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Breast cancers with positive expression of Estrogen Receptor (ER+) are treated with

anti-hormone/endocrine therapy which targets the activity of the receptor, the half-life of

the receptor or the availability of estrogen. This has significantly decreased mortality in

women with ER+ breast cancer, however, about 25–30% of treated women run the risk

or recurrence due to either intrinsic or acquired resistance to endocrine therapies. While

ER itself is a predictor of response to such therapies, there exists a need to find more

biomarkers and novel targets to treat resistant tumors. In this review, we summarize the

known mechanisms and describe the ability of genomics in unraveling rare mutations

and gene rearrangements that may impact the development of resistance and therefore

treatment of ER+ breast cancer in the near future.
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INTRODUCTION

According to GLOBOCAN 2018 around 2.1 million female breast cancer cases will be newly
diagnosed in the year 2019 (1). Historically, breast cancer was classified on the basis of
histopathology but with the advent of techniques such as microarray analysis, molecular sub-types
were defined (2). Now, breast cancer is classified as hormone receptor positive based on the
expression of Estrogen Receptor (ER), Progesterone Receptor (PR), and Human Epidermal growth
factor Receptor-2 positive (ERBB2/HER2+) (3). Breast cancers that lack the expression of all 3
receptors are classified as triple negative breast cancers (TNBCs). Importantly, this molecular
status defines the gene based therapeutic approaches presently employed in clinical practice for
treating breast cancer (4, 5). About 70% of breast cancers diagnosed are positive for the expression
of estrogen receptor (ER+) and sustained exposure to the hormone is known to cause cancer.
Clinically, ER+ patients are treated with anti-hormone therapy leading to the development of
a number of molecules that are selective estrogen receptor modulators (SERMs) like Tamoxifen
(Tam), selective estrogen receptor degraders (SERDs), or inhibitors of the enzyme aromatase (AI),
that converts androgens to estrogens (6, 7). Aromatase Inhibitors (AIs) are usually utilized as a
second line of treatment in tamoxifen resistant tumors. Treatment with SERMs, in particular Tam,
has decreased the mortality due to breast cancer by 25–30%. About 30% of women treated with
Tam run the risk of recurrence in the next decade due to development of de novo resistance after
prolonged exposure to the drug, especially in the metastatic setting. Intrinsic resistance to Tam
is rare although single nucleotide polymorphisms in cytochrome p450 enzymes that affect the
metabolism of Tam to its active form have been reported (8). This limits clinical benefit derived by
the patients and two challenges emerge in the treatment of ER+ breast cancers, (1) availability of
biomarkers that can predict endocrine resistance and (2) finding alternate agents to treat endocrine
resistant tumors.
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Few biomarkers exist to predict response/resistance to
endocrine therapy. An exception to this is ER itself, and since
ER negative (ER-) tumors rarely respond to Tam, presence
of ER remains the most successful biomarker for response to
endocrine therapy. However, cell culture data point to multiple
other molecular mechanisms that may result in cells becoming
refractory to estrogen inhibition (9). Interestingly, a significant
portion of the cell culture findings have been correlated to
Tam resistance in patients. Agents that interfere with these
mechanisms offer the promise of novel therapeutic opportunities
and are already used in combination with SERMs. In the review,
we summarize data from candidate gene approaches and the
more recent genomic studies that have revealed mechanisms
leading to endocrine resistance.

Mechanisms of Endocrine Therapy
Resistance
Resistance developed during treatment may either be intrinsic,
which is present in the individual before the start of any
treatment, or the resistance is acquired during the course of
treatment. Some pathways to acquired resistance are described
below (9, 10).

Estrogen Receptor (ER)
Estradiol (E2) binds ER, a ligand activated transcription factor
that interacts with palindromic estrogen response elements
(EREs) located in the regulatory regions of its target genes to
alter their transcription (11, 12). ER has two subtypes, ERα

and ERβ, encoded by genes present in chromosome 6 and 14,
respectively, which can homo- and hetero-dimerize to mediate
their transcriptional action. Each ER subtype has a unique role
in gene regulation, displays cell and tissue specific expression
and alters different signaling pathways downstream (13). ERα

activation promotes tumorigenesis since it induces proliferation
and invasiveness of breast cancer cells. In contrast, ERβ appears
to restrict cell proliferation, antagonize epithelial tomesenchymal
transition and increase sensitivity to Tam in cell lines (14, 15).
In patients, high levels of ERβ correlate with better survival and
better response to Tam independent of ERα but lower levels of
ERβ may contribute to endocrine therapy resistance (16, 17).
In some reports, ERβ overexpression is observed in pre-invasive
breast tumor of tamoxifen resistant individual and ERβ appears
to have a negative effect on the transcription stimulated by ERα.

Further, both ER subtypes are alternately spliced and
display differential gene regulation, cellular localization and
pathogenicity in cancer (18). Atleast two truncated isoforms of
ERα (ERα36 and ERα46) that arise due to alternate splicing,
exon skipping and promoter usage act in a dominant negative
manner as compared to the full length ER protein (19, 20).
ERα36 localized to the mitochondrial membrane in uterine
cells, performed non-genomic actions and was linked to Tam
resistance whereas ERα46 was shown to increase sensitivity to
Tam in Tam resistant MCF-7 cells. ERβ has multiple isoforms
based on the exclusion of exon 8 such as ERβ1 (full-length),
annotated as ERβ2 to ERβ5. Of these, nuclear ERβ2 and
ERβ5 may antagonize ERα function but can enhance ERβ1
transactivation. Their relationship to endocrine resistance is still

under investigation since they often are co-expressed with ERα

(21). Due to such push and pull functions of ER subtypes, the
ratio between ERα, ERβ, and their variants is being assessed as a
predictive biomarker for endocrine therapy responsiveness (22).
The subtype related data however remain controversial, mainly
due to lack of good antibodies to differentiate between ERα and
ERβ isoforms (23).

In addition to the nuclear activity, ERα can also localize to
the plasma membrane and elucidate rapid non-genomic actions
via activation of PI3Kinase/AKT and MAP kinase pathways,
G-protein coupled receptor pathways or by changing calcium
levels within the cells (24). Secondly, extranuclear ER activation
is thought to occur via concentration of receptor tyrosine
kinases, signaling proteins and ER in caveolae and lipid rafts
(25). Such redistribution of ER is observed in Tam resistant
cells, leading to its increased binding to EGFR and induction
of downstream signaling. This likely describes yet another
mechanism of endocrine resistance (26).

Given the substantial influence of ER on breast cancer biology
it is logical to presume that mutations in ER and its partners may
be the leading cause of intrinsic resistance to endocrine therapy.
Loss of ER expression and the mutation in the estrogen receptor
gene (ESR1) are the two important aspects of hormone based
therapy resistance. However, in patients, mutations are rarely
found in ESR1 (<1% have mutations) or its associated proteins
and deletion of ER accounts for only 10–20% of the cancer cases
prior to therapy (27). In case of acquired resistance 17–28% of
cases do not express ER (28). At times, the loss of expression of
ER is due to aberrant methylation pattern at the promoter region
or deletion of an exon (exon 5) in the ER mRNA (29, 30). The
use of histone demethylase (HDAC) inhibitors like entinostat and
Scriptiad and DNA methyl transferase (DNMT) inhibitors have
been shown to restore the ER expression and hence sensitivity
to tamoxifen treatment in breast cancer cell lines (31, 32). Some
mutations in ER lead to hypersensitivity to circulating estrogen
and make ER highly active such that tumors do not respond well
to Tam therapy (33). Few tumors show ESR1 amplification, no
loss in ER expression but are resistant to Tam. These data suggest
that numerous pathways beyond the expression status of ER may
govern endocrine resistance.

ER Co-factors in Endocrine Resistance
ER is a modulator protein with N-terminal transactivation (AF1),
DNA binding (DBD), a hinge, and a C-terminal ligand binding
domains (LBD) containing a ligand induced transactivation
domain (AF2). Bound ER is a complex of several co-regulatory
proteins (co-activators/co-repressors), transcription factors and
histone modifiers. Ligand bound ER adopts a conformation such
that helix 3,5, and 12 along with AF2 form a hydrophobic
pocket and a protein surface conducive to interaction with the
leucine rich (LXXLL) motifs of co-activators- Tamoxifen is a
competitive inhibitor of estrogen, binds the same regulatory sites
as estrogen bound ER, but results in shifting the position of helix
12 away from the ligand binding pocket, such that Tam bound
ER recruits a co-repressor complex instead of a co-activator
complex to antagonize hormone response (34). Substitution of
amino acids L536, Y537, D538 in this region positions Helix
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12 in the agonistic conformation resulting in the constitutive
transactivation of ER in absence of the ligand. Such and other
missense mutations in this region of ESR1 are rare but described
in acquired endocrine resistance and tumor metastases (35–37).

High expression levels of ER co-activators such as AIB1
(amplified in breast cancer 1) were shown to enhance the agonist
activity of tamoxifen and contribute to tamoxifen resistance
(38). Conversely, a progressive reduction in Nuclear receptor
co-repressor 1 (NCoR) co-repressor activity during tamoxifen
therapy enhanced the agonist effects of tamoxifen on ER
contributing to resistance (39). ER also has non-classical genomic
actions that involve indirect binding to DNA by tethering to
other transcription factors such as Activator Protein (AP-1),
Specificity protein 1 (Sp1), CCAAT/enhancer-binding protein
beta (C/EBPβ), and cyclic AMP response element binding
protein (CREB). Such complexes lead to the conversion of
Tam-ER antagonist activity to an agonistic activity leading to
proliferation of breast cancer cells (40). Enhanced expression of
such factors also results in endocrine therapy resistance (41).
For example, aberrant expression of other transcription factors
such as SRY-box 9 (SOX9), a stem cell factor stimulated by
the Runt-related transcription factor 2 (RUNX2)-ER complex
promoted proliferation, metastatic phenotype and endocrine
therapy resistance (42). Forkhead box protein A1 (FOXA1) is a
pioneer factor that opens the compacted chromatin, facilitates
the recruitment of ER to its genomic sites and co-expresses with
ER during mammary gland development, and primary breast
tumors development (12). FOXA1 is found to be over-expressed
in endocrine resistant cell lines and it activates oncogenes
and proteins like Interleukin-8 (IL-8) that are associated with
endocrine resistance (43).

Reprogrammed chromatin landscapes that are independent of
ER also drive endocrine resistance. Enhancer of Zeste 2 (EZH2),
a methyltransferase that modifies chromatin, is found to confer
endocrine therapy resistance by suppressing the expression of
GREB1 which is a co-factor of ERα. The level of EZH2 was
found to be high in tamoxifen resistant samples and a low level
of GREB1 modifies the transcriptional machinery of ERα and
a different transcriptome which provides refractory phenotypes
in hormone positive cells (42). In another study, a significant
difference between open chromatin landscape of sensitive and
resistant MCF7 cell lines has been reported (44). No significant
contribution of classical ERα signaling was observed in these cell
lines. However, in the resistant cells, chromatin reprogramming
led to enrichment and overexpression of the NOTCH pathway
and other target genes in resistant cells, with the NOTCH3
pathway being responsible for the development of resistance.
NOTCH3 induced Pre-B-cell leukemia transcription factor 1
(PBX1) expression and together they drove the expression of
several endocrine resistance pathway genes (44).

ER and It’s Crosstalk With Signaling Pathways
Often ligand independent ER activation occurs due to post
translational modifications of the wild type ER protein. This is
achieved by overexpression of growth factor signaling proteins
that modify ER making the cell refractory to Tam action. The
phosphorylation of ER is brought about through overexpression

of various receptor tyrosine kinases such as HER2, Epithelial
Growth Factor Receptor (EGFR), and Insulin like growth factor
receptor (IGF1R) (45, 46). Phosphorylation renders ER active
in a ligand independent manner making cells refractory to Tam
action. Similarly, activation of MAPK or PI3K/AKT signaling
pathway has been implicated in development of endocrine
resistance (47). Further, in addition to phosphorylating ER,
transfection of HER2 in hormone receptor positive cells led to
the down regulation of ER expression conferring resistance to
anti-hormone therapy (48, 49).

Role of miRNAs
MicroRNAs (miRNAs) are small non-coding RNA molecules of
around 22 nucleotides in length that regulate the expression of
various genes either by degrading their mRNA or suppressing
their translation. miRNA 221 and 222 when expressed ectopically
are found to convert the hormone sensitive MCF7 cell line to a
resistant line by down-regulating a cell cycle inhibitor p27(Kip1)
(50). This led to continued cell division despite the presence of ER
blockers. These miRNAs were also found to be up-regulated in
HER2 positive and ER- cells (51). Similarly, various miRNAs are
found to be associated with hormone therapy resistance as their
main targets are apoptotic genes or cell proliferation proteins and
reviewed in more detail by Muluhngwi et al. (52).

Role of Extracellular Vesicles (EVs)
EVs/exosomes are 30–200 nm secreted particles that carry
DNA, RNA, and protein cargo and are capable of transferring
information and activities onto receptive cells (53). EVs isolated
from the resistant MCF7 cell lines converted the sensitive cells
to a hormone resistant type after 14 days of treatment and this
process was irreversible (54). Transcriptional activity of ERα

mediated via E2 was decreased; however there was no significant
change in the protein level of ERα. EV treatment activated
AP-1 and NF-κB transcription factors which were implicated
earlier in hormone therapy resistance in breast cancer (55).
Exosome mediated resistance is also achieved by the activation
of PI3K/AKT pathway. Chen et al. further showed that EVs
treated with RNase were not able to alter sensitivity of cells and
that miR-100, miR-222, and miR-30a were responsible in the
pathogenesis and therapy resistance of breast cancer (56, 57).
Further, RNA contained within the EVs derived from the stromal
cells transferred the resistance phenotype to the breast cancer
cells. Therefore, both paracrine and juxtacrine signaling induced
by EVs could lead to the development of a subpopulation of
therapy resistant tumor initiating cells (58). Exploring the role
of EVs may uncover additional mechanisms of resistance.

The Genomic Landscape of Endocrine Resistance
By candidate gene approach, copy number changes in cyclin
D1 (CCND1), ERBB2, and FGFR1 and mutations in the MAPK
pathway have been associated with endocrine resistance (59,
60). However, since tumors evolve due to therapeutic pressure,
comparing genomic aberrations of treatment naïve and post-
therapy samples would aid the discovery of both intrinsic and
de novo resistance biomarkers and identify additional targets for
treatment. Genomic characterization of untreated breast cancer
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(The Cancer Genome Atlas, https://cancergenome.nih.gov/) has
identified key drivers, stratified patients based on mutational
profiles, and have emphasize the clonal heterogeneity of tumors
(61). Deep and targeted sequencing using next generation
methods can be used to catalog those rare mutations that may
be present at low frequencies in clonal cells but get selected
during the course of treatment. Early targeted sequencing of
ESR1 showed that mutations in this gene enriched in the LBDs
(62). Whole exome profiling and RNA sequencing of 143 tumors
from ER+/Her2- patients exposed to letrozole (AI therapy)
identified intrinsic genomic alterations in CCND1 and FGFR1
genes and intrachromosomal ESR1 fusion transcripts that could
be responsible for endocrine therapy resistance (63). Next, a
survey of mutations and copy number changes using a targeted
approach to study 230 genes from ER+ tumors that were
metastatic and progressed further while on endocrine treatment
identified mutations in ESR1 as well as Human Epidermal
growth factor receptor 3 (ERBB3) and Regulatory-associated
protein of mTOR (RPTOR) (64). Mutations in ESR1 clustered
in the ligand binding domain such that the mutant receptors
assumed an agonist conformation, had higher stability, increased
interaction with co-activators or had higher transactivation
function even in the absence of the ligand. Since patients
resistant to SERMS are often treated with AI therapy, these data
suggest that patients harboring such ESR1 mutations may not
benefit from this therapy as AI only decreases the availability
of circulating estrogen levels in the patient. However, these
mutants may be amenable to alternate SERMs. Using cell lines
with stable expression of mutants, the authors demonstrated that
SERMs could achieve 100% decrease in ER activity but only at
extremely high doses. Therefore, development of more potent

next generation SERMs may be required to diminish the risk of
recurrence. Such mutants also appear to be more prevalent in
metastatic disease and may possibly be causal in the process of
tumor dissemination.

In addition tomutations in the ER protein, genomic structural
rearrangements (REs) in the ESR1 gene have been identified
in recurrent metastatic ER+ breast cancer (65). The junctions
were clustered between exons 6 and 7 of ESR1 fused to unique
partners on the 3

′

end. Often such RE hotspots are also associated
with a change in copy number (termed as copyshift). Most ESR1
fusions or predicted REs may not be expressed or translated, but
some had ligand independent activity and some fusions were
hyperactive. Most endocrine therapies are designed to attack the
LBD of ER, since ESR1 REs commonly loose the LBD to gain
fusion partners, they may drive endocrine resistance in patients
and newer therapies blocking the N-terminal of ER are necessary.

Incidentally, mutations/fusions in ESR1 account for only in
15–18% of patients that show endocrine resistance suggesting
additional genes/pathways exist. A more recent genomic study
on 1,501 HR+ tumors that characterize 809 therapy naïve and
692 tumors post therapy established a taxonomy of aberrations
that associate with endocrine resistance (66). Functional hotspot
mutations in ESR1, ERBB2, and loss of function mutations in
Nuclear Factor 1 (NF-1) were found to be twice as common
in post therapy samples as compared to therapy naïve tumors.
Either rare clones with these mutations exist in therapy naïve
individuals and they expand during the course of treatment or
thesemay be de novo acquired changes. Interestingly, these events
were mutually exclusive and non-overlapping. This study also
identified mutations in the MAPK pathway in 16% of the cases
and genes that regulate the expression of ER such as FOXA1

FIGURE 1 | Pathways that may lead to endocrine resistance in Breast Cancer.

Frontiers in Endocrinology | www.frontiersin.org 4 August 2019 | Volume 10 | Article 573

https://cancergenome.nih.gov/
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles


Haque and Desai Therapy Resistance and Breast Cancer

and T-box transcription factor 3 (TBX3) were found altered
in patients who did not have ESR1 mutations. Interestingly,
amplifications in genes like MYC and CTCF that also regulate
ER expression were absent. Despite comparative and deep
sequencing, these studies explain only 40% of the mechanisms
in play and newer genomic mechanisms for resistance may exist.

CONCLUSION

Changes in transcription of ER, its co-regulators, epigenomic,
and post-translational modifications in ER, genetic
polymorphisms affecting pharmacokinetics of anti-hormone
drugs that affect ER expression, mutations in ER pathway
that affect its activity along with therapy induced genomic
aberrations may favor endocrine resistance (Figure 1). Owing to
the complexity of ER biology in cancer, an integrative analysis
of multiplatform data that can evaluate wellness trajectories
during the course of treatment is necessary in identifying more
mechanisms, and newer targets to combat endocrine resistance.
A major challenge is the availability of matched pre-and post-
therapy samples in sufficient amounts to perform all analyses
simultaneously. Longitudinal sampling to monitor disease
progression would be ideal to determine tumor relapse and

recurrence but such samples remain unavailable. Here better and
highly sensitive methods to analyze liquid biopsy samples such
are circulating cell free DNA (ctDNA/cfDNA) and contents of
EVs are emerging (67). How closely they resemble and represent
tumor evolution, clonality of tumor cells, characteristics of
disseminated disease, and how well they can predict response to
endocrine therapy remains to be seen.
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