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Obesity in childhood is the main determinant of whole body reduced insulin sensitivity.

This association has been demonstrated in multiple adult and pediatric cohorts. The

mechanistic link explaining this association is the pattern of lipid partitioning in the face of

excess calories and energy surplus. A tight relation exists between typical lipid deposition

patterns, specifically within the skeletal muscle and liver, as well as the intra-abdominal

compartment and whole body insulin sensitivity. The impact of lipid deposition within

insulin responsive tissues such as the liver and skeletal muscle relates to the ability

of fatty acid derivates to inhibit elements of the insulin signal transduction pathway.

Strengthening the relation of obesity and reduced insulin sensitivity are the observations

that weight gain reduces insulin sensitivity while weight loss increases it. This manifests as

the appearance of cardiovascular risk factor clustering with weight gain and its recovery

in the face of weight loss. Both obesity per se, via the adipocytokine profile it induces, and

low insulin sensitivity, are independent determinants of the adverse metabolic phenotype

characteristic of the metabolic syndrome.
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The metabolic syndrome (MS), also known as “Insulin Resistance Syndrome” or “Syndrome X”
describes clustering of established cardiovascular risk factors in specific individuals (1). These
factors include altered glucose metabolism, elevated triglycerides, reduced HDL-cholesterol,
elevated blood pressure and adiposity (1, 2) and have been shown to directly promote the
development of atherosclerotic cardiovascular disease (3). While the exact definition of the
syndrome in the pediatric age group is still debated, it is well-established that adults who meet
the criteria for the syndrome are at increased risk for the development of type 2 diabetes (T2DM)
and cardiovascular diseases over time, compared to individuals who do not meet these criteria. It
was Gerald Reaven who first proposed the name “insulin resistance syndrome” to this risk factor
clustering as he noticed and later demonstrated that adults with the metabolic syndrome tend to
have lower insulin sensitivity (in other words—insulin resistance) compared to those who do not
(4). Moreover, insulin resistance seems to be the major driving force of the development of the
cardiovascular risk factors characteristic of the syndrome. Other factors such as local inflammation
within relevant tissues and surrounding blood vessels feeding them and systemic subclinical
inflammation may play a substantial role in the development of MS via inducing vaso-regulatory
effects of local lipid deposits around blood vessels, which may contribute both to insulin action
and endothelial dysfunction (5). In the presence of obesity, adipose tissue produces inflammatory
cytokines in excess, whereas secretion of adiponectin is reduced highlighting the interplay between
obesity and inflammation (6). Cardiovascular risk factor clustering (CVRFC, termed by some as
the metabolic syndrome), is not a discrete entity with a single underlying cause and is probably the
result of multiple underlying factors, yet the syndrome identifies individuals at an elevated risk for
accelerated atherosclerosis.
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The insights into the relevance of CVRFC in childhood
stem from the established implications of such clustering in
adulthood. The metabolic risk factors that are used to define
the syndrome are those who have been shown to have a direct
effect on atherosclerosis. There is a strong relation between
the simple clinical markers of atherogenic dyslipidemia, namely
elevated triglycerides and reduced HDL-cholesterol and the
concentration of small LDL-cholesterol particles that carry the
greatest risk of atherogenesis (7). Similarly, hyperglycemia and
elevated blood pressure, even within the prediabetic or pre-
hypertension levels, are also pro-atherogenic (8, 9). Importantly,
while each component has been shown to increase cardiovascular
risk their constellation increases the risk further. Several large
longitudinal cohort studies performed in adults have shown
greater cardiovascular morbidity and mortality in those having
cardiovascular risk clustering compared to those who do not.
For example, data from NHANES (10) in adults older than 50
years showed an odds ratio of 2.07 of cardiovascular disease
for those who had such clustering compared to those who did
not. Similarly, in the Framingham study—cardiovascular risk
factor clustering predicted nearly 25% of cases of new onset
cardiovascular disease over time (11). The DECODE study
demonstrated that in adults without diabetes, cardiovascular risk
factor clustering increases the risk of death from cardiovascular
disease by 2.26 and 2.78 for men and women, respectively
(12). Taken together, these observations in adults show that
clustering of cardiovascular risk factor clearly increases the risk
of cardiovascular disease over time. It is well-established that
longer exposure to obesity in childhood increases the risk for the
presence of such clustering (13) thus it is plausible to assume that
such clustering in obese children increases their risk for earlier
development of cardiovascular morbidity. As indicated above,
the postulated mechanistic driving force of CVRFC in childhood
as well as adulthood is insulin resistance.

Insulin resistance describes a reduced effect of insulin on
its target tissues. This reduced effect may be limited to some
tissues while being preserved in others and can also be specific
to part of the insulin signal transduction pathway but not to
other parts of it within the same tissue (14). For example, insulin
receptors are widely distributed in the body in multiple tissues
such as the traditional target organs liver and muscle as well
as in tissues such as the kidney and the ovaries. In skeletal
muscle, insulin’s main role is to promote trafficking of the glucose
transporter GLUT-4 to the cell membrane in order for glucose to
enter into the myocyte. Muscle insulin resistance thus manifests
as lower GLUT-4 expression on the membrane in response to
insulin leading to reduced glucose uptake (15). Insulin resistance
within the signal transduction pathway may be present in muscle
while being entirely normal in the ovary (16). Within the liver,
resistance may be present in in segments of the pathway relevant
to glucose metabolism (such as suppression of glycogenolysis and
gluconeogenesis) but not in those related to lipid metabolism and
proliferation (17). This will manifest as reduced suppression of
hepatic glucose production along with an increase of de-novo
lipogenesis and VLDL production. In adipose tissue, the effect
of insulin is to suppress lipolysis and adipose insulin resistance
manifests as accelerated lipolysis (18).

There are multiple causes for the development of insulin
resistance. These include a genetic background such as that
observed in lean and healthy young adult offspring of patients
with T2DM (19). An additional factor relevant to obese
adolescents that contributes to transient reductions of insulin
sensitivity is the pubertal period. The hormonal changes of
puberty induce a ∼33% reduction of whole body insulin
sensitivity that reverts to basal levels upon sexual maturation
(20). The effect of puberty on insulin sensitivity is suggested
to be induced by growth hormone which causes increased
lipolysis thus enhancing delivery of free fatty acids to skeletal
muscle and liver. Supporting this hypothesis are the observations
that in patients with growth hormone deficiency—insulin
sensitivity is increased (21) while treatment with exogenous
growth hormone in such patients reduces insulin sensitivity (22).
Skeletal muscle contraction promotes GLUT-4 trafficking to the
myocyte membrane independent of insulin thus accelerating
glucose uptake (23). Increased physical activity, both aerobic and
anaerobic, thus increases insulin sensitivity by this mechanism
and by increasing skeletal muscle mitochondrial content (24)
while lack of physical activity results in a marked reduction
of insulin sensitivity (25). An additional factor that reduces
insulin sensitivity is acute inflammation as observed during acute
infections and trauma as well as the use of medications such as
glucocorticoids (26, 27).

Of note, the relationship of BMI and insulin sensitivity
has ethnicity-specific nuances. These nuances manifest- as
differences in insulin sensitivity per comparable body habitus and
as different degrees of CVRFC per given insulin sensitivity. For
example—it has been shown that Hispanic adults are less insulin
sensitive than Caucasians with similar BMI (28). Similarly, non-
Hispanic Caucasians and African Americans have greater insulin
sensitivity compared to Asians. In the same study, triglyceride
levels were inversely associated with insulin sensitivity in all
participants, yet for any given degree of insulin sensitivity,
African Americans had the lowest triglyceride concentrations
(29). These observations emphasize that while the mechanistic
relations of obesity and insulin sensitivity and the impact of
insulin sensitivity on CVRFC are universal in nature, their
strength and metabolic manifestations differ by ethnicity and
make individual patient assessments particularly tricky.

Taken together, the above mentioned factors may all
contribute to reductions of insulin sensitivity in childhood to
some degree yet they are typically not the main determining
factor of the development of significant insulin resistance. The
main factor associated with insulin resistance in childhood and
adolescence is obesity.

THE PATHOPHYSIOLOGY OF INSULIN
RESISTANCE AND ITS RELATION TO LIPID
PARTITIONING

It has been shown in multiple large cohorts across various
ethnic backgrounds and age groups that insulin sensitivity is
negatively correlated with body mass index (BMI, a crude
measure of the degree of obesity). Having said that, a high
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BMI and severe obesity in childhood in an individual child
do not necessarily confer the presence of very low insulin
sensitivity. It is well-established that lipid partitioning, i.e., the
pattern of lipid deposition, is a stronger determinant of whole
body insulin sensitivity than the degree of obesity per se (30).
Lipid partitioning in this context refers to the intracellular
accumulation of lipid within cells of insulin responsive tissues
such as the liver and skeletal muscle. Such intracellular
accumulation renders cells vulnerable to the molecular effects of
fatty acid derivates that may interfere with the normal insulin
signal transduction pathway. Fat can be stored in extracellular
depots such as the subcutaneous area and can also be stored
within cells of insulin responsive tissues such as skeletal muscle
and liver. An additional fat storage site is the intra-abdominal
(visceral) compartment. In the context of energy surplus, lipid
deposition within insulin responsive tissues, such as liver and
muscle, has been shown to negatively affect the glucose related
portions of the insulin signal transduction pathway (17). In
this scenario, once the favorable fat depot (subcutaneous fat)
exceeds its storage capacity, ectopic accumulation of lipid within
the liver and skeletal muscle triggers molecular pathways that
impair insulin signaling (15). In addition, storage of fat within the
visceral compartment is associated with and adverse metabolic
phenotype characterized by increased inflammatory cytokines
further reducing insulin sensitivity and sub-clinical inflammation
along with an accelerated flux of free fatty acids into the liver
resulting in intra-hepatic lipid deposition (17). The absolute
threshold above which normal lipid accumulation becomes
pathological and induces adverse effects is unknown. Some
propose that is it the ratio of visceral to subcutaneous fat rather
than the absolute amount of visceral fat that determines the
metabolic impact. Studies in adults who lost weight following
bariatric surgical procedures hint to the presence of such
threshold by showing that its level before weight loss is the
strongest determinant of recovery from diabetes, dyslipidemia
and hypertension during weight loss (31).

The presence of fat within the abdominal compartment
and insulin responsive tissues represents part of normal
physiology as it serves as an essential source of energy and
heat production. Although not clearly defined, there probably
is a threshold above which lipid accumulation within insulin
responsive tissues or the intra-abdominal compartments turns
from advantageous to deleterious (32). This theoretical threshold
may be individual and based on the specific tissue capacity
to metabolize lipids and their derivates. Upon passing this
threshold, as typically observed in states of energy surplus
such as childhood obesity, several molecular mechanisms within
muscle, liver and adipose tissue explain the development of
insulin resistance. The molecular mechanism leading to altered
insulin-stimulated glucose transport in skeletal muscle and liver
can be attributed to increases in intra-myocellular derived lipid
metabolites such as fatty acyl CoAs and diacylglycerol (DAG)
which activate a specific serine/threonine kinase cascade causing
Ser/Thr phosphorylation of insulin receptor substrate (IRS)-1
and leading to defective insulin signaling (33). This leads to
reduced skeletal muscle glucose uptake and to a reduction of liver
glycogen synthesis and reduced suppression of gluconeogenesis.

In most cases and specifically in childhood, skeletal muscle
insulin resistance precedes the development of liver insulin
resistance and leads to increased flux of intestinal derived
circulating glucose to the liver. In the face of an increased
glucose flux, the liver responds by increasing the process of
de novo lipogenesis which leads to increased intrahepatic fat
as well as greater circulating fatty acids and triacylglycerol. In
parallel and independently, macrophage infiltration into white
adipose tissue (intra-abdominal but also subcutaneous) results
in adipose insulin resistance and leads to a shift in the balance
toward greater lipolysis and lower lipogenesis. The liver thus
faces an increased free fatty acid flux and this similarly leads
to greater triglyceride synthesis and to systemic hyperlipidemia
due to increased fatty acid esterification. The accelerated adipose
tissue lipolysis and free fatty acid flux into the liver also
causes stimulation of hepatic gluconeogenesis via activation
of pyruvate carboxylase leading to under-suppressed hepatic
glucose productionmanifesting as fasting as well as post-prandial
hyperglycemia. As indicated above, insulin resistance within the
tissues may develop as a result of intracellular accumulation
of lipids. It has been shown in obese children that greater
degree of obesity is associated with greater deposition of lipids
within muscle (34) and liver (35) and that increasing obesity
is associated with lower insulin sensitivity of adipose tissue
itself (18). Importantly, macrophage infiltration of subcutaneous
and intra-abdominal fat depots induces local and systemic
sub-clinical inflammation and is tightly related to an adverse
lipid partitioning profile in obese adolescents (36). Thus, in
obese children and adolescents, the interplay of skeletal muscle,
liver and adipose tissue insulin resistance, tightly linked to the
lipid partitioning profile and mediated by signaling of multiple
factors such as free fatty acids, leads to the development of
glucose and lipid related alterations that are components of the
metabolic syndrome.

As shown in Figure 1, the combination of multiple
contributing factors (such as puberty, ethnic background, stress
etc.) in the obese child along with an adverse lipid partitioning
pattern characterized by incapacity of the subcutaneous fat to
store excess lipid leading to intra hepatic, intra muscular, and
visceral lipid deposition—leades to reduced insulin sensitivity
and the development of cardiovascular risk factor clustering.

RELATION OF OBESITY IN CHILDHOOD
AND INSULIN RESISTANCE

The relation of childhood obesity and insulin resistance to
cardiovascular risk factor clustering (CVRFC), namely the
metabolic syndrome, is well-established. Using a conservative
definition of the syndrome, it was demonstrated that in a
larger multi-ethnic cohort of obese children and adolescents, the
prevalence of the syndrome independently increased with the
degree of obesity as well as with rising degree of insulin resistance
(37). Across a spectrum of BMIs, each half unit of the BMI z-
score increased the risk of meeting the criteria of the syndrome
by 55% (HR = 1.55, 95% CI 1.16–2.08). Independent of the
degree of obesity, each additional unit of HOMA-IR (homeostatic
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FIGURE 1 | Obesity in childhood along with a contribution of additional factors (such as pubertal hormonal changes, specific ethnic backgrounds, exposure to stress

among others) may have different metabolic/clinical results, based on the flux and deposition of excess lipid. (A) A favorable lipid partitioning pattern in which

subcutaneous fat is capable of storing excess lipids and insulin responsive tissues (muscle and liver) are protected from excess lipid deposition. (B) Subcutaneous fat

is incapable of storing excess lipid resulting in increased deposition of lipid in insulin responsive tissues leading to insulin resistance of these issues, specifically in

pathways related to glucose metabolism. This results in the development of cardiovascular risk factor clustering (CVRFC) and manifests as accelerated atherogenesis.

model for assessment of insulin resistance, a surrogate of whole
body insulin resistance calculated from fasting glucose and
insulin concentrations) increased the risk for the presence of the
syndrome by 12% (HR= 1.12, 95%CI= 1.07–1.18). Importantly,
obesity and insulin resistance independent of each other within
risk models were significant predictors of the presence of
syndrome, highlighting their individual roles in its development.
Using NHANES data of overweight and obese children and
adolescents (38), it was shown that values for some, but not all,
cardiovascular risk factors were higher in those with increasing
severity of obesity. That study also showed that upon controlling
age, race and sex, greater severity of obesity increased the risk
for the presence of lower HDL-cholesterol levels, high systolic
and diastolic blood pressure and elevated high triglycerides. In a
population based study it has also been shown that adolescents
within the upper 1 centile (>99% centile) of body mass index
have a significantly greater risk for having cardiovascular risk
factor clustering compared to those with lower degrees of obesity
(39). In contrast, in an obesity clinic derived cohort (40) it was
shown that indeed, greater adiposity is associated with greater
risk of cardiovascular risk factor clustering yet that this risk tends
to plateau in those with BMIs >40 kg/m2. This observation
implies that up to a certain degree of adiposity, favorable
lipid partitioning, namely greater subcutaneous rather than
intra-abdominal fat depots, may allow maintaining relatively
reasonable degrees of whole body insulin sensitivity. Above a
certain threshold of adiposity, the limitations of lipid storage
in the subcutaneous compartment are probably achieved and
some degree of lipid deposition above the metabolically normal
within insulin responsive tissues occurs. The ability of tissues
such as liver and muscle to handle excess lipid deposition
depends on the amount and performance of mitochondria

within them. Importantly, even within an intracellular lipid
deposition level that otherwise would be handled effectively
without the development of significant deleterious effects on
insulin signal transduction, “second hits” that affect these
metabolic pathways may have a major impact. For example,
pubertal maturation is a transient normal physiological process
characterized by increased concentrations of growth and sex
hormones. Puberty is known to transiently reduce whole body
insulin sensitivity by ∼30%, regardless of the degree of obesity
(20). An obese child who already has some degree of insulin
resistance yet is able to compensate appropriately by increasing
insulin section and maintaining euglycemia may somewhat
decompensate when entering puberty, where an additional
metabolic burden occurs. Similarly, other factors that reduce
insulin sensitivity such as exposure to corticosteroids or acute
stress may unmask underlying insulin resistance that was
previously well-compensated.

The impact of obesity on the development of insulin resistance
and the presence of cardiovascular risk factors is not simply
related to the presence but also to the length of exposure to
excess adiposity. Specifically, earlier onset and longer duration of
obesity are associated with greater risk for the presence of insulin
resistance (13). Childhood obesity tends to track into adulthood,
with up to 80% of obese children will eventually become obese
adults (41), thus early onset obesity has a stronger impact on the
deleterious potential effects of insulin resistance.

While the definitions of the metabolic syndrome in the
pediatric age group are still in active debate, most analyses
used them in large cohorts of children and adolescents with
a full spectrum of anthropometric indices (from lean to
morbidly obese). In the NHANES cohort—regardless of the
definition used, the prevalence of the metabolic syndrome in lean
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adolescents was negligible (42). Similarly, the European IDEFICs
group tested multiple definitions of the syndrome in a large
cohort of children and showed that regardless of the definition
used, the prevalence of the metabolic syndrome in lean children
and adolescents is negligible (43). A recent Korean publication
showed the same phenomenon in Korean adolescents, in which
regardless of definitions used—lean children and adolescents did
not meet criteria for the syndrome (44). These observations
indicate that insulin resistance driven metabolic alterations are
very rare in non-obese children and adolescents and further
highlight the major role of obesity as the driver of the
development of metabolic syndrome in childhood.

IMPACT OF WEIGHT DYNAMICS ON
INSULIN SENSITIVITY AND COMPONENTS
OF THE METABOLIC SYNDROME IN
OBESE CHILDREN

One would expect that if obesity is indeed the main cause of
the presence of insulin resistance driven metabolic syndrome
in children—weight loss should have a protective effect against
the syndrome. Indeed, multiple studies have shown that weight
loss achieved via lifestyle modifications (diet and exercise) leads
to reversal of each component of the metabolic syndrome
in childhood. Weight loss following lifestyle modification
interventions has been shown to improve insulin sensitivity
and to normalize several components of the syndrome.
Multiple studies from across the world using a broad range
of interventions that combine dietary modifications, physical
activity and family therapy have demonstrated that that modest
weight loss can result in a significant improvement of the
metabolic phenotype. For example—a modest weight loss of
∼7 kg in adolescents with a BMI of∼35 kg/m2 and HOMA-IR of
∼5 at baseline resulted in a 1.5 unit HOMA-IR reduction (∼30%
improvement of insulin sensitivity) (45). Using OGTT derived
indices of whole body insulin sensitivity demonstrated a similar
magnitude of improvement (46). In a clinic based population of
obese adolescents, it has been shown that a reduction of 0.30
BMI SD is associated with significant reductions of intra-hepatic
and intra-muscular fat deposition (47) and tight and significant
relation was demonstrated between BMI-z score reduction and
insulin sensitivity increase (48). It has also been shown that
an intensive intervention focused on exercise induces a weight
reduction in obese children and adolescents and is associated
improvement of insulin sensitivity but also an improvement
of a clinical biomarker of atherogenesis such as intima-media
thickness (49).

The above described studies suggest that the magnitude
of BMI SD score reduction in obese adolescents is directly
associated with the improvement in insulin sensitivity. The
amount of weight needed to induce changes of insulin sensitivity
that translate to improvement of clinical risk markers is usually
in the range of 0.25 BMI SDs with those achieving >0.50 BMI
SDs reduction showing the greatest benefit (50, 51). Importantly,
multiple studies have shown that such improvements may
be sustained several months following the completion of the

program. The components of the metabolic syndrome that tend
to improve most (together with insulin sensitivity) are fasting
triglycerides, indices of glycemia and systolic blood pressure.

The significant long-term morbidity associated with obesity
in the pediatric and adolescent population has also led to more
aggressive treatment protocols, including surgical management.
In parallel with the growing popularity of bariatric procedures in
adult obese patients, there has been a growing body of evidence
regarding their impact when performed in obese adolescents.
These procedures differ in their relative combination of
mechanical and hormonal effects yet can be evaluated in
this context as a group in regards to their effects on body
weight and whole body insulin sensitivity. In the Teen-LABS
consortium prospective, multi-center, observational study, data
from 242 adolescents reveled a significant weight loss (26–28%)
post-surgery (gastric bypass and sleeve gastrectomy) that was
associated with remission of diabetes in 95% of patients, and
improvement in dyslipidemia (66%) and hypertension (74%)
(52). Insulin resistance was not directly measured in this study
yet using the surrogate of HOMA-IR showed a reduction of
insulin resistance by a 3-fold magnitude (53). Similarly, a
recent publication from Sweden (the AMOS study), reported
the 5-year outcomes following RYGB surgery in adolescents,
as compared with conservative treatment (54). This study
also reported significant weight loss, which was maintained
for 5 years and associated with a 74–100% resolution of the
relevant comorbidities including in the incidence of diabetes,
disturbed glucose intolerance, hypertension, dyslipidemia,
inflammatory markers, and abnormal liver enzymes. Similar
to TEEN-Labs, insulin sensitivity was not directly measured
yet fasting insulin in this case dropped by a roughly 3-fold
magnitude following the drastic weight loss. It should be
noted that such clinical benefits should be balanced with the
potential co-morbidities associated with surgical interventions
such as the need for additional surgical interventions
(25% of subjects in the AMOS study) and nutritional
deficiencies (72%).

Weight gain is children provides the “other side of the coin”
in regards to impact on whole body insulin sensitivity and
its clinical correlates. In obese children, further weight gain
is associated with a significant reduction in insulin sensitivity
along with worsening of all components of the metabolic
syndrome (55). Specifically, reductions in insulin sensitivity that
were tightly and significantly related to weight gain emerged
as the best predictors of deterioration of glucose tolerance
(56). Importantly, longitudinal changes of insulin sensitivity are
strongly related specifically to fat mass accrual over time (57),
highlighting the mechanistic role of adipose tissue excess in
the development of insulin resistance. The relation of weight
dynamics and insulin sensitivity is well-described when intensive
anti-obesity interventions are evaluated upon completion and
their sustainability determined following a longer follow up.
In such cases, weight loss immediately upon completion of a
successful intervention parallels improvement of surrogates of
insulin resistance (fasting insulin) yet upon weight regain on
the later follow up—insulin resistance returns to its baseline
level (58).
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SUMMARY

Obesity in childhood is the main determinant of whole
body reduced insulin sensitivity. Weight gain reduces insulin
sensitivity and weight loss increases insulin sensitivity. Both
obesity per se and low insulin sensitivity are independent
determinants of the adverse metabolic phenotype characteristic
of the metabolic syndrome. The impact of obesity on metabolism
is modulated by the lipid partitioning patterns yet it is accurate to

say that increased adiposity is associated in most children with
some degree of insulin resistance and that it is the strongest
predictor of the presence of cardiovascular risk factors in this
age group.
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