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cAMP is one of the earliest described mediators of hormone action in response to

physiologic stress that allows acute stress responses and adaptation in every tissue.

The classic role of cAMP signaling in metabolic tissues is to regulate nutrient partitioning.

In response to acute stress, such as epinephrine released during strenuous exercise

or fasting, intramuscular cAMP liberates glucose from glycogen and fatty acids from

triglycerides. In the long-term, activation of Gs-coupled GPCRs stimulatesmuscle growth

(hypertrophy) and metabolic adaptation through multiple pathways that culminate in a

net increase of protein synthesis, mitochondrial biogenesis, and improved metabolic

efficiency. This review focuses on regulation, function, and transcriptional targets of CREB

(cAMP response element binding protein) and CRTCs (CREB regulated transcriptional

coactivators) in skeletal muscle and the potential for targeting this pathway to sustain

muscle mass and metabolic function in type 2 diabetes and cancer. Although the

muscle-autonomous roles of these proteins might render them excellent targets for

both conditions, pharmacologic targeting must be approached with caution. Gain of

CREB-CRTC function is associated with excess liver glucose output in type 2 diabetes,

and growing evidence implicates CREB-CRTC activation in proliferation and invasion of

different types of cancer cells. We conclude that deeper investigation to identify skeletal

muscle specific regulatory mechanisms that govern CREB-CRTC transcriptional activity

is needed to safely take advantage of their potent effects to invigorate skeletal muscle to

potentially improve health in people with type 2 diabetes and cancer.
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INTRODUCTION

Many chronic human diseases are either caused or accompanied by skeletal muscle dysfunction
and loss of muscle mass (1). In obesity and type 2 diabetes, reduced skeletal muscle glucose
uptake and inefficient use of glucose and lipid-derived metabolites contributes to whole body
metabolic dysfunction (2, 3). Reduced skeletal muscle mass also underlies impaired metabolism
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in type 2 diabetes (4). Muscle wasting and metabolic dysfunction
are even more severe in cancer cachexia (5, 6). Although
pharmacologic strategies to reverse these effects through
activating key pro-hypertrophic and inhibiting inflammatory
signaling pathways are being actively investigated (1), GPCR-
activated cAMP signaling is an additional pathway with salutary
effects on skeletal muscle metabolism and growth (7, 8).
Chronic activation of intracellular cAMP signaling, either
through exercise training or chronic administration of agonists
to Gs-coupled GPCRs, results in transcriptional activation of
genes that reduce muscle protein breakdown and increase
mitochondrial biogenesis and metabolism, ultimately promoting
muscle growth, and metabolic function [reviewed in (8)].
Conversely, muscle-specific deletion of Gnas (which encodes
Gαs) in mice causes loss of muscle mass and poor glucose
tolerance in concert with reduced mitochondrial abundance and
function (9).

As in other cell types, the cAMP response element binding
protein (CREB) is activated in response to cAMP signaling and
other intracellular signaling pathways in myocytes (Figure 1).
CREB becomes activated in skeletal muscle after intense exercise
(10–12), fasting (13), nerve activity or muscle depolarization
(10, 14, 15), and necrotizing injury (16). cAMP signaling
simultaneously activates CRTCs (CREB regulated transcriptional
coactivators), which interact with CREB to drive transcription
of cAMP-regulated genes (17). Because of their implicated
functions in muscle hypertrophy and metabolic adaptions to
exercise, CREB, CRTCs, and their target genes represent potential
therapeutic targets to sustain skeletal muscle mass and function
in diabetes and cancer.

This mini-review focuses on the known roles and
transcriptional targets of CREB and CRTCs in regulation
of skeletal muscle function and adaptation. We highlight how
the transcriptional activity of CREB-CRTC regulates muscle
function and explore dysregulation of the cAMP-CREB-CRTC
pathway in skeletal muscles in the context of type 2 diabetes
and cancer cachexia. Finally, we discuss literature showing
that although there is potential to harness these endogenous
pathways to maintain muscle mass and improve function in
both disease states, there are also risks due to diabetogenic
and tumor-promoting roles of CREB-CRTCs in non-skeletal
muscle organs and tumor cells. Identification of skeletal
muscle-specific mechanisms of CREB-CRTC regulation could
allow development of novel therapeutic strategies to target this

Abbreviations: A-CREB, acidic-CREB (dominant-negative CREB); AKT, Protein

Kinase B; AMPK, adenosine monophosphate activated protein kinase; cAMP,

cyclic adenosine monophosphate; CBP, CREB binding protein; CREB, cAMP

response element binding protein; CRFR, corticotrophin-releasing hormone

receptor; CRTC, CREB regulated transcriptional coactivator; FoxO3, forkhead box

protein; GPCR, G Protein-coupled receptor; HDAC, histone deacetylate; IGF-1,

insulin like growth factor 1; IL-6, interleukin 6; JAK, Janus Kinase; MAPK,mitogen

activated protein kinase; MED13, mediator complex subunit 13; MEF2, myocyte

enhancer factor-2; NF-κB, nuclear factor kappa B; NR4A, Nuclear receptor family

4A; PGC-1α, Peroxisome proliferator-activated receptor gamma coactivator 1-

alpha; PKA, Protein Kinase A; PP2A, protein phosphatase 2A; SIK, salt inducible

kinase; STAT, Signal transducer and activator of transcription proteins; TNF-alpha,

tumor necrosis factor alpha; TORC, transducer of regulated CREB activity.

pathway to improve muscle health and avoid off-target effects in
individuals with metabolic disease or cancer.

Literature Search Strategy
The authors conducted independent, unbiased reviews of
published literature using numerous combinations of search
strategies (e.g., CREB or CRTC and cancer, cAMP cachexia,
CRTC metabolism, Gs skeletal muscle, GPCR skeletal muscle)
in PubMed and GoogleScholar. We examined citations within
those articles and subsequent articles that cited them. We sought
association of muscle-expressed Gs-coupled GPCRs with cancer.
Articles with contradictory information were not excluded. We
focused discussion on articles with mechanistic findings related
to skeletal muscle autonomous and non-autonomous functions
of CREB-CRTCs, their target genes and upstream activating Gs-
coupled GPCRs in skeletal muscle hypertrophy, metabolism,
and cancer.

REGULATION OF CREB-CRTC
TRANSCRIPTION FACTORS IN SKELETAL
MUSCLE

cAMP activates CREB through direct PKA-mediated
phosphorylation on serine 133, which can also be phosphorylated
by other kinases [Figure 1; reviewed in (18)]. Phospho-CREB
then recruits the histone acetyltransferase CREB binding protein
(CBP). In addition, cAMP signaling leads to activation of
CRTC co-activators, also known as TORCs (19, 20). CRTCs
are held in latent cytosolic complexes with 14-3-3 proteins
due to phosphorylation (21, 22) by AMPK-related kinases: salt
inducible kinases (SIK1, SIK2, and SIK3) (21, 23), AMPKα1,
AMPKα2 (24), and MARK2 (25). cAMP-PKA signaling inhibits
these kinases, and calcium or growth-factor signaling activates
calcineurin or protein phosphatase 2A (PP2A) (21, 22, 26). The
convergence of these signals results in CRTC de-phosphorylation
and nuclear entry. CRTC2 interacts in transcriptional complexes
with CREB (19), CBP (27, 28), NONO (29), and KAT2B (30)
to stimulate expression of genes containing CREB binding
sites (17, 31).

In pancreatic beta cells, CRTC2 functions as a coincidence
detector of both depolarization (Ca2+ dependent activation of
calcineurin phosphatase) and incretin hormones (cAMP-PKA
inhibition of SIK kinases), culminating in CRTC2 nuclear entry
(21). In cultured skeletal myocytes, CRTCs appear to be regulated
in a similar manner: catecholamines and calcium signaling
synergize to induce CRTC2 and CRTC3 dephosphorylation and
activation (32). The CRTC phosphatase in skeletal muscle has
not been determined. All of the known CRTC kinases are
expressed in skeletal muscle, either at baseline (33, 34) or in
response to stimulus (35), so it will be interesting to examine
CRTC activity in muscles of mice lacking these kinases. Based
on similarity to hepatocytes, in which CRTC phosphorylation
remained largely intact with single genetic knockout of Sik1 (36)
or Sik2 (37) or with triple knockout of Sik2/Ampk-a1/ Ampk-a2
(37), there might be functional redundancy among CRTC kinases
in skeletal muscle.
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FIGURE 1 | CREB-CRTC function in skeletal muscle. Exercise or acute stress activates Gs-coupled GPCRs to stimulate cAMP-PKA signaling. PKA phosphorylates

CREB in the nucleus, leading to CBP recruitment, and phosphorylates and inhibits SIKs, leading to CRTC de-phosphorylation in concert with phosphatase activation

(CaN/PP2A). CREB-CRTC-CBP complexes activate target genes encoding transcription factors (PGC1-alpha, Nr4A family nuclear hormone receptors, JunB),

signaling mediators (SIK1) and myokines (IL-6), which collectively stimulate mitochondrial biogenesis, improve nutrient uptake and metabolism, stimulate hypertrophy

and allow muscle repair. Targeting these pathways in a muscle cell autonomous manner would be expected to have salutary effects on skeletal muscle health and

function in type 2 diabetes and cancer cachexia (Note: the nucleus is not drawn to scale).

CREB-CRTC FUNCTIONS AND TARGET
GENES IN SKELETAL MUSCLE
ADAPTATION AND DYSFUNCTION

Skeletal Muscle Phenotypes in Mice With
Altered CREB-CRTC Function
In adult skeletal muscle, exercise and other catabolic conditions
activate CREB, which is associated with expression of genes
involved in metabolism [(10–12); and Section CREB-CRTC
Target Genes in Skeletal Muscle]. Creb knockout in mice
causes perinatal lethality (38) accompanied by defective
muscle progenitor cell proliferation (39) or no phenotype
due to developmental compensation by related proteins (40).
Transgenic over-expression of dominant-negative CREB (A-
CREB) in postnatal skeletal muscles of mice caused muscle
degeneration that was associated with reduced expression
of MEF2 target genes and was rescued by reintroduction of
SIK1 (34). Unfortunately, the developmental and degenerative
phenotypes preclude the use of these animal models to study
CREB function in muscle hypertrophy or metabolism in adult
animals. Surprisingly, no studies to date have utilized muscle-
specific Cre recombinase drivers with available conditional
knock-out or knock-in alleles to achieve muscle-specific Creb
knockout (41) or inducible A-CREB expression in postnatal
muscles (42). Knock-in of a mild CREB gain-of-function mutant
[CREB(Y134F)] did not cause hypertrophy or patent metabolic
alterations, but did increase myoblast proliferation (16).

All three CRTC proteins are expressed in cultured skeletal
myocytes (32, 43). CRTC2 and CRTC3 proteins are also

expressed in mouse skeletal muscle, where they are activated
(dephosphorylated) in response to intense exercise (32). Unlike
Creb knockout mice, Crtc1, Crtc2, and Crtc3 single knockout
mice develop normally without reported muscle defects (44–
47). Mice lacking Crtc3 in all tissues (47) or selectively in
brown fat and skeletal muscle (48) have reduced adiposity and
increased brown adipose thermogenesis (47, 48). Activation
of CRTC3 in adipose would therefore be expected to worsen
metabolism in people with type 2 diabetes. Indeed, activating
CRTC3 mutations are associated with increased adiposity in
humans (47).

In skeletal muscle, CRTCs also regulate metabolism.

Forced expression of CRTCs in primary myotubes promoted

mitochondrial biogenesis and improved mitochondrial oxidative
capacity via transactivation of Ppargc1a (encoding PGC-1α,

the master regulator of mitochondrial biogenesis) (49). Bruno

et al., established in vivo roles for CRTCs in skeletal muscle
metabolism by demonstrating that transgenic mice with

doxycycline inducible expression of CRTC2 exhibit myofiber

hypertrophy, increased intramuscular glycogen and triglycerides,
and enhanced exercise performance (32).Muscle over-expression
of CRTC2 or CRTC3 also prevented protein degradation, which
was associated with activation of the SIK1-class II HDAC
pathway by transcriptional induction of Sik1 (34, 50) as well
as with increased IGF1-AKT signaling due to transcriptional
activation of Ppargc1a4, encoding PGC-1α4 (51). The authors
suggest that CRTCs mediate transcriptional reprogramming
in skeletal muscle after strenuous exercise by activation of
transcriptional targets (section CREB-CRTC Target Genes in
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Skeletal Muscle) known to drive mitochondrial biogenesis,
myofiber hypertrophy, and energy storage (32). It would be
important to test whether over-expression of CRTC2 or CRTC3
in skeletal muscle in vivo is capable of stimulating mitochondrial
gene expression and oxidative capacity, as in primary skeletal
muscle cells in vitro (49).

CREB-CRTC Target Genes in Skeletal
Muscle
PGC-1alpha
CREB-CRTC complexes bind directly to the gene encoding
PGC-1α (32, 52), which is well-known to drive mitochondrial
biogenesis in skeletal muscle (53). Forced expression of CRTCs
stimulated Pgc-1alpha mRNA levels in skeletal myocytes (32,
49). Interestingly, CRTCs and CREB preferentially associated
with the distal region of the Pgc-1alpha gene in myocytes
(32), which activates expression of the pro-hypertrophic Pgc1-
alpha4 isoform (51). Isoproterenol had a much stronger effect on
CRTC3 occupancy in the same genomic region than on CRTC2,
indicating that the signaling controlling these two isoforms may
diverge in skeletal muscle cells. Notably, CRTC3, but not CRTC2,
is dephosphorylated by PP2A after MAP kinase dependent
priming in a non-muscle cell line (26). It is therefore possible
that CRTC3 is more sensitive to isoproterenol than CRTC2
due to simultaneous activation of Gαs-activated cAMP signaling
(inhibit SIKs) and Gβγ-activated MAP kinase signaling (54)
(enhance PP2A recruitment). Increased expression of both Pgc-
1alpha isoforms in skeletal muscle would be expected to improve
both muscle metabolism and strength in type 2 diabetes and
cancer cachexia.

NR4A Nuclear Hormone Receptors
Nr4a family nuclear hormone receptors are direct CREB target
genes (55–58) that are strongly induced in response to exercise
(in mice, rats, and humans), β-adrenergic receptor activation,
cAMP signaling, or overexpression of CRTCs in muscle cells
(16, 32, 34, 59–63). Transgenic mice with overexpression or
knockout of Nr4a1, Nr4a2, or Nr4a3 have revealed that NR4A
receptors have numerous beneficial effects on skeletal muscle
metabolism and growth (59). For example, NR4A1/Nurr77
supports myogenesis (64), muscle fiber hypertrophy (65), insulin
sensitivity, glucose uptake (66, 67), and lipid metabolism (68).
In mice fed high fat diet, MED13 represses Nr4a2/Nurr1
transcription, which normally directly induces transcription of
Glut4 and additional genes to promote glucose uptake and
utilization (69). NR4A3/NOR-1 stimulates oxidative metabolism
in skeletal muscle. siRNA-mediated knockdown of Nor1 (also
called Nr4a3) in skeletal myocytes reduced palmitate oxidation
(70). Conversely, transgenic expression of NOR-1 in mouse
muscles caused a lean phenotype and increased exercise
endurance, with increased muscle mitochondrial density and
autophagy. At the molecular level, these phenotypes were
associated with increased expression of myoglobin and genes
involved in glycogen storage and aerobic metabolism (60, 71).
Muscle phenotypes have not been reported in viable NOR-1
knockout mice (72).

IL-6
Interleukin-6 (IL-6) is a pro-inflammatory cytokine andmyokine
secreted from many cell types including skeletal muscle, in
which IL-6 has pleiotropic functions (73). Basal or transient IL-6
signaling promotes muscle regeneration and growth in response
to muscle damage, but chronically high IL-6 signaling in hyper-
inflammatory states such as type 2 diabetes and cancer promotes
muscle atrophy through activation of the JAK-STAT pathway in
conjunction with elevated TNF-alpha signaling (74, 75). The Il-
6 gene has a full CREB binding site (58). In C2C12 myotubes,
CREB sustains basal Il6 expression (76) and cooperates with NF-
κB in transcriptional activation of the Il6 promoter in myocytes
treated simultaneously with a beta-adrenergic agonist and TNF-
alpha (77). Muscle Il6 expression also increases after exercise
(62, 76), but it has not been determined whether CREB-CRTCs
regulate Il6 in this context.

JunB
A member of the AP-1 family of transcription factors, JunB
is an immediate early gene induced by CREB (78). In human
skeletal muscle, JUNB expression is induced by exercise (79,
80) or physiologic hyperinsulinemia (81). In mice, JunB is
pro-hypertrophic: dexamethasone-induced atrophy in C2C12
myotubes dramatically reduces JunB expression, and JunB
knock-down reduces muscle mass in vivo, whereas over-
expression stimulates muscle hypertrophy by counteracting
FoxO3 binding to atrogene promoters (82). Although JunB
expression in skeletal muscle has not been directly linked to
CREB activity, it is possible that JunB is part of an anabolic
program induced by CREB-CRTC2 during exercise.

SIK1
Salt inducible kinase 1 (Sik1) is a direct cAMP-regulated CREB
target gene in myocytes and most other cells types (34, 83–85).
SIK1 phosphorylates not only CRTCs but also class II histone
deacetylases (HDACs), thereby indirectly activating MEF2 (34,
86–88). In transgenic mice expressing dominant-negative A-
CREB in skeletal muscle, SIK1 re-expression rescues muscle
degeneration and restores class II HDAC phosphorylation (34).
In cultured myocytes, knock-down of Sik1 mRNA impairs
differentiation in vitro (35). Muscle deletion of the Sik1 catalytic
domain in mice leads to improved muscle glucose uptake after
high fat diet feeding without developmental defects, indicating
that SIK1 regulates muscle metabolism (36). It will be interesting
in future studies to determine how SIK1 regulates muscle
metabolism and whether it is a key CREB-CRTC effector in
metabolic adaptation to exercise.

Potential Therapeutic Value and
Complications of CREB-CRTC Activation
in Type 2 Diabetes and Cancer Cachexia
From the above discussion, it is clear that cAMP signaling
to CREB-CRTCs in skeletal muscle drives gene expression
programs capable of increasing muscle growth, metabolic
efficiency, and exercise performance. Each of these functions
would be beneficial to improve metabolism and overall health
in patients with type 2 diabetes and cachexia. This might imply
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TABLE 1 | Gs-coupled GPCRs in skeletal muscle and tumors.

Receptor Roles in skeletal muscle

hypertrophy/metabolism

Association with cancer

β-

Adrenergic

receptors

(β1, β2, β3)

Glycogen breakdown,

transcription,

excitation-contraction

coupling

metabolic adaption,

hypertrophy (7)

β1 and β3 :
Over-expressed

in breast cancer (89);

contributes to malignancy in

breast (89), prostate (90),

lung (91), and many others

(92)

CRFR2 Inhibit insulin sensitivity

(93)

Reduce Atrophy (94–97)

Inhibits vascularization and

growth of several cancer cell

types; loss is associated with

aggressive renal cancer

(98–100)

Frz7

(Frizzled7)

Hypertrophy (101) Upregulated in hepatocellular

carcinoma, breast cancer,

wilms tumor, gastric cancer,

ovarian cancer, melanoma

(102)

TGR5 Hypertrophy (103) Overexpressed (gastric and

esophageal

adenocarcinomas);

associated with poor

prognosis; promotes growth

and migration in small cell

lung cancer cells (104–106);

protective against renal

cancer cell proliferation (107)

Table indicates muscle phenotypes induced by the indicated GPCRs and the association

of the GPCRs with cancer.

that pharmacologic activation of Gs-coupled GPCRs in skeletal
muscle or pharmacologic blockade of CRTC inhibitory kinases
would have salutary effects on skeletal muscle in people with
these diseases. However, recent reports established that activation
of Gs-signaling as well as CREB-CRTCs in other organs and
in tumor cells would be expected to worsen metabolic disease
and cancer. Therefore, to harness this pathway for therapeutic
benefit, it will be important to identify CREB-CRTC regulatory
mechanisms specific to skeletal muscle.

GPCR Signaling
Several Gs-coupled GPCRs expressed in skeletal muscle have
been documented to promote hypertrophy and to improve
muscle metabolism (Table 1). β2-adrenergic agonists, such as
clenbuterol and formoterol, have shown great promise in
maintaining skeletal muscle mass in animal models, but have
undesirable cardiovascular side effects [reviewed in (7, 108,
109)] that might be avoided by newer-generation agonists
with functional selectivity for skeletal muscle (110). Similarly,
stimulation of CRFR2 with chronic administration of urocortin
2 (94–97) or transgenic expression of urocortin 3 (111) promotes
muscle hypertrophy. However, CRFR2 signaling can either
blunt (93) or augment (111) insulin action in skeletal muscle,
depending on the ligand. Thus, stimulating cAMP signaling
selectively in skeletal muscle, but not liver or heart, through
β2-adrenergic receptors, Frizzled-7 (101), TGR-5 (103) or
urocortin3-CRFR2 signaling (111), might be useful for treatment
of type 2 diabetes.

In sharp contrast, stimulating Gs-coupled GPCRs in cases
of cachexia would be expected to have deleterious effects
on malignancy. Activating mutations of the cAMP-producing
G protein Gαs (Gnas) are observed in ∼5% of all human
tumors (112) and 40–75% of pancreatic cancers (113). The
literature points to a trend of cancer-promoting effects of many
of the GS-coupled GPCRs that drive hypertrophy in skeletal
muscle (Table 1). For example, β1 and β3 adrenoreceptors are
overexpressed in breast tumors, when compared to normal breast
tissue, and non-selective beta-blockers reduced proliferation
indices in early stage breast tumors (89). Similar observations
were made in many other cancers, either through in vitro
studies or analysis of human specimens and correlation of
clinical outcome with administration of beta-blockers (Table 1).
The same is true of Fzd7 and TGR5, which are generally
associated with worse cancer phenotype (proliferation, invasion,
and metastasis) [(102, 104) and Table 1]. Thus, pharmacological
activation of several of the Gs-coupled GPCRs that are expressed
in skeletal muscle would be a poor choice for therapeutic
targeting of muscle loss in cancer cachexia. The notable exception
is CRFR2, which has pro-hypertrophic effects in skeletal muscle
but tumor suppressive effects via inhibition of vascularization
and tumor cell proliferation (98–100).

CREB-CRTCs and SIKs
Activation of CRTC2 or CRTC3 in muscle or myotubes by
over-expression has beneficial effects on myocyte size (32) and
metabolism (49), rendering these proteins potentially promising
candidates for sustenance of muscle mass and function. It would
be important to test whether transgenic expression of CRTCs
in skeletal muscle could overcome atrophy or improve muscle
metabolism in mouse models of cancer cachexia or type 2
diabetes. One novel therapeutic approach could be the use of
bioavailable SIK inhibitors to potentiate nuclear CRTC entry
(85). Currently available SIK inhibitors target all SIKs, and the
most bioavailable inhibitor YKL-05-093 activates CRTC2 and
class II HDACs in mice and stimulates bone formation (114).
YKL-05-093 had no reported effects in lean animals, but SIK
inhibitors might be expected to cause complex metabolic changes
in obese animals due to functions of SIKs in liver, adipose
tissue, and skeletal muscle (36, 37, 83, 115–118). More research
is needed on regulation and functions of CRTCs and SIKs in
skeletal muscle to predict the therapeutic value of targeting this
pathway for type 2 diabetes.

Similar to GPCRs, strategies to pharmacologically activate
CREB-CRTCs for cancer cachexia is questionable because gain
of CREB-CRTC function in tumor cells is strongly associated
with proliferation, survival, metabolic adaptation, and invasion
[comprehensively reviewed in (119)]. The SIKs have emerged as
tumor regulators as well. SIK1 is downregulated in several cancer
types (120, 121) and has been shown to be a tumor suppressor
by activating anoikis (anchorage-dependent cell death) to inhibit
metastasis (120) by suppressing metabolic reprogramming (122)
and epithelial to mesenchymal transitions (123). On the other
hand, SIK2 activity at the centrosome is required for mitotic
spindle assembly and survival of ovarian cancer cells (124, 125). A
SIK2 inhibitor (ARN-3236) synergizes with paclitaxel to improve
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outcome in preclinical ovarian cancer models (126). The effects
of SIK inhibition on muscle mass have not been evaluated, but
due to the pro-oncogenic functions of CRTCs in tumor cells,
strategies to activate CRTCs to increase muscle mass in cancer
cachexia would require identification of skeletal muscle-specific
mechanisms of CRTC regulation.

CONCLUDING REMARKS

Long known for its role as a second messenger coordinating
skeletal muscle nutrient utilization with functional demands,
cAMP has also been appreciated for its ability to stimulate
hypertrophic growth and long-term metabolic adaptation.
CREB-CRTCs are key cAMP effectors that contribute to muscle
adaptation through activation of transcriptional programs
that increase hypertrophic growth, mitochondrial biogenesis,
metabolic efficiency, and muscle performance. Therefore,
targeting CREB-CRTCs could be highly advantageous to sustain
muscle mass and improve muscle function in people with type
2 diabetes and cancer cachexia. However, functions of CREB-
CRTCs in other metabolic tissues as well as in tumor cells present
significant obstacles to developing therapeutic approaches to
safely target this pathway. Targeting CRTCs has the most
potential for improving metabolism in type 2 diabetes, but
should be approached with caution in cancer cachexia due to
oncogenic effects of these proteins. Identification of specific

signaling mechanisms that regulate CREB-CRTCs in muscle cells
could enable the field to harness the potential of these proteins to
improve skeletal muscle health.
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