by LeCluyse et al.
(149). A very interesting work on the construct of hepatocyte
aggregation on chitin-based substrates made of butterfly wings
opens a new area of study with biomaterials (150).

The effects of thyroid hormones and tetrac mediated by
integrin αvβ3 on spheroids made of HuH7 cells integrin αvβ3-
negative HCC, compared to mesenchymal stem cells (MSCs)
invasion, migration and differentiation has been reported by
Schmohl et al. (151) also suggesting a possible therapeutic
approach based on tetrac.
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CONCLUSIONS

Let us summarize the main information available on the role
of thyroid hormones in hepatocyte growth and liver cancer,
one of the world’s more common fatal diseases, and the
research that focuses on therapeutic tools in order to minimize
this burden.

A role of thyroid hormones in the pathogenesis of liver cancer
has been studied for many years and can be due to thyroid
hormones’ status, dysregulation of deiodinases, THR mutations
or integrin αvβ3 dysregulation.

Tetrac and its derivatives, counteracting many actions of
integrin αvβ3, inhibit and prevent many of the weak points of cell
metabolism and functions typical of tumor cells, leading to the

inhibition of tumor cell growth. This could represent a feasible
therapeutic approach for liver cancer as well.

The new strategies of biotechnological research
represented by 2D and 3D culture systems, organoids,
spheroids and biomaterials, studying the mechanisms
relating to thyroid hormones and liver cancer, may
represent new frontiers of models in Physiology and
Physio-pathology research.
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