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Spinal and bulbar muscular atrophy (SBMA) is an X-linked motoneuron disease (MND)

caused by a mutant androgen receptor (AR) containing an elongated polyglutamine

(polyQ) tract. ARpolyQ toxicity is triggered by androgenic AR ligands, which induce

aberrant conformations (misfolding) of the ARpolyQ protein that aggregates. Misfolded

proteins perturb the protein quality control (PQC) system leading to cell dysfunction and

death. Spinal cord motoneurons, dorsal root ganglia neurons and skeletal muscle cells

are affected by ARpolyQ toxicity. Here, we found that, in stabilized skeletal myoblasts

(s-myoblasts), ARpolyQ formed testosterone-inducible aggregates resistant to NP-40

solubilization; these aggregates did not affect s-myoblasts survival or viability. Both

wild type AR and ARpolyQ were processed via proteasome, but ARpolyQ triggered

(and it was also cleared via) autophagy. ARpolyQ reduced two pro-autophagic proteins

expression (BAG3 and VCP), leading to decreased autophagic response in ARpolyQ

s-myoblasts. Overexpression of two components of the chaperone assisted selective

autophagy (CASA) complex (BAG3 and HSPB8), enhanced ARpolyQ clearance, while the

treatment with the mTOR independent autophagy activator trehalose induced complete

ARpolyQ degradation. Thus, trehalose has beneficial effects in SBMA skeletal muscle

models even when autophagy is impaired, possibly by stimulating CASA to assist the

removal of ARpolyQ misfolded species/aggregates.
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INTRODUCTION

Spinal and bulbar muscular atrophy (SBMA) is an inherited
X-linked motoneuron disease (MND) linked to a CAG triplet
repeat expansion present in the exon 1 of the gene coding
for the androgen receptor (AR) (1). Because of that, the AR
protein carries an elongated polyglutamine (polyQ) tract in its
N-terminus. In normal individuals, the polyQ tract is comprised

between 9 and 37 Qs with an average value of 22, but SBMA

patients have a polyQ tract longer than 38 Qs (ARpolyQ) with
a maximum of 68 Qs observed so far in some patients affected by
a pathology characterized by an unusual early onset (2, 3). The
physiological role of the polyQ tract is still largely debated, but
the region could act as a transcriptional regulatory domain (4–
6). Other eight totally unrelated proteins presenting expanded
CAG/polyQ repeats have been involved in neurodegenerative
diseases (CAG/polyQ diseases) (7). Thus, the polyQ expansion is
likely to confer a gain of neurotoxic function(s) to these mutant
proteins. Indeed, the polyQ tract induces the acquisition of
aberrant protein conformation (misfolding) to the host proteins
making them prone to aggregate. Misfolded proteins affect the
protein quality control (PQC) system functioning and, in SBMA,
this event occurs in the cells expressing high levels of ARpolyQ.
In fact, AR is abundantly expressed in motoneurons located in
the anterior horns of the spinal cord and in the brain stem,
as well as in sensory neurons of the dorsal root ganglia. These
neurons degenerate in SBMA leading to atrophy of bulbar,
facial and limb muscles, and in sensory function alterations (8–
14). Also, non-neuronal cells, like the motoneuron-controlled
skeletal muscle cells, are directly affected by mutant protein
toxicity. Indeed, even if originally classified as a typical MND,
due to the relevant involvement of muscle tissue, SBMA has been
reclassified as neuromuscular disease (15–26). The involvement
of the muscle cells is rather complex. The atrophy of muscle
cells may result from the loss of innervation arising from
affected motoneurons and/or may be a direct consequence of
ARpolyQ proteotoxicity on skeletal muscle cells. In fact, like
spinal cord motoneurons and dorsal root ganglia neurons, also
skeletal muscle cells are post-mitotic cells highly sensitive to the
presence of misfolded species of ARpolyQ (27). Several evidences
obtained initially in SBMA animal models support the direct
involvement of muscle in the pathogenesis of SBMA, since the
inhibition of AR production selectively in muscle correlates
with an amelioration of the phenotype in mice; this notion has
been proposed to be valid also in SBMA patients (24, 28, 29).
Even human wild type AR (wtAR) overexpressed in mouse
skeletal muscle induces several alterations normally observed
in SBMA (16, 18, 30, 31). In addition, the downregulation
of ARpolyQ levels specifically in skeletal muscle, by mean of
antisense oligonucleotides (ASOs), results in prolonged survival
in different SBMAmousemodels, proving ARpolyQ direct action
on muscle (25, 26, 32, 33); also, the restricted overexpression
of ARpolyQ in muscle cells determines a delay of the SBMA
onset in mouse models. Moreover, muscle samples from SBMA
patients show dysregulation of several important pathways such
as mitochondrial turnover, or the neuromuscular transmission
at birth with an increased expression of the neonatal isoform

of acetylcholine receptor (34). A major aspect of SBMA is that
castration completely rescues SBMA phenotype in male mice,
ascribing SBMA onset to testosterone activation of ARpolyQ
(35–38), even if some early symptoms could appear in an
androgen-independent manner (39). Muscle is the typical direct
target of the anabolic androgenic activity of the AR (40, 41),
and, thus, testosterone-triggered ARpolyQ toxicity may sensitize
skeletal muscle cells to “toxic” ARpolyQ conformations, which
cause ARpolyQ aggregation. In addition, testosterone induces the
translocation of misfolded ARpolyQ into the nucleus where the
protein exerts most of its toxicity (42, 43). These aggregates may
not be toxic per se (44), but their presence in cell environment can
lead tomany cellular dysfunctions. However, misfolded ARpolyQ
are likely to be formed soon after the release from HSPs which
occurs in the cell cytoplasm, and there is the possibility to clear
them as soon as they are formed prior to their migration into the
cell nuclei. A typical cytoplasmic degradative process which may
prevent misfolded ARpolyQ accumulation, or aberrant nuclear
migration, is autophagy. Unfortunately, in the cytoplasm the
ARpolyQ protein may block the autophagic flux due to misfolded
proteins overload (45–51). Autophagy is considered one of the
most important degradative system in cells, since its impairment
in neurons leads to their death (52, 53). Autophagy is based
on the formation of autophagosomes that entrap the waste
material which will be then degraded when autophagosomes fuse
with lysosomes (54). Indeed, by using trehalose, a well-known
activator of the autophagy master regulator transcription factor
EB (TFEB) (55, 56), to restore a normal autophagic flux in SBMA
neuronal models, we found an improved clearance of misfolded
ARpolyQ and the prevention of its aggregation (49, 51, 56),
particularly in motoneuron (57–59).

The importance of a functional autophagy flux in SBMA
is also sustained by several studies performed in animal and
cell models of SBMA (50, 60, 61). In particular, autophagy is
dysregulated in muscles of AR113Q knock-in SBMA mice (19,
22, 26), and this dysregulation includes alteration of TFEB, and its
physiological antagonist ZKSCAN3 (22), as well as TFEB-target
genes (coding for LC3, VPS11, VPS18 and LAMP1), both in mice
and in patients (22). Notably, the inhibition of BECN1/Beclin1-
mediated autophagy activation in AR113Q knock-in SBMA
mice reduces skeletal muscle atrophy, extends survival and
improves the phenotype, while over-activation of autophagy
worsens phenotype (19). Thus, a crucial point when considering
autophagy is that its levels of activation must be finely tuned,
and, thus, any autophagy stimulator must be able to prevent
accumulation of harmful material preserving cell’s functionality.
In this scenario, autophagic clearance of ARpolyQ in skeletal
muscle, and how this is related to alternative degradative systems
could have a high relevance. However, autophagy works in
conjunction with the ubiquitin-proteasome system (UPS) in the
removal of misfolded ARpolyQ, and its aggregated forms.

Interestingly, skeletal muscles of SBMA mice also display a
high activation of Tgfb1, Ppargc1a, Pax7, Myog, E2-ubiquitin
ligase Ube2q1, but not of Myod, and of two E3-ligases
(Trim63/Murf -1 and Cul3). We found that the skeletal muscle
of SBMA mice are characterized by a dramatic perturbation
of several components of the autophagic pathways (Becn-1,
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Atg10, Sqstm1/p62, Lc3), particularly those involved in the
peculiar autophagic process now recognized as chaperone-
assisted selective autophagy (CASA) (56, 61–72), like the CASA
complex components: the small heat shock protein (HSP) B8
and BAG3, which in cooperation with the co-chaperone BAG1
control the correct routing of misfolded proteins to clearance
(61). The Hspb8, Bag3 and Bag1 gene are all iper-induced
in skeletal muscle of SBMA mice, and the Bag3:Bag1 ratio
is increased in these muscles (73). Of note, the equilibrium
between UPS and autophagy is critical to maintain the regular
misfolded ARpolyQ clearance in SBMA (61). The molecular
players regulating the equilibrium that re-routes substrates to
UPS or autophagy are BAG1, which mediates UPS clearance
of clients, and BAG3 which controls autophagic clearance of
clients (46, 48, 49, 61, 68, 72, 74). BAG3 interacts (in a 2:1 ratio)
with HSPB8, and the complex reduces ARpolyQ aggregation, by
enhancing its solubility and clearance acting as an autophagy
facilitator (49, 61). In this process HSPB8/BAG3 complex needs
to interact with HSC70/CHIP dimer and the client misfolded
protein, allowing its ubiquitination for SQSTM1/p62-mediated
insertion into autophagosomes (63, 65). Only few studies aimed
to unravel the involvement of the HSPB8-BAG3 and BAG1
systems in SBMA skeletal muscle (73), but the identification of
specific autophagy related molecular target might represent a
therapeutic valuable strategy for counteracting ARpolyQ toxicity
(73). Notably, bothHSPB8 and BAG3mutations have been linked
to neuromuscular disorders suggesting that they may be deeply
involved in the regulation and in the control of the proteotoxic
response of muscle cells (70, 71, 75–79).

For all these reasons, in this study, we have provided an
extensive characterization of the autophagic activation, the role
of the CASA complex and the HSPB8/BAG3 machinery as well
as of the BAG1 co-chaperone in the PQC system response in a
SBMA muscle cellular model.

MATERIALS AND METHODS

Chemicals
Testosterone; Z-Leu-Leu-Leu-al or MG132; Bafilomycin A1
from Streptomyces griseus; D-(+)-Trehalose dihydrate were all
obtained from Sigma-Aldrich (St. Louis, MO, USA).

Cell Cultures, Treatments, and Transfection
Immortalized mouse myoblast C2C12, stably transfected,
respectively, with cDNA encoding the human full
length wt AR (with 24 Qs = ARQ24), or the mutant
AR (with elongated polyQ of 100 Qs = ARQ100),
were obtained by infection with the Lentiviral vector
#945.PCCL.sin.cPPT.SV40ployA.eGFP.minCMV.hPGK.deltaLN
-GFR containing the human cDNA encoding the ARQ24 or the
ARQ100 (s-myoblasts) (80). After transfection, cells were sorted
using the GFP fluorescence to identify positive cells. Sorted cells
of both lines were cultured with DMEM high glucose medium
(Euroclone, Pero, MI, Italy) supplemented with 1mM glutamine
(Euroclone), (30µg/mL) penicillin [SERVA, Electrophoresis
GmbH, Heidelberg, Germany (64µg/mL)] streptomycin
(SERVA), and 10% charcoal-stripped fetal bovine serum

(CS-FBS) (GIBCO, Thermo Scientific Life Sciences Research,
Waltham, MA, USA), to deplete hormones contained in the
serum. Basal C2C12 cells were grown in medium containing
unstripped serum. Testosterone was added in presence of
CS-FBS. Cells were regularly maintained at 37◦C, with 5%
CO2, and propagated after trypsin (Euroclone) dissociation as
previously described (81). Cells were treated with testosterone
(10 nM) for 48 h (ethanol was used as control); MG132 (10µM)
for 16 h (DMSO was used as control); Bafilomycin A1 from
Streptomyces griseus (100µM) for 16 h (DMSO was used as
control); D-(+)-Trehalose dihydrate (100mM) for 48 h (diluted
directly in the culture medium), as detailed in figure legends.

Lipofectamine R© 2000 Transfection Reagent (Thermo
Scientific Life Sciences Research) was used to transfect cells,
using 2 µL for transfecting 1 µg of DNA. 12-well plates
were transfected with 1 µg of DNA, while 24-well plate were
transfected with 0.5 µg of DNA. After 5 h, medium was replaced.

The following plasmids were used: p5HBhARQ112 (kindly
provided by Dr. A.P. Lieberman, University of Michigan,
Ann Harbor) here referred as ARQ112; pARQ161HA,
pARQ1121HA (kindly provided by Dr. Diane Merry, Thomas
Jefferson University, Philadelphia); pCI-HSPB8 encoding
human HSPB8, pCI-neo-6xHisBAG3 encoding the full-length
form of human BAG3 and pCDNA/HA-BAG1 encoding the
human BAG1, were all kindly provided by Prof. H. H. Kampinga
(Groeningen University, Groeningen, The Netherlands); pEGFP-
N1 (Clontech-Takara Bio, Saint-Germain-en-Laye, France) was
utilized to determine transfection efficiency.

PBS and NP-40 Protein Extraction
PBS extracts: cells were plated in 12-well plate at a density of
65,000 cells/well, and the day after plating, cells were transfected
and/or treated. At the end of the experiment, cells were harvested,
centrifuged (100 x g; 6min; 4◦C), and diluted in 60µL of
PBS (Euroclone) added of protease inhibitor cocktail (Sigma-
Aldrich), containing individual components including AEBSF at
104mM, Aprotinin at 80µM, Bestatin at 4mM, E-64 at 1.4mM,
Leupeptin at 2mM and Pepstatin A at 1.5mM. After slight
sonication using Bandelin Sonoplus Ultrasonic Homogenizers
–HD 2070, protein content of each sample was quantified by
bicinchoninic acid (BCA) assay (Euroclone).

NP-40 extracts: cells were plated in 6-well plate at a density
of 130,000 cells/well. After treatments, cells were harvested,
centrifuged (100 x g; 6min; 4◦C), and diluted in 65 µL in
NP-40 extraction buffer (composition: 150mM NaCl (Sigma-
Aldrich); 20mM TrisBase (Sigma-Aldrich); 0.5% Nonidet P-40
(NP-40) (Sigma-Aldrich); 1,5mM MgCl2 (Sigma-Aldrich); 3%
Glycerol (Sigma-Aldrich), pH 7.4), added of protease inhibitors
[complete EDTA-free Tablet 25X (Sigma-Aldrich)], and 1mM
1,4-Dithiotreitol (Sigma-Aldrich). Cells were lysed by passage
in syringe (27 gauges). Samples were then centrifuged (16,000
x g; 15min; 4◦C). Supernatants were transferred in new tubes,
and the pellets were rinsed in 65 µL of NP-40 extraction buffer.
Protein content of the NP-40 soluble fraction was quantified by
BCA assay (Euroclone). The insoluble fraction was sonicated
following the same protocol described above.
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Filter Retardation Assay
Filter retardation assay (FRA) was performed using Bio-Dot
SF Microfiltration Apparatus (Bio-Rad, Hercules, CA, USA).
Six micrograms of both PBS and NP-40 soluble extracts were
loaded on a cellulose acetate membrane with pores of 0.22µm.
For NP-40 insoluble extracts, the amount to be loaded was
calculated as equal volume to NP-40 soluble extracts. After
loading, the samples onto the cellulose acetate membrane,
vacuum was applied at the apparatus and protein suspension
was filtered. Proteins were fixed at the membrane using a 20%
methanol solution, and the membrane was incubated for 1 h
at RT in blocking solution [5% non-fat dried milk (Euroclone)
in TBS-T 1X]. The membrane was then incubated with rabbit
polyclonal anti-AR antibody (AR-H280, Santa-Cruz, sc-13162;
dilution 1:1,000 in blocking solution) for at least 2 h at RT.
After two washes with 1X TBS-T, the membrane was incubated
for 1 h at RT with goat anti-rabbit HRP-conjugate secondary
antibody (Santa Cruz Biotechnology, sc-2004; dilution 1:5,000 in
1X TBS-T). After three washes in 1X TBS-T signal was revealed
with ClarityTM Western ECL Blotting Substrate (Bio-Rad) and
optical density was acquired by ChemiDoc XRS System (Bio-
Rad). Results were analyzed using Prism 5.0. Sample variations
were related alternatively to ARQ24 (EtOH) or ARQ100
(EtOH). Statistical differences were obtained applying the two-
way ANOVA test followed by Bonferroni post-hoc test. Each
experiment was replicated three times, and each bar represents
mean± SEM of three independent biological replicates.

Western Blot Analysis
Western blot experiments were performed using 10%
polyacrylamide gels. To visualize AR protein, 15 µg of
each PBS extract or 30 µg of each NP-40 soluble and insoluble
extracts were loaded on gels. After electrophoresis, proteins
were transferred over night at 4◦C on nitrocellulose membrane
(Bio-Rad). Membrane was then incubated 1 h at RT in blocking
solution, and then overnight at 4◦C with primary antibody
diluted in blocking solution (5% dried non-fat milk (Euroclone)
in 1X T-BST). After two washes with 1X TBS-T, the membrane
was incubated 1 h at RT with secondary antibody diluted in
1X TBS-T. Signal was revealed using ClarityTM Western ECL
Blotting Substrate (Bio-Rad) and images were acquired by
ChemiDoc XRS System (Bio-Rad) as described for FRA. The
following primary antibody were used: rabbit polyclonal AR-
H280 antibody (Santa-Cruz Biotechnology, sc-13162; dilution
1:1,000) rabbit polyclonal anti-LC3-B antibody (Sigma-Aldrich,
L8918; dilution 1:1,000), rabbit polyclonal anti-p62/SQSTM1
antibody (Abcam, Cambridge, UK, ab91526; dilution 1:3,000),
home-made rabbit polyclonal anti-HSPB8 (kindly provided by
Dr. Landry, Centre of Recherche Cancerologie, University of
Laval, Canada; dilution 1:2,000), rabbit polyclonal anti-GAPDH
(Santa Cruz Biotechnology, sc-32233; dilution 1:1,000), goat
polyclonal anti-ACTIN (Santa Cruz Biotechnology, sc1615;
dilution 1:1,000), mouse monoclonal anti-α-TUBULIN (Sigma-
Aldrich, T6199; dilution 1:3,000). The following secondary
antibodies were used: goat anti-rabbit HRP-conjugate secondary
antibody (Santa Cruz Biotechnology, sc-2004; 1:10,000), goat
anti-mouse HRP-conjugate secondary antibody (Santa Cruz

Biotechnology, sc-2005; 1:10,000), donkey anti-goat HRP-
conjugate secondary antibody (Santa Cruz Biotechnology,
sc-2020; 1:10,000).

Immunostaining and Confocal Microscope
Analysis
Cells were seeded on coverslips at a density of 25,000 cells/well
(in 24-well plate), and the day after plating were transfected
and/or treated. After treatments, cells were fixed at 37◦C for
25min using a solution 1:1 of 4% paraformaldehyde (Sigma-
Aldrich) in PB 0.2M [a solution made of KH2PO4 (0.06M)
and Na2HPO4 (0,26M)] and 4% sucrose (Sigma-Aldrich) in PB
0.2M. Then, fixing solution was removed and iced methanol was
added for 10min to complete the fixation. Cell permeabilization
was performed using a solution of 0.2% TRITON X100 (Sigma-
Aldrich) followed by incubation for 1 h in blocking solution (5%
dried non-fat milk in 1X T-BST). Incubation with the primary
antibody was kept o/n at 4◦C. Incubation with the fluorescent-
tagged secondary antibody was preceded by three washes with
PBS, to remove the excess of primary antibody. Nuclei were
stained with DAPI (Sigma-Aldrich). The following primary
antibodies were used: rabbit polyclonal AR-H280 antibody
(Santa-Cruz Biotechnology, sc-13162; dilution 1:500), rabbit
polyclonal anti-LC3 antibody (Sigma-Aldrich, L8918; dilution
1:500), rabbit polyclonal anti-p62/SQSTM1 antibody (Abcam,
ab91526; dilution 1:500). The following secondary antibodies
were used: goat anti-rabbit Alexa 594 (Life technologies,
Thermo Scientific, A-11012; dilution 1:1,000). All the primary
and secondary antibodies were diluted in blocking solution.
Coverslips were mounted on a glass support usingMOWIOL and
images were acquired using an Axiovert 200 microscope (Zeiss
Instr., Oberkochen, Germany) combined with a Photometric
Cool-Snap CCD camera (Ropper Scientific, Trenton, NJ, USA)
or using Eclipse Ti2 (Nikon, Netherlands) confocal microscope
equipped with A1 plus camera (Nikon) and processed with
the NIS-Elements software (Nikon) or using LSM510 Meta
system confocal microscope (Zeiss, Oberkochen, Germany) and
processed with the Aim 4.2 software (Zeiss).

Real Time PCR
Cells were plated in 6-well plate at a density of 130,000 cells/well,
and the day after plating were transfected and/or treated. At the
end of the experiment, cells were harvested, centrifuged (100 x
g; 6min; 4◦C) and lysed using TRI Reagent (Sigma-Aldrich).
RNA was extracted following manufacturer instructions and
quantified using NanoDrop 2000 spectrophotometer (Thermo
Scientific). After DNA removal using DNase I (Sigma-Aldrich),
0.5 µg of the total mRNA was reverse-transcribed using High-
Capacity cDNA Archive Kit (Thermo Scientific). mRNA levels
were assayed using iTaq SYBR Green Supermix (Bio-Rad)
on CFX 96 Real-Time System (Bio-Rad). All results were
normalized to RplP0 used as control. All the primers used were
obtained by Eurofins Genomics, sequences of primers have been
previously reported (73). The following primers were newly
designed: Vcp FW- 5′-TGCCATCCTAAAAGCCAATC-3′ RV-
5′-TCAGCTCCAGAAAAGCCATT-3′.
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Statistical Analysis
Statistical analysis has been performed by using Student’s t-
test to compare two groups and analysis of variance (ANOVA)
to compare three or more groups. Two-Way ANOVA was
used to compare the effect of two independent variables.
Analyses were performed with the PRISM (version 5) software
(GraphPad Software).

RESULTS

AR Aggregation in Muscle Cells
Here we used immortalized C2C12 myoblasts, that are widely
used as model to mimic muscle cells in culture; this cell
line has been infected with viral vectors expressing ARQ24 or
ARQ100, subcloned and stabilized in culture (s-myoblast). We
initially performed a characterization of the AR biochemical
properties in s-myoblasts to assure that the viral expression
of this protein was retained even after several passages in
culture. Immunofluorescence (IF) analysis showed that ARQ24
and ARQ100 have similar fluorescence intensity, and are both
localized in the cell cytoplasm in basal conditions; as expected,
upon testosterone treatment they both translocated into the
nucleus (Figure 1A) and signal intensity also increased upon
testosterone treatment. No visible aggregates or inclusions were
seen by IF in C2C12-ARQ100 cell line, even after testosterone
treatment. Western blot (WB) correctly showed ARQ24 with
a higher SDS-PAGE motility than ARQ100, because of the
presence of the polyQ tract of different length which results
in different molecular weights (MW) of the two AR proteins.
Moreover, both ARQ24 and ARQ100 expression was stabilized
by testosterone treatment which also induced a mild upshift
of the band possibly linked to AR phosphorylation during
activation process (27, 82) (Figure 1B, upper panel). No high
MW (HMW) forms were observed in the stacking gel in all
the tested conditions (not shown), suggesting that the AR does
not form SDS-resistant insoluble species in s-myoblasts. A low
intensity band, possibly related to ARpolyQ fragmentation (or
to the endogenous mouse AR) appeared to be mildly increased
in ARpolyQ testosterone-treated samples. Interestingly, filter
retardation assay (FRA) showed that, after testosterone exposure,
ARQ100 formed aggregated species that can be retained on
cellulose acetate membrane (with size exclusion of 0.22µm)
(∗∗∗p < 0.001 vs. testosterone-treated C2C12-ARQ24; ∗∗p <

0.01 vs. untreated C2C12-ARQ100) (Figure 1B, lower panel).
In this analysis, ARQ24 immunoreactivity was very low even
after its activation with testosterone. To better characterize the
ARQ100 aggregated species identified in FRA (but not visible
in IF), we performed a detergent fractionation assay using
NP-40 extraction on cell lysates. In WB, we found that large
amounts of ARQ24 and ARQ100 were present in the NP-40
soluble fraction of testosterone activated ARs samples, which
were considerably higher than those found for the corresponding
untreated ARs samples (Figure 1C, upper panel). This confirmed
testosterone stabilization of AR protein (83). Of note, in the NP-
40 insoluble extracts we found a much more abundant amounts
of testosterone-treated ARQ100 compared to testosterone-
treated ARQ24, and to untreated controls (Figure 1D, upper

panel). Using FRA analysis, we found that testosterone treatment
triggered the formation of NP-40 soluble, and NP-40 insoluble
aggregates retained on the cellulose acetate membrane of
ARQ100, while these species were not formed by ARQ24 (∗∗p <

0.01 vs. ARQ24 cell line) (Figures 1C,D, lower panels). Despite
these data, we found no differences in cell viability, or cell survival
in cells expressing ARQ24 or ARQ100, even after testosterone
treatment (data not shown), suggesting that s-myoblasts are not
sensitive to ARpolyQ toxicity.

Collectively these data suggest that testosterone induces the
formation of ARQ100 aggregates detectable in FRA. These
species are present both in PBS extracts and in NP-40 soluble, and
insoluble extracts. Surprisingly, no aggregates were observed in
IF. It might be possible that their size is lower than the detection
sensitivity of IF as in the case of small oligomeric species.

The Impact of the Modulation of the
Protein Quality Control System on AR
Aggregation in Muscle Cells
We next investigated which degradative pathway is specifically
responsible for ARQ24 and ARQ100 degradation in s-myoblasts
by inhibiting the UPS or autophagy, usingMG132 or bafilomycin
A1, respectively. Proteasome inhibition resulted in an increase
of the accumulation of the total amounts of ARQ24 in FRA,
which is normally processed via this degradative pathway (47)
(Figure 2A, lower inset), showing that a high concentration of
wtAR inside cells (associated to its impaired clearance) could
lead to its accumulation in HMW species. In s-myoblasts,
proteasome inhibition resulted in a dramatic increase of the
accumulation of mutant ARQ100 in FRA independently from its
activation, as we already reported for immortalized motoneurons
(47). We performed detergent fractionation assay, and we
found no difference in the levels of ARQ24 species after
proteasome inhibition (Figures 2B,C), suggesting a variability
in the response of normal (ARQ24) cells to UPS inhibition.
Conversely, both NP-40 soluble and insoluble testosterone-
induced ARQ100 aggregates, which are retained on cellulose
acetate membrane, were increased after proteasome inhibition
(Figures 2B,C, lower insets).

With regards to autophagy, we found no involvement of this
pathway in the clearance of the wtAR (ARQ24) in s-myoblasts,
while the perturbation of autophagosome and lysosome fusion
with bafilomycin A1 resulted in a robust increase of PBS soluble
form of ARQ100 in presence of testosterone (Figure 2A) in
FRA. Bafilomycin A1-mediated inhibition of autophagy resulted
also in a dramatic increase of both ARQ100 NP-40 soluble
and insoluble species, independently from testosterone treatment
(Figures 2B,C).

These data suggest that in s-myoblasts proteasome is the main
mediator of the clearance of both wt and mutant AR, while
autophagy appears to be predominantly involved in the clearance
of the mutant ARpolyQ.

Next, we evaluated whether the presence and activation of
mutant ARpolyQ have an impact on the expression of genes
involved in the PQC system. We found no variation in the
expression of Tfeb, Becn1, Bag1, Hspb8, Sqstm1/p62, Lc3 in all
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FIGURE 1 | Characterization of the cellular model. (A) Immunostaining for AR. Nuclei staining: DAPI. 60X magnification. Confocal microscope: Eclipse Ti2 (Nikon).

Scale bar = 10µm (B) WB (upper inset) and FRA (middle inset) of PBS extracts. Optical densitometry quantification of FRA (lower inset). ***p < 0.001 vs. ARQ24+T;

**p > 0.01 vs. ARQ100-T. (C) WB (upper inset) and FRA (middle inset) of NP-40 soluble extracts. Optical densitometry quantification of FRA (lower inset). (**p < 0.01

vs. ARQ24+T or vs. ARQ100-T). (D) WB (upper inset) and FRA (middle inset) of NP-40 insoluble extracts. Optical densitometry quantification of FRA (lower inset). (**p

< 0.01 vs. ARQ24+T; *p < 0.05 vs. ARQ100-T). Two-way ANOVA followed by Bonferroni post-hoc test was used. Each experiment was independently replicated

three times. Graphs show quantification of three independent biological samples (n = 3).

conditions tested (Figure 3A). We found that the expression of
mutant ARpolyQ correlated with a reduction in the expression of
Bag3 and Vcp (another autophagy associated proteins found to
be involved in motoneuron diseases), but these changes were not
linked to the presence of testosterone (Figure 3A).

We then analyzed whether the levels of ARpolyQ species
entrapped in FRA could be modulated by the overexpression
of components required to route misfolded proteins to either
UPS or autophagy. The data shown in Figure 3B indicate that
the formation of testosterone-induced aggregated species of
mutant ARpolyQ in transiently transfected C2C12 (ARQ112
HMW aggregates) can be counteracted by the overexpression of
HSPB8 and BAG3. These two proteins are essential components
of the CASA complex, which delivers misfolded proteins to
the microtubule organization center where aggresomes are
formed before their engulfment into nascent autophagosomes.
Notably, both HSPB8 alone, and BAG3 alone preserve their
pro-autophagic activity even if the CASA complex required

both proteins in association with HSP70 and CHIP. This
suggests that may be both considered limiting factor for the
CASA complex activity. Interestingly, also the overexpression
of BAG1 resulted in a great reduction of the accumulation
of testosterone-induced aggregated species of mutant ARpolyQ
measured in FRA (Figure 3B). It must be noted that BAG1
exerts its activity by preventing HSP70 and CHIP to become
part of the CASA complex (61, 84–86), thus routing misfolded
proteins to UPS degradation as an alternative to autophagy.
Since, it has been demonstrated that testosterone induces the
formation of ARpolyQ aggregates via the generation of a
N-terminal caspase-3 cleaved fragment containing the polyQ
stretch, which is highly prone to aggregate, we wanted to test
whether the routing system may also be involved in the removal
of this highly neurotoxic AR species. The results (Figure 3C)
clearly demonstrated that both the overexpression of HSPB8
and BAG3, as well as that of BAG1, are capable to revert
the accumulation in FRA of HMW aggregates of a highly
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FIGURE 2 | Degradative systems involvement. (A) WB (upper inset) and FRA

(middle inset) of PBS extract of cells treated with testosterone, MG132 and

bafilomycin A1. Optical densitometry quantification of FRA (lower inset). (**p <

0.01; ***p < 0.001 vs. relative control conditions –T/+T). (B) FRA (upper inset)

of NP-40 soluble extracts of cells treated with testosterone, MG132 and

(Continued)

FIGURE 2 | bafilomycin A1. Optical densitometry quantification of FRA (lower

inset). (***p < 0.001 vs. relative control conditions –T/+T; *p < 0.05 vs. ARQ24

-T). (C) FRA (upper inset) of NP-40 insoluble extracts of cells treated with

testosterone, MG132 and bafilomycin A1. Optical densitometry quantification

of FRA (lower inset) (***p < 0.001 vs. relative control conditions +T). For each

panel, FRA images derive from the same membranes with identical exposure

time to permit direct comparison of wtAR and ARpolyQ levels. Two-way

ANOVA followed by Bonferroni post-hoc test was used. Each experiment was

independently replicated three times. Graphs show quantification of three

independent biological samples (n = 3).

neurotoxic caspase-3 released N-terminal fragment of ARpolyQ
ARQ1121HA (87–90).

Collectively, these data suggest that, by modulating specific
components of the PQC system, the ARpolyQ and its highly
neurotoxic aggregate-prone caspase-3 released fragment can be
eliminated from muscle cells using both the proteasome and the
autophagy system, when they are still normal and functioning as
in our cell line [ARQ100 does not greatly affect proteasome and
autophagy machinery (Figure 3A)].

Pharmacological Induction of the
Autophagic System Reduces ARpolyQ
Accumulation and Aggregation
Based on these data, we hypothesized that compounds capable
of activating autophagy may serve to enhance the ARpolyQ
clearance from muscle cells. We use a well-known autophagy
activator, trehalose, which acts in a mTOR-independent manner.
We recently described that trehalose causes a transient lysosomal
damage, which in turn activates TFEB and, consequently,
promotes autophagosome and lysosome assembly and fusion
(56). We found that in s-myoblasts, trehalose retained its
capability to activate autophagy, as demonstrated by the
conversion of LC3 from its LC3-I diffuse form to the LC3-
II lipidated form associated to autophagosomes in its punctate
status (Figure 4A, left insets) or by the relocalization of
SQSTM1/p62 into p62 bodies (Figure 4A, right insets). These
data were also corroborated by the mRNA expression analysis
showing that trehalose induced the de novo expression of several
pro-autophagic genes, including Foxo3, Tfeb, Becn1, Bag3, Bag1,
Hspb8, Lc3, Sqstm1/p62, Vcp, and AchR (Figure 4B).

The effects of trehalose were then tested on the accumulation
of ARQ100 in s-myoblasts and the data showed that this
autophagy activator reduced the levels of monomeric
soluble ARQ100, and fully counteracted the accumulation
of testosterone-induced HMW aggregated species of ARQ100
(Figure 4C). Trehalose effect on mutant ARpolyQ was fully
blocked by bafilomycin A1, proving that its pro-degradative
activity is mediated by autophagy. The effects of trehalose on
ARpolyQ clearance were also maintained when the mutant
protein was transiently overexpressed in basal C2C12, since this
autophagy activator significantly reduced both the monomeric
soluble ARQ112 evaluated in WB (Figure 4D, upper inset),
and testosterone-induced aggregated species of ARQ112
evaluated in FRA (Figure 4D, lower inset). Trehalose activation
of autophagy was tested in basal C2C12 expressing ARQ112
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FIGURE 3 | PQC activation and role against AR accumulation. (A) RT-qPCR of PQC system related genes performed on C2C12_ARQ24 and C2C12_ARQ100. *p <

0.05; **p < 0.01; ***p < 0.001 vs. ARQ24 in the same conditions. Graphs show quantification of four independent biological samples (n = 4). (B) WB (upper inset)

and FRA (middle inset) of C2C12 transiently transfected with p5HBhARQ112 and co-transfected with plasmids coding for HSPB8, BAG3 and BAG1. Optical

densitometry quantification of FRA (lower inset). (***p < 0.001 vs. relative control conditions +T). (C) WB (upper inset) and FRA (middle inset) of C2C12 transiently

transfected with pARQ1121HA and co-transfected with plasmids coding for HSPB8, BAG3 and BAG1. Optical densitometry quantification of FRA (lower inset). (**p

< 0.01; ***p < 0.001 vs. relative control conditions pcDNA3). Each experiment was independently replicated three times. Graphs show quantification of three

independent biological samples (n = 3).

only by LC3 conversion in WB, assuming that the effects
observed by RT-qPCR and IF in s-myoblasts expressing
ARQ100 were recapitulated also in basal C2C12, and the data
confirmed that trehalose acts as a potent autophagy inducer as
previously shown (51, 56, 91, 92). Importantly, testosterone-
dependent ARQ112 inclusions observed in IF (Figure 4E)
were found to be fully degraded after trehalose treatment.
Finally, we found that activation of autophagy with trehalose
counteracted the accumulation also of the aggregated species of
fragmented ARQ1121HA retained in FRA (Figure 4F), and the
ARQ1121HA inclusions evaluated in IF (Figure 4G).

DISCUSSION

In this study, we characterized the biochemical behavior of the
mutant ARpolyQ in s-myoblasts, and we compared it to the
one of the wtAR. We found that, in these cells, the mutant

ARpolyQ does not form inclusions visible by microscopy, or
detectable by immunoblotting as SDS-insoluble aggregates in
WB, even after its testosterone activation. Instead, we found that
ARpolyQ generated testosterone-inducible aggregated species
readily detectable in FRA, which were resistant to NP-40
solubilization. Notably wtAR insoluble species were detected
only in the PBS resistant fraction, but not in NP-40 soluble or
insoluble fractions, suggesting that even if formed they remain
largely soluble, while those formed by mutant ARpolyQ becomes
detergent-insoluble. Both the wtAR and the mutant ARpolyQ
are processed via the proteasome, while only mutant ARpolyQ
is cleared by autophagy, since autophagy inhibition resulted in
a robust accumulation of ARpolyQ insoluble species in FRA.
Despite this, the presence of ARpolyQ was insufficient to trigger
an autophagic response, since no variation were found in the
expression of classical autophagy related genes (e.g., Tfeb, Becn1,
Bag1, Hspb8, Sqstm1/p62, Lc3) even after testosterone treatment.
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FIGURE 4 | Trehalose activates autophagy and reduces ARpolyQ accumulation (A) Immunostaining for LC3 (left inset) and p62 (right inset) of C2C12_ARQ100 in

presence of trehalose. Nuclei staining: DAPI. Magnification: 63X. Microscope: Axiovert 2000 (B) C2C12_ARQ100 treated with trehalose. RTqPCR of PQC system

related genes. (**p < 0.01; ***p < 0.001 vs. relative untreated control). (C) C2C12_ARQ100 treated with trehalose and bafilomycin A1. WB (upper inset) and FRA

(middle inset) of PBS extracts of Optical densitometry quantification of FRA (lower panel) (**p < 0.01 vs. relative untreated control; ***p < 0.001 vs. trehalose +T).

(D,E) C2C12 transiently transfected with p5HBhARQ112 and treated with testosterone and trehalose. (D) WB (upper inset) and FRA (middle inset). Optical

densitometry quantification of FRA (lower inset). *p < 0.05 vs. relative control conditions +T. (E) Immunostaining for AR. Nuclei staining: DAPI. Magnification: 63X.

Microscope: confocal LSM510 Zeiss (F,G) C2C12 transiently transfected with pARQ161HA or pARQ1121HA and treated with trehalose. (F) WB (upper inset) and

FRA (middle inset). Optical densitometry quantification of FRA (lower inset). **p < 0.01 vs. relative control conditions +T. (G) Immunostaining for AR. Nuclei staining:

DAPI. Magnification: 63X. Microscope: confocal LSM510 Zeiss. Each experiment was independently replicated three times (n = 3). Graphs show quantification of

three independent biological samples (n = 3).

Of note, we found that ARpolyQ activation in s-myoblasts
correlated with a reduced expression of two pro-autophagic
proteins such as BAG3 and VCP. Mutations in BAG3 and

VCP genes are responsible for late onset degenerative diseases
affecting skeletal muscle (93, 94), suggesting that these proteins
might play an important role in the maintenance of muscle
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cell homeostasis. This phenomenon is not correlated to the
presence of testosterone, but still suggestive of a decreased
autophagic response in s-myoblasts in presence of ARpolyQ.
Overall these results point to the fact that activated ARpolyQ
does not greatly affect the functionality of the PQC system in our
muscle cell model. Anyway, it might be possible that the mildly
reduced autophagic potential causes ARpolyQ aggregation only
after testosterone activation, slowing down ARpolyQ clearance
via autophagy. To facilitate the degradation of ARpolyQ, we
overexpressed BAG3 or its partner HSPB8, essential components
of the CASA complex, showing that they are both able to
enhance ARpolyQ clearance even in presence of testosterone.
Also, the overexpression of BAG1, the co-chaperone which routes
the HSP70/CHIP/misfolded protein complex to UPS (95–97),
exerted a similar effect on ARpolyQ clearance. Overexpression
of these chaperones was effective also against aggregates formed
by the N-terminal ARpolyQ fragment, physiologically formed
upon testosterone treatment. Thus, the modulation of the PQC
could be viewed as a potential target to ameliorate the removal of
toxic ARpolyQ from our muscle cell models. Indeed, by adopting
a pharmacological treatment with trehalose, which is a mTOR
independent autophagy activator, we have clearly shown that
the insoluble species of ARpolyQ disappeared, both using the
ARQ100 in stably infected cells as well as with ARQ112 or the
caspase-3 released N-terminal fragment transiently transfected
in s-myoblasts. The involvement of autophagy in mediating the
pro-degradative activity of trehalose in s-myoblasts was proved
by the fact that treatment with bafilomycin A1 fully reverted the
protection exerted by trehalose against ARpolyQ accumulation.

In our view, these data acquire particular relevance keeping
in mind that SBMA, regarded for years as a MND (3, 98),
has now been defined as a neuromuscular disease (25). Muscle
tissue is a primary site for SBMA toxicity as muscle atrophy
often precedes motoneuron loss and the onset of SBMA is
rescued by specific repression of ARpolyQ in muscle cells (33,
50). Even if these studies were carried out in murine models
and findings remain to be confirmed in human cell lines,
they support the notion of a direct muscle involvement in
SBMA onset and progression. Here, we found that autophagy
activation, or facilitation, prevents ARpolyQ accumulation in
our muscle cell models, suggesting that autophagy could be a
specific pathway for the degradation of testosterone activated
ARpolyQ insoluble species. In addition, autophagy appears to
be partially impaired, making it an important target to facilitate
misfolded ARpolyQ clearance in SBMA. Studies performed in
SBMA mouse models indicated that at later stage of disease,
autophagy is altered in skeletal muscle (22, 32, 50, 73, 99), but
its role is still largely debated. One of the major problem linked
to these analysis is that the specific time window in which the
mice are analyzed (pre-symptomatic, symptomatic or end stage
of disease) may influence the relative involvement of autophagy
in response to mutant ARpolyQ due to several compensatory
mechanisms triggered during muscle atrophy progression. In
addition, the mouse SBMA models utilized significantly differ in
term of level of protein expression, and its tissue distribution.
However, the analysis of TFEB activity, measured by evaluating
its target genes, showed that autophagy is enhanced in presence

of ARpolyQ in muscle tissue (22). Using the same SBMA
model, we also confirmed and extended the activation of TFEB-
mediated autophagy (73). In addition, in the same animals, we
demonstrated that, at the symptomatic stage, also the expression
of genes involved in CASA-complex (e.g., Hspb8 and Bag3)
resulted upregulated. Thus, in skeletal muscle autophagy is
activated during disease progression, and its upregulation might
be an attempt to respond to ARpolyQ toxicity, or to mediate the
catabolic activity induced by muscle atrophy associated to the
chronic exposure to ARpolyQ (100). This may suggest that the
autophagy response observed in the skeletal muscle of the SBMA
mice is an adaptive mechanism related to both the presence
of the misfolded ARpolyQ, and the muscle atrophy. In any
case, we cannot exclude that aberrant autophagic upregulation
contribute to SBMA progression. Overall, these data suggest
that restoration of physiological autophagic function might
represent an important therapeutic target for SBMA. Our s-
myoblast model may be particularly relevant for the screening
of compounds that may modulate autophagy dysregulation in
muscle cells. In addition, our s-myoblast model will permit
to evaluate the acute response to ARpolyQ activation by
testosterone. Indeed, acute ARpolyQ expression leads to a
mild autophagy response. Misfolded ARpolyQ production is
insufficient to induce a de novo expression of all gene tested, with
the exception of Bag3 and Vcp. Our s-myoblast SBMA model
may thus contribute to understand the different events taking
place in skeletal muscle cells exposed to misfolded ARpolyQ
allowing to discriminate between early and/or adaptive response.
A possible limitation of this model is the fact that s-myoblasts
do not show modification in cell viability induced by ARpolyQ.
Despite this, they are characterized by the specific accumulation
of testosterone-induced ARpolyQ NP-40 insoluble species (not
detectable in the case of wtAR); these species clearly represent
a biochemical form of misfolded ARpolyQ which play a role in
SBMA pathogenesis recapitulating the disease phenotype. As it
has been published (80, 101, 102), the formation of the insoluble
ARpolyQ species, might be a valuable biomarker to follow the
progression of muscle degeneration.

Importantly, the systems here described, including some
chaperones and autophagy/proteasome, are highly conserved
and work in a similar manner in neuronal, muscular and
non-neuronal cells. Therefore, boosting them could provide
protection by enhancing the clearing capacities, and maintaining
protein homeostasis in different cell types affected by the disease.

In this context, targeting autophagy could be an efficient
strategy to reduce the accumulation of ARpolyQ. Trehalose not
only activates the basal autophagy process (e.g., TFEB activation
enhanced SQSTM1/p62 and LC3 expression), but also increased
the expression of key factors of the CASA-complex, like HSPB8,
that probably helps in the recognition of selected cargo avoiding
the uncontrolled degradation of every intracellular element.

Even if C2C12 SBMA cell model does not show a reduction
in cell viability induced by ARpolyQ NP-40 insoluble species,
it might be helpful to understand molecular mechanisms
responsible for muscle degeneration observed in SBMA patients
as it has been published in other publications (80, 101, 102).
Since in this model AR NP-40 insoluble species are polyQ and
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testosterone-dependent, recapitulating the disease phenotype,
these C2C12 cell lines could be used to co-culture skeletal muscle
and motoneurons in order to study if ARpolyQ expression in
myoblast can alter motoneuron functionality and viability.

Overall these results show that ARpolyQ aggregation may
occur also in muscle cells, and that targeting aggregation of
ARpolyQ could be beneficial in SBMA, since the permanence of
inclusions in the cells could cause the damage of several pathways
and the recruitment of other soluble proteins, impairing other
pathways. Concluding, trehalose plays beneficial effects against
ARpolyQ aggregation and autophagy appears as a valuable
pathway for the degradation of insoluble ARpolyQ species. In
parallel and supporting this study, there are several ongoing
studies that are testing, in in vivo models, novel compounds
that will address the PQC system, to reduce the presence of the
misfolded toxic proteins.
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