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Background: Non-alcoholic fatty liver disease (NAFLD) is a well-known cause of liver

dysfunction and has become a common chronic liver disease in many countries.

However, the intrinsic molecular mechanisms underlying the pathogenesis of NAFLD

have not yet been fully elucidated.

Methods: We obtained the gene expression datasets of NAFLD through the Gene

Expression Omnibus (GEO) database. Subsequently, robust rank aggregation (RRA)

method was used to identify differentially expressed genes (DEGs) between NAFLD

patients and controls. Gene functional annotation and PPI network analysis were

performed to explore the potential function of the DEGs. Finally, we used a sequencing

dataset GSE126848 to validate our results.

Results: In this study, GSE48452, GSE66676, GSE72756, GSE63067, GSE89632,

and GSE107231 were included, including 125 NAFLD patients and 116 control patients.

The RRA integrated analysis determined 96 significant DEGs (50 up-regulated and

46 down-regulated) and the most significant gene aberrantly expressed in NAFLD

was ENO3 (P-value = 7.17E-05), followed by CYP7A1 (P-value = 9.04E-05), and

P4HA1 (P-value = 1.67E-04). Carboxylic acid metabolic process (GO:0019752; P-value

= 1.39E-03) was the most significantly enriched for biological process in GO (gene

ontology) analysis. KEGG pathway enrichment analysis showed that steroid hormone

biosynthesis (hsa00140; P-value = 6.68E-03) and PPAR signaling pathway (hsa03320;

P-value = 9.95E-03) were significantly enriched. Based on the results of the PPI and

the results of the RRA, we finally defined the four most critical genes as the hub genes,

including ENO3, CYP7A1, P4HA1, and CYP1A1.

Conclusions: Our integrated analysis identified novel gene signatures andwill contribute

to the understanding of comprehensive molecular changes in NAFLD.

Keywords: non-alcoholic fatty liver disease, microarray, differentially expressed genes, robust rank aggregation,

integrated analysis
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INTRODUCTION

Non-alcoholic fatty liver disease (NAFLD) is a well-known cause
of liver dysfunction over the world and is closely correlated
with obesity, hyperglycemia, and hyperlipidemia (1, 2). NAFLD
represents a spectrum of liver disorders that includes simple
steatosis and non-alcoholic steatohepatitis (NASH), progressing
to cirrhosis, and even hepatocellular carcinoma (HCC) (3).
To date, NAFLD has become a common chronic liver disease
in many countries, affecting almost 30% of the general
population (3, 4), and is currently the third most common
indication for liver transplantation in the USA (5). Some studies
have attempted to elucidate the effective or causal effects of
oxidative stress, adipocytokine production/release, intra-hepatic
insulin resistance, fat accumulation, and innate immune system
activation in the pathogenesis of NAFLD (3). However, the
intrinsic molecular mechanisms underlying the pathogenesis of
NAFLD have not yet been fully elucidated, and more research
is needed to provide deeper understanding and to explore more
advantageous therapeutic targets.

Identifying gene-specific expression patterns has been useful
in the understanding of pathogenic mechanisms or therapeutic
assessment for multiple diseases, NAFLD included (6, 7). In
the past few years, microarray technology has been widely
used for gene expression profiling in liver tissue from NAFLD
patients or experimental animals. However, there are some
inconsistencies in those microarray studies, such as different
analysis platforms, data outliers, sample sizes, and sources. The
robust rank aggregation (RRA) approach has been used to select
differentially expressedmRNAprofiles based onmultiple datasets
in various diseases, such as cancer and autoimmune disease. To
the best of our knowledge, previous researches of NAFLD have
not used the RRA method to identified differentially expressed
genes (DEGs), which facilitated this study.

Thus, we conducted a gene expression meta-analysis
between NAFLD liver tissues and control liver tissues using
integrated bioinformatics methods. In addition, based on the
result of this analysis, hub genes identification in the DEGs
and gene enrichment and pathway annotation analysis were
also performed.

MATERIALS AND METHODS

Microarray Datasets of NAFLD
We obtained the gene expression datasets of NAFLD through the
Gene Expression Omnibus (GEO) database (http://www.ncbi.
nlm.nih.gov/) (8). We systematically searched the microarray
studies by using the terms: “Fatty liver,” “Non-alcoholic,” “Gene
expression,” “Homo sapiens,” and “Microarray.” Datasets were
included according to the following eligibility criteria: (1)
Containing at least 10 total samples; (2) Containing at least five
cases and at least five controls; (3) Raw data or gene expression
profiling by array were available in GEO.

Datasets Analyses
First, we downloaded the gene expression matrix and related
annotation document for each array dataset from GEO database,

and used corresponding annotation document to map the
microarray probes to gene symbols. If multiple probes mapped
to the same symbol, the mean value was adopted. The 6
NAFLD expression microarray datasets were all standardized by
quantiles. The DEGs were determined between NAFLD tissues
and normal control liver tissues in each microarray by using the
“limma” (linear models for microarray data) R package. The |log2
fold change (FC)| > 0.5 and P-value < 0.05 were regarded as the
cut-off criteria to determine DEGs.

RRA Analysis
To minimize the inconsistencies and to integrate the results from
several microarray studies, RRA method was adopted to identify
robust DEGs, which is an effective tool to integrate multiple
arrays outcomes (9, 10). Before RRA analysis, we obtained up-
ranked and down-ranked gene lists of each dataset which were
generated by expression fold change between cases and controls.
The “Robust Rank Aggregation” R package was used to integrate
all the ranked gene lists of datasets. The adjusted P-value in the
RRA tool indicate the possibility of ranking high of each gene in
the final gene list. Genes with P-value <0.05 and the fold change
>0.5 were considered as significant genes.

Functional and Pathway Enrichment
Analysis
Database for Annotation, Visualization, and Integrated
Discovery (DAVID, http://david.abcc.ncifcrf.gov/) (11–13)
is regarded as the most common functional annotation tool,
which was used for gene ontology (GO) functional enrichment
analysis and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway analysis. We uploaded the significant genes
in RRA analysis to investigate the potential functions. P-value
<0.05 and false discovery rate (FDR) <0.05 was regarded as the
cut-off criteria.

Protein-Protein Interaction (PPI) Network
Analysis
Hub genes are usually deemed to be functionally critical and
highly interconnected with other genes. We uploaded significant
genes in RRA analysis to the STRING database (http://www.
string-db.org/) and HIPPIE database (http://cbdm.uni-mainz.
de/hippie/), then chose confidence >0.4 to perform the PPI
network analysis. We synthesized STRING and HIPPIE methods
to find the genes with the top 10 connectivity, and matched
the results with the top 10 DEGs defined by RRA, and finally
obtained the hub gene. The PPI network diagrams of STRING
database were plotted by Cytoscape software. In the Cytoscape,
each node represents a gene or protein, and the edge between
nodes represents the interaction of the molecules.

RRA and Hub Genes Validation Study
Previous studies have found that arrays also have the risk of
cross-hybridization, while RNA-seq data is highly replicable, thus
providing a more accurate estimate of gene expression than
arrays (14, 15). Therefore, we further conducted RRA validation
studies by using data from a RNA-seq dataset (GSE 126848,
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TABLE 1 | Characteristics of the included microarray datasets.

GSE ID Participants Tissues Analysis

type

Platform Year

GSE48452 32 cases and 41 controls Liver Array GPL11532 2013

GSE63067 11 cases and 7 controls Liver Array GPL570 2014

GSE66676 33 cases and 34 controls Liver Array GPL6244 2017

GSE72756 5 cases and 5 controls Liver Array GPL16956 2015

GSE89632 39 cases and 24 controls Liver Array GPL14951 2016

GSE107231 5 cases and 5 controls Liver Array GPL20115 2017

including 31 NAFLD patients, 14 healthy controls). The RNA-
seq reading count data was analyzed using edgeR function to
identify DEGs. Genes with P-value <0.05 were considered to
be significant.

Ethical Declaration
All of the data used in this study were obtained from public
databases. This study does not contain any studies associated with
animals or humans.

RESULTS

Information of Included Microarrays
According to the previously established inclusion criteria,
GSE48452, GSE66676, GSE72756, GSE63067, GSE89632, and
GSE107231 were included in this study. There are 125 NAFLD
patients (53 patients with non-alcoholic steatohepatitis and 72
patients with simple steatosis) and 116 controls (non-NAFLD
patients, including 89 normal subjects and 27 healthy obese
subjects) in these six datasets. The detailed information of these
datasets was shown in Table 1.

Identification of DEGs in NAFLD
To eliminate individual differences between samples, all six of
these microarray data sets were first standardized by quantiles.
The results are shown in Supplementary Figure 1, all samples in
each dataset achieved homogeneity which was acceptable. The
DEGs were screened out by using the “limma” package in R
software according to the cut-off criteria. The volcano plots of
the six microarrays were shown in Figure 1.

Results in the RRA Integrated Analysis
The RRA method assumes that each gene is randomly ordered
in each dataset. The smaller the P-value in the RRA results,
the higher gene ranks and the credibility of gene differential
expression. Ninety-six significant DEGs (50 up-regulated and
46 down-regulated) were determined through the integrated
analysis (Supplementary Table 1). The heatmap of the top 10 up-
and down-regulated genes was shown in Figure 2. The top 10
significant gene aberrantly expressed in NAFLD included five up-
regulated genes [ENO3 (P= 7.17E-05), CYP7A1 (P= 9.04E-05),
FMO1 (P= 6.57E-04), PEG10 (P= 8.95E-04), andMAMDC4 (P
= 1.87E-03)] and five down-regulated genes [P4HA1 (1.67E-04),

CYP1A1 (P = 2.51E-04), IGFBP2 (P = 3.27E-04), SOCS2 (P =

5.1E-04), and SHBG (P = 1.50E-03)].

Functional Annotation
We uploaded the 96 DEGs to perform the GO (including
biological process, molecular function and cellular component)
analysis and KEGG analysis. The outcomes revealed that
carboxylic acid metabolic process (GO:0019752; P-value =

1.39E-03) was the most significantly enriched for biological
process, followed by monocarboxylic acid metabolic process
(GO:0032787; P-value = 1.39E-03), oxidation-reduction process
(GO: 0055114; P-value = 1.39E-03) and so on (Table 2). In
terms of the molecular function and cellular component, the
results were shown in Figure 3. Furthermore, KEGG pathway
enrichment analysis showed that steroid hormone biosynthesis
(hsa00140; P-value = 6.68E-03) and PPAR signaling pathway
(hsa03320; P-value = 9.95E-03) were significantly enriched, as
shown in Table 3 and Supplementary Figure 2.

PPI Network Analysis and Identification of
Hub Gene
STRING and HIPPIE database online database was used to
perform PPI network analysis of the DEGs and Cytoscape
software was adopted to visualize the results. In the PPI analysis,
the connections between nodes were visualized to identify the
interactions between the proteins encoded by DEGs in NAFLD
(Figure 4). The gene located in the central node was considered
as the hub gene which may play pivotal physiological regulatory
role. In the analysis of STRING, the top 10 genes with most
connections were CYP1A1, MYC, CYP7A1, IGF1, JUNB, HPGD,
FOSB, ACSL1, ENO3, and CYP2A13. In the analysis of HIPPIE,
the top 10 genes wereMYC, ENO3, IL32, JUNB, PRKCE, P4HA1,
NFIL3, TAGLN, KALRN, and AGMAT. Based on the results
of the PPI and the results of the RRA, we finally defined the
four most critical genes as the hub genes, including ENO3,
CYP7A1, P4HA1, and CYP1A1. The visualization for hub genes
in STRING database were shown in Supplementary Figure 3.

The Validation of RRA and Hub Genes
We validated our RRA results and hub genes using sequencing
dataset GSE126848, and found that eight out of the top 10 DEGs
found by RRA also had significant differences in the verification
dataset. Only SHBG and MAMDC4 did not show significant
differences in the validation dataset (P > 0.05). In the validation
of the top 10 genes in PPI, we found that six of STRING method
and eight of HIPPIEmethod were also identified as DEGs, and all
hub genes have been identified as DEGS in validated datasets. The
verification results were presented in Supplementary Table 2.

DISCUSSION

Globally, non-alcoholic fatty liver disease (NAFLD) is the most
common chronic liver disease, including a range of pathologies,
from benign hepatic steatosis to non-alcoholic steatohepatitis,
cirrhosis, and eventually it may develop into hepatocellular
carcinoma (16). NAFLD is recognized as a complex disease and
the interaction between the environment and the susceptible
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FIGURE 1 | Volcano plots of the six microarrays. Red points represented up-regulated genes, while green points represented down-regulated genes. Black points

represented genes with no significant difference. (A) GSE48452, (B) GSE63067, (C) GSE66676, (D) GSE72756, (E) GSE89632, (F) GSE107231.

FIGURE 2 | Heatmap of the top 10 up- and down-regulated genes in the RRA analysis. Red represents high expression of genes in patients with NAFLD, while blue

represents low expression of genes in patients with NAFLD.

multi-gene host background determines disease phenotype and
progression (17). Therefore, identifying the susceptibility gene
of NAFLD is very important for us to study the cause of this

disease and to find potential treatments. However, there are
still no reports on the use of RRA method to detect DEGs
in NAFLD. RRA algorithm, a well-designed tool, has four
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key features: strong robustness to noise, ability to deal with
incomplete ranking, giving significant scores to each element
in the result ranking, and high computational efficiency (9).
Our study was the first to systematically search and incorporate

TABLE 2 | GO analysis of DEGs associated with NAFLD in the RRA analysis.

Term Description Gene count P-value

GO.0019752 Carboxylic acid metabolic process 16 1.39E-03

GO.0032787 Monocarboxylic acid metabolic process 13 1.39E-03

GO.0055114 Oxidation-reduction process 18 1.39E-03

GO.0006082 Organic acid metabolic process 16 6.87E-03

GO.0044281 Small molecule metabolic process 25 6.87E-03

GO.0043436 Oxoacid metabolic process 15 2.12E-02

GO.0042493 Response to drug 10 3.34E-02

GO, gene ontology; DEGs, differentially expressed genes.

the microarrays on NAFLD in GEO, which was not available
in previous researches. The aim of our study was to identify
key genes and their pathways involved in the pathogenesis
of NAFLD. In the present study, we included six microarray
studies, compared gene expression profiles between NAFLD and
controls, adopted the RRA analysis to integrate results with
more statistical power. Furthermore, functional annotation and
PPI network construction were performed to understand the
potential biological function of the DEGs.

In all, 96 DEGs were filtered out across multiple datasets
with 50 up-regulated and 46 down-regulated genes. The most
significant 10 genes were ENO3, CYP7A1, P4HA1, CYP1A1,
IGFBP2, SOCS2, FMO1, PEG10, SHBG, and MAMDC4. Among
them, ENO3, CYP7A1, P4HA1, and CYP1A1 were identified as
hub genes in PPI network analysis. Enolase 3 (ENO3) encodes
the β-subunit of enolase, which is found in skeletal muscle cells
in the adult where it may play a role in muscle development
and regeneration. Several researches have reported that ENO3
was distributed on various tissues, such as liver, lung, skeletal

FIGURE 3 | The enriched biological process (BP), molecular function (MF), and cellular component (CC) terms in GO analysis. The red column represents the number

of genes enriched in GO term. The blue column represents the –log10 (P-value) of GO term.

TABLE 3 | KEGG analysis of DEGs associated with NAFLD in the RRA analysis.

Pathway ID Count Genes P-value

Steroid hormone biosynthesis hsa00140 4 CYP1A1, CYP7A1, HSD17B12, SRD5A2 6.68E-03

PPAR signaling pathway hsa03320 4 ACSL1, PLIN1, CYP7A1, FABP4 9.95E-03

p53 signaling pathway hsa04115 3 TP53I3, IGF1, GADD45B 7.36E-02

Bile secretion hsa04976 3 SLCO1A2, CYP7A1, ABCB4 7.74E-02
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FIGURE 4 | The PPI network of DEGs in NAFLD (STRING). The top 10 genes with most connections included CYP1A1, MYC, CYP7A1, IGF1, JUNB, HPGD, FOSB,

ACSL1, ENO3, and CYP2A13.

and heart (18). ENO3 mediates cholesterol ester synthesis, may
increase lipid delivery to liver and accelerate hepatic cholesterol
ester accumulation (19). In the previous study, Elam et al.
used the gene expression profiling and found that ENO3 was
significantly higher in livers of morbidly obese women compared
with women who had experienced massive weight loss (20).
However, the definite function and mechanisms of ENO3 in
NAFLD remain unclear.

CYP7A1 and CYP1A1 are both annotated to the pathway
of steroid hormone biosynthesis and encode the member of
the cytochrome P450 superfamily of enzymes. Cytochrome
P450 family seven subfamily A member 1 (CYP7A1) mediates
cholesterol metabolism and functions as a rate-limiting enzyme
to regulate the process of conversion of cholesterol into bile
acids (21, 22). Deficiency of CYP7A1 caused by homozygous
deletion mutations can inhibit the production of bile acids,
leading to the accumulation of cholesterol in liver, reducing
LDL receptors and elevating LDL cholesterol (23). Polymorphism
in the promoter of CYP7A1 could affect the synthesis of
bile acids and delay the process of lipid responses to the
drug fenofibrate (24). CYP7A1 deficiency in mice also showed
aberrant changes in the cholesterol and bile acid transformation
(25), CYP7A1 transgenic mice represented improved metabolic

homeostasis in liver (26, 27). However, our multiple arrays
meta-analysis demonstrated that CYP7A1 was up-regulated in
NAFLD patients compared with NC. Another research revealed
that CYP7A1 and its related cholesterol process were adversely
regulated between non-alcoholic fatty liver disease and alcoholic
liver disease (28), so it’s possible that the increasing CYP7A1
levels in liver tissue are the consequence rather than cause
of NAFLD.

Cytochrome P450 family 1 subfamily A member 1 (CYP1A1)
encodes a monooxygenase and is widely detected for its
ability to activate compounds with carcinogenic properties
(29, 30). The enzyme encoded by CYP1A1 catalyze many
reactions involved in drug metabolism and synthesis of
cholesterol, steroids, and other lipids. Uno et al. indicated that
CYP1A1 has a protective role against NAFLD development
through experiments in vivo (31). Zhu et al. studied the
intersection of differentially expressed mRNAs and miRNA-
predicted target genes, and then demonstrated that CYP1A1
plays important roles in NAFLD (32). Elam et al. found
that CYP1A1 also differentially expressed in liver tissues
of morbidly obese patients (20). Therefore, CYP1A1 has a
great possibility to be an important gene of NAFLD, but its
specific function needs more experimental evidence. In addition,
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several studies have reported that CYP1A1 polymorphisms
were significant factors for the susceptibility and pathogenesis
of cancer (33, 34). The contribution of CYP1A1 to cancer
progressionmay be associated with the balance of pre-amino acid
activation/detoxification and extrahepatic metabolism of dietary
natural products (29).

Our study found that Prolyl-4-hydroxylase α1 (P4HA1) was
a hub gene of NAFLD. P4HA1 is a P4H (also called PHD)
isoenzyme and an important rate-limiting enzyme. P4H is the
primary cellular oxygen sensor and regulates hypoxia-inducible
factor (HIF) proteasomal degradation in an oxygen-dependent
manner (16). The involvement of P4H in the pathogenesis of
NAFLD has been fully proved (35, 36). In NAFLD, adipose
tissue expansion and liver fat accumulation impair local oxygen
homeostasis. Hypoxia signaling is also a key mechanism of
adipose tissue dysfunction, leading to adipose tissue fibrosis,
inflammation, and insulin resistance (37). In this case, the body is
prone to tissue hypoxia-induced adaptive response. HIF acts as a
major regulator of this hypoxic adaptive response, and is further
activated by P4H hydroxylation (36–38). Moreover, Seda et al.
also found that P4HA1 was significantly differentially expressed
in the liver tissue of patients with NAFLD and liver tissue of
the control group (39). In addition, it was also significantly
differentially expressed in the liver tissue of morbidly obese
patients (20).

In our KEGG enrichment analysis, PPAR signaling pathway
was significantly enriched and its aberrant expression genes
contained CYP7A1, ACSL1, PLIN1, and FABP4 in the DEGs.
Per-oxisome proliferator-activated receptors (PPARs) are ligand-
activated transcription factors. The PPAR pathway is widely used
and involved in a variety of physiological regulation processes,
including regulation of cell differentiation and development,
involvement in lipid, protein, and carbohydrate metabolism,
and tumorigenesis (40, 41). In recent years, PPARs have
been identified to play a significant role in modulation of
NAFLD due to its involvement in nutrient metabolism (42,
43). There are three PPAR isoforms: α(α), β/δ(β/δ), and γ(γ),
which are differentially expressed in tissues (44). PPARα is
mainly found in the liver, although expression is also present
in other tissues, while PPARγ is highly expressed in adipose
tissue (45, 46). It is worth noting that the expression level of
PPARγ in liver tissue was significantly increased in patients
with NAFLD and experimental models (47–49). Increased
PPARγ activity in mouse liver may result in activation of
adipogenic gene expression and increased lipid storage in the
liver (43). Our study demonstrated that differential genes in
liver tissue of NAFLD and control patients were enriched in
the PPAR pathway, further demonstrating the importance of
the PPAR pathway in the pathology of NAFLD. Additionally,
p53 signaling pathway was reported to associated with insulin
resistance, even though it showed borderline significance in
KEGG analysis (50).

In summary, by using the RRA method we have successfully
provided deeper insight to the comprehensive molecular

changes in NAFLD pathogenesis, and identified several potential
candidate therapeutic targets, including ENO3, CYP7A1,
P4HA1, CYP1A1, IGFBP2, SOCS2, FMO1, PEG10, SHBG,
and MAMDC4. Among them, ENO3, CYP7A1, P4HA1, and
CYP1A1 were defined as hub genes. In addition, through GO
and KEGG pathway analysis, we found that these differential
genes were mainly enriched in carboxylic acid metabolic
process, monocarboxylic acid metabolic process and oxidation-
reduction process, and may be involved in steroid hormone
biosynthesis and PPAR signaling pathway. However, the
underlying molecular mechanisms have not yet been fully
elucidated. In the future, more experiments are needed to
verify the changes of gene expression and it is necessary to
collect a large number of liver tissues from patients with
NAFLD and liver tissues from normal controls for additional
functional studies.
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The Supplementary Material for this article can be found
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2019.00599/full#supplementary-material

Supplementary Figure 1 | Standardization of the six microarray datasets. The

left panel represents the data before standardization, and the right panel

represents the standardized data. (A) GSE48452, (B) GSE63067, (C) GSE66676,

(D) GSE72756, (E) GSE89632, (F) GSE107231.

Supplementary Figure 2 | The KEGG pathway plots. The DEGs were plotted in

red color. (A) the bubble chart of KEGG result, (B) Steroid hormone biosynthesis,

(C) PPAR signaling pathway. KEGG pathway enrichment analysis showed that

steroid hormone biosynthesis (hsa00140; P-value = 6.68E-03) and PPAR

signaling pathway (hsa03320; P-value = 9.95E-03) were significantly enriched.

Supplementary Figure 3 | Visualization for hub genes by using the Cytoscape

software. Nodes with warm color represent the hub genes in PPI analysis.

Supplementary Table 1 | The 96 DEGs identified by RRA method.

Supplementary Table 2 | Verification of RRA and hub genes using

dataset GSE126848.
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