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Non-alcoholic fatty liver disease (NAFLD) is one of the most common metabolic

disorder diseases, which include a histological spectrum of conditions ranging from

simple steatosis to non-alcoholic steatohepatitis (NASH). Dysregulated metabolism of

sphingomyelin in the liver plays a critical role in the pathogenesis of NAFLD. Ceramides

are central molecules of sphingolipid biosynthesis and catabolism and play an important

role in insulin resistance, apoptosis, and inflammation. In addition, apoptosis is a main

contributor to the development of NAFLD. This study detected whether the inhibition

of ceramide synthesis ameliorated hepatic steatosis and fibrosis in rats with NAFLD.

Sprague-Dawley rats were used to establish the NAFLD model. Here, we showed

that hepatic ceramide, steatosis, and fibrosis increased in liver tissue from rats with

NAFLD. Chronic treatment with myriocin inhibited ceramide and lipid accumulation and

improved fibrosis in liver tissue samples of high fat diet (HFD)-fed rats. In addition, hepatic

inflammation and apoptosis were markedly ameliorated in HFD-fed rats treated with

myriocin. Furthermore, myriocin treatment regulated the expression of pro-apoptosis

and anti-apoptosis proteins by inactivating the c-Jun N-terminal kinase (JNK) signaling

pathway in the liver of HFD-fed rats. Collectively, ceramide plays an important role

in the pathogenesis of NASH and may represent a potential therapeutic strategy to

prevent NAFLD.
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INTRODUCTION

Non-alcoholic fatty liver disease (NAFLD) is one of the most common metabolic disorder diseases,
which include a histological spectrum of conditions ranging from simple steatosis to NASH (1).
Hepatic steatosis is thought to be a benign condition, while NASH is amore serious hepatic disorder
with varying degrees of inflammation, hepatocyte damage, and progressive fibrosis.

NAFLD is an obesity-related disease that is often accompanied by insulin resistance,
hypertension, and dyslipidemia. NAFLD is also defined by the cytotoxic accumulation of lipids,
such as ceramide (2, 3). Ceramides are sphingolipidmolecules that play an important role in insulin
resistance, apoptosis, and inflammation (3–10). Previous studies suggest that the inhibition of de
novo ceramide synthesis reduced hepatic lipid accumulation in rats (11, 12). Therefore, ceramide
may play a role in the development of NAFLD and its progression to NASH. However, it is unclear
how ceramide affects the pathogenesis of NASH.
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Hepatic apoptosis is considered a prominent feature of
NAFLD (13, 14). Furthermore, ceramide can mediate cell
death in different models, such as endothelial, fibroblast,
lymphoblast, and HeLa cell lines (2, 15, 16). In addition,
ceramide regulates apoptosis via its interaction with Bcl-2
family proteins (17). Thus, we reasoned that inhibiting ceramide
accumulation would improve NAFLD via the regulation of
hepatic apoptosis.

As a molecule at the nexus of sphingolipid metabolism,
cermide can be generated through three main pathways,
including de novo synthesis, sphingomyelin degradation, and
generation from sphingosine (18). In addition, ceramide is
primarily generated via a de novo biosynthetic pathway (19).
Serine palmitoyltransferase (SPT) is the key enzyme in the
ceramide synthetic pathway. Myriocin is an inhibitor of SPT
and can reduce ceramide accumulation in vivo and in vitro.
The present study utilized myriocin to explore the effects of a
ceramide synthesis inhibitor on rats with NAFLD.

MATERIALS AND METHODS

Animals
Male Sprague–Dawley rats (4–6weeks of age) were obtained from
the Slack Shanghai Laboratory Animal Co., Ltd. The rats were
randomly divided into three groups:

FIGURE 1 | Chronic treatment with myriocin improves metabolic indies and liver damage markers. (A) Measurements of serum ceramide (n = 6). (B) Body weight

(before and after intervention) in each group (n = 11). (C) Liver index (liver weight/body weight) in each group (n = 11). Determination of blood glucose (before and

after intervention) (D), insulin (E), TG (F), TC (G), FFA (H) (n = 11). All values are means ± SEM. *P < 0.05, vs. the control group. #P < 0.05, vs. the NC group.

(i) The Control group (Con) was fed a normal rodent diet.
(ii) The NAFLD control group (NC) was fed a high-fat diet (ca.

60% energy from fat) and was also injected with vehicle.
(iii) The NAFLD+myriocin group (NM) was fed a high-fat diet

for 12 weeks and, starting on the fourth week of the diet,
was also treated with myriocin for 12 weeks. The rats were
intraperitoneally injected with myriocin (0.3 mg/kg, Sigma)
every other day.

The experimental protocol was approved by the ethical
committee of Central South University.

Ceramide Analysis
The ceramide content (liver and serum) was determined by liquid
chromatography-mass spectrometry as we described before (20).
In brief, the liver tissues were weighed and homogenized in
0.5mL of double distilled water. Then, the homogenate was
transferred to a new centrifuge tube for lipid isolation. Next,
we collected the lipids (11) and dried them via evaporation.
Then, we dissolved the dry lipids in the 50 µL mobile phase.
After centrifugation, the 5 µL supernatants were transferred
into the liquid chromatography-mass spectrometry system.
The flow rate was 0.22 mL/min. In this system, we used a
chromatographic column (Hypersil-HyPURITY C18, 150 ×

2.1 nm, 5µm, Thermo, USA). The serum ceramide concentration
was detected and expressed as ng/ml serum.
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Metabolic Index Determination
Serum glucose, total cholesterol (TC), triglyceride (TG), free fatty
acid (FFA), AST, and ALT levels were determined using the
Vitalab Selectra E Sequential multiple analyzer. The commercial
radioimmunoassay kits were used to measure the serum
insulin concentration.

Histology and Quantification of Steatosis
The cryostat sections (8µm) of rat livers were fixed with 4%
paraformaldehyde. The sections were stained with hematoxylin
and eosin (H&E). Meanwhile, we used frozen sections for
Oil Red O staining to observe the hepatic lipid content.
In addition, we also used frozen sections for Masson’s
trichrome staining to observe fibrosis. The TG content in
the liver tissue was measured using commercial kits (Sigma-
Aldrich, St. Louis, MO). First, the liver tissues were weighed
and homogenized in deionized water. Then, the total lipids
were extracted, dried, and resuspended in dimethyl sulfoxide.
Finally, we detected the lipid concentration according to the
manufacturer’s instructions.

Immunofluorescence (IF)
The cryostat sections were fixed with 4% paraformaldehyde
and made permeable with 0.3% Triton X-100. Then, the

FIGURE 2 | Chronic treatment with myriocin decreases lipid accumulation and inflammation in liver with hepatic steatosis. (A) Top row: H&E staining (magnification,

×20), steatosis (bold arrow): lipid droplets are present in hepatocytes. Clusters (aggregates) of inflammatory cells (within circles). Scale bars represent 100µm. Middle

row: H&E staining (magnification, ×40), scale bars represent 50µm. Bottom row: Oil Red O staining (magnification, ×40), scale bars represent 50µm. (B) Fractional

area of the livers containing vacuoles was determined by morphometric analysis (n = 5). (C) Oil Red O staining area was determined by morphometric analysis (n = 5).

Evaluation of TG (D) and ceramide (E) in liver tissue samples (n = 11). Measurement of serum ALT (F) and AST (G) (n = 6). RT-qPCR analysis of TNF-α (H), IL-1β (I),

and IL-6 (J) (n = 6). All values are means ± SEM. *P < 0.05, vs. the control group. #P < 0.05, vs. the NC group.

sections were blocked with 5% donkey serum in phosphate
buffered saline (PBS) and incubated with primary antibodies
(α-SMA, cleaved caspase3, cleaved HARP) overnight at
4◦C. The primary antibody against α-SMA was obtained
from Sigma-Aldrich Chemicals company, cleaved caspase3
and cleaved HARP antibodies were purchased from Cell
Signaling Technology. After incubation, any non-specific
binding was washed away with a solution of PBS. Then, the
samples were incubated with secondary antibody for 2 h
at room temperature. Samples were mounted using DAPI
(ThermoFisher Scientific, Waltham, MA, USA) as a nuclear
marker. Images were generated using a Zeiss microscope (Zeiss,
Jena, Germany). Morphometric analyses were performed using
ImageJ software.

RT-PCR and Western Blot Analysis
For RT-PCR analysis, we isolated the total mRNA from the
liver tissue using TRIzol Reagent (Invitrogen, USA) and reverse-
transcribed the mRNA into cDNA using the PrimeScript 1st
strand cDNA Synthesis Kit (Takara, JAPAN) according the
manufacturer’s instructions. SYBR Green (Takara, JAPAN) was
used to quantify the PCR amplification products. The mRNA
expression levels were normalized to GAPDH expression. We
used the comparative Ct (threshold cycle) method to calculate
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the relative gene-expression levels. The primers used in the study
were as follows:

Rat TNF-α: sense, 5′- ACCACGCTCTTCTGTCTACTG -3′

antisense, 5′- CTTGGTGGTTTGCTACGAC -3′

Rat IL-1β: sense, 5′- GCAATGGTCGGGACATAGTT -3′

antisense, 5′- AGACCTGACTTGGCAGAGGA -3′

Rat IL-6: sense, 5′- TCTCTCCGCAAGAGACTTCCA -3′

antisense, 5′- ATACTGGTCTGTTGTGGGTGG -3′

Rat GAPDH: sense, 5′- AGACAGCCGCATCTTCTTGT -3′

antisense, 5′- CTTGCCGTGGGTAGAGTCAT -3′

For Western blot analysis, the liver tissues were homogenized in
RIPA lysis buffer (Beyotime Biotechnology) with a protease
inhibitor cocktail (Sigma-Aldrich). Then, the samples
were centrifuged (14,000 rpm, 4◦C), and the supernatant
was collected. The protein concentration was determined
by the bicinchoninic acid assay method. Equal amounts
of protein samples (50 µg) were loaded into lanes of
12% acrylamide SDS gel. We electrophoresed the gels
and transferred the protein to a polyvinylidene fluoride
membrane. Then, the membrane was incubated with
primary antibodies (cleaved caspase3/ Caspase3, cleaved
HARP/HARP, p-JNK/JNK, Cytochrome c, Bcl-2, and Bax).

FIGURE 3 | Chronic treatment with myriocin improves hepatic fibrosis. (A) Masson staining of liver tissue sections. Top row: Masson staining (magnification, ×20),

scale bars represent 100µm. Bottom row: Masson staining (magnification, ×40), scale bars represent 50µm. (B) IF staining of α-SMA in liver sections. Scale bars

represent 50µm. (C) Western blot analysis of α-SMA and COLIA2 in liver samples. All values are means ± SEM, n = 5/group. *P < 0.05, vs. the control group. #P <

0.05, vs. the NC group.

The primary antibodies against Bcl-2 and Bax were purchased
from Abcam Biotechnology company, GAPDH antibody
was purchased from Santa Cruz Biotechnologies, cleaved
caspase3/caspase3, cleaved HARP/HARP, p-JNK/JNK, and
Cytochrome c antibodies were purchased from Cell Signaling
Technology. Next, we incubated the immunoblots with
secondary antibodies. The protein signals were visualized
using ECL Western blotting detection reagents (ThermoFisher
Scientific, Waltham, MA, USA). The density analysis was
quantified with ImageJ Software, and the respective protein
expression levels were normalized to the housekeeping
proteins GAPDH.

Statistical Analysis
Data are expressed as the mean ± SEM. Statistical analyses of

the results were performed using one-way analysis of variance

(ANOVA), and the homogeneity of variances was tested. If

heterogeneity of variance was present, group differences were

determined by the Game–Howell test; if homoscedasticity was

present, group differences were determined by the Student-
Newman-Keuls test. The threshold for significance was set at P
≤ 0.05. Analyses were performed using SPSS 13.0 software.
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FIGURE 4 | Chronic treatment with myriocin improves hepatic apoptosis by regulating JNK signaling pathway. Cleaved caspase3 and cleaved PARP are valuable

markers of apoptosis. Therefore, we assessed hepatic apoptosis by detecting expression of Cleaved caspase3 and cleaved PARP in this study. (A) IF staining of

Cleaved PARP in liver sections, scale bars represent 100µm. (B) IF staining of Cleaved caspase3 in liver sections, scale bars represent 100µm. (C) Western blot

analysis of Cleaved PARP in liver samples. (D) Western blot analysis of Cleaved caspase3 in liver samples. (E) Western blot analysis of p-JNK/JNK, Cytochrome c,

Bax, and Bcl-2 in liver samples. All values are means ± SEM, n = 5/group. *P < 0.05, vs. the control group. #P < 0.05, vs. the NC group.

RESULTS

Effect of Myriocin on Ceramide Content
and Metabolic Indices
As shown in Figure 1A, in the rats fed a high-fat diet,
the serum ceramide content was significantly increased,
which could be reduced by myriocin treatment. From
Figures 1B,C, there was no difference in body weight and
blood glucose level between NC and NM group before
myriocin intervention. In addition, we observed that body
weight (Figure 1B), blood glucose levels (Figure 1C),
liver index (Figure 1D), insulin levels (Figure 1E), blood
lipid profile (TG, TC, and FFA content, Figures 1F–H),
were markedly increased, which could be improved by
myriocin treatment.

Effect of Myriocin on Hepatic Morphology
and Inflammation
From the H&E staining (Figure 2A), we observed that chronic
treatment with myriocin decreased the number and size of

hepatic lipid droplets that were upregulated by HFD (Figure 2B).
Consistently, Oil Red O staining suggested that myriocin
treatment led to a lower lipid content in the liver of HFD-
fed rats (Figures 2A,C). Consistent with these results, we
also observed that myriocin could reduce liver triglyceride
(Figure 2D) and ceramide (Figure 2E) content in the HFD-
fed animals. In addition, elevated serum ALT (Figure 2F) and
AST (Figure 2G) levels induced by HFD were decreased by
myriocin treatment.

From the H&E staining (Figure 2A), we also
observed that the increased inflammation (the amount
of inflammatory cell aggregates) induced by HFD was
improved by myriocin treatment. Consistently, RT-
qPCR analysis indicated that HFD led to a significant
increase in the expression of TNF-α (Figure 2H), IL1-β
(Figure 2I), and IL6 (Figure 2J), which was improved by
myriocin treatment.

Collectively, myriocin treatment attenuated ceramide
accumulation, hepatic steatosis, and hepatic inflammation
induced by HFD in rats.
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Effect of Myriocin on Hepatic Morphology
and Fibrosis
As shown by Masson’s staining, HFD-fed animals exhibited
hepatic fibrosis (Figure 3A). However, myriocin treatment
significantly attenuated hepatic fibrosis (Figure 3A). Expression
of α-SMA (smooth muscle actin), which was examined via
an immunofluorescence assay (Figure 3B) and Western blot
analysis (Figure 3C), is a reliable marker of the hepatic stellate
cell activation that precedes fibrous tissue deposition. The protein
expression of α-SMA and COL1A2 was markedly increased in
HFD-fed rats. however, only a slight increase was observed in the
rats myriocin-treated rats (Figures 3B,C).

Effect of Myriocin on Hepatocyte
Apoptosis in Rats With NAFLD
Chronic treatment with myriocin resulted in a significant
decrease in the levels of cleaved PARP and cleaved caspase 3
in the liver tissue of HFD-fed rats, which became comparable
to levels in the control group (Figures 4A,B). Similar results
were observed in the change of cleaved PARP and cleaved
caspase 3 levels in liver tissue analyzed by Western blot
(Figures 4C,D). To further investigate the effects of ceramide on
hepatic apoptosis, we detected p-JNK/JNK, cytochrome c, Bcl-
2, and Bax expression. As shown in Figure 4E, liver tissue from
HFD-fed rats exhibited higher levels of p-JNK/JNK, cytochrome
c, and Bax expression than liver samples from normal rats.
Additionally, in HFD-fed rats, the expression of p-JNK/JNK,
cytochrome c, and Bax was decreased by myriocin treatment
(Figure 4E). Myriocin treatment also restored the reduced Bcl-
2 expression induced by HFD (Figure 4E). The findings above
indicate that ceramide played an essential role in modulating
hepatic apoptosis in HFD-fed animals.

DISCUSSION

The aim of the present study was to investigate the role of
ceramide in the development and progression of NAFLD. We
observed that HFD induced ceramide accumulation in the livers
of rats and resulted in a fatty liver phenotype. Myriocin, a
ceramide synthesis inhibitor, markedly attenuated liver lipid
accumulation. In addition, hepatic inflammation and fibrosis
were markedly ameliorated in myriocin-treated rats. These
findings provide clear evidence that ceramide plays an important
role in liver lipid homeostasis regulation and in the pathogenesis
of NASH. Thus, ceramide synthesis could potentially be a target
for the treatment of NAFLD.

Prior studies of obese rodents revealed that ceramide
inhibition could improve obesity-relatedmetabolic abnormalities
such as insulin resistance, hyperglycemia, and hyperlipidemia
(9, 19, 21–23). Prior studies also revealed that blunting de novo
ceramide synthesis could ameliorate hepatic steatosis in obese
animals (6, 11). Consistent with prior results, we observed the
same results in the present study. Previous study reported that
inhibition of ceramide accumulation can enhance metabolism
and energy expenditure (21). This may be an important reason
why myriocin can improve weight of obese animals. Inhibition

of ceramide synthesis was able to improve insulin resistance from
previous studies (9, 18, 21, 22). This may explain why myriocin
can improve insulin and blood glucose levels.

Here, we mainly focused on detecting the effects of inhibiting
ceramide accumulation in the development of NAFLD. We use
a rat high-fat diet fed model to incite NAFLD and hepatic
inflammation and use a pharmacologic inhibitor of ceramide
synthesis (myriocin) to reduce ceramides systemically and in the
liver. The findings of this paper are not novel, while we provide
important corroborating evidence that ceramides are important
in NAFLD pathogenesis.

However, myriocin treatment markedly attenuated not
only lipid accumulation but also hepatic inflammation and
fibrosis. In our study, we found that chronic treatment with
myriocin resulted in a significant reduction in mRNA levels
of inflammatory genes, including IL-1β, IL-6, and TNFα.
Meanwhile, the expression of α-SMA and collagen was also
markedly attenuated by myriocin treatment in HFD-fed rats.
However, the mechanisms by which ceramide promotes the
development of NASH remain unclear.

Hepatocyte apoptosis has been considered a key factor of
NASH pathogenesis and progression (24). Previous studies
showing that ceramide may represent a pro-death molecule
suggested that apoptosis may be involved in this process (2,
17). In addition, mice with steatosis that were fed an HFD
displayed an increase in hepatic ceramide, which was associated
with hepatocyte apoptosis (25). In the present study, we found
that hepatic cleaved caspase 3 and cleaved HARP levels were
significantly increased in HFD-fed rats but were markedly
attenuated by myriocin treatment. Therefore, suppressed hepatic
apoptosis may be responsible for improved liver function,
inflammation, and fibrosis in myriocin-treated animals.

JNK is one of the most investigated signal transducers in
obesity-related conditions (26–28). JNK also plays an important
role in the cell stress response including cell proliferation,
survival, and death (29). Ceramide can induce cell apoptosis
by activation of the JNK signaling pathway (30, 31). Here,
we found that p-JNK expression was significantly increased
in the liver samples from HFD-fed rats and that the level
of expression of these liver samples could be restored by
myriocin treatment. The JNK signaling pathway was able to
affect Bcl-2 family members. Specifically, JNK regulates the
activity of proapoptotic BAX and anti-apoptotic Bcl-2 proteins
(32, 33) and facilitates the release of mitochondrial cytochrome
c to induce apoptosis (34–37). In addition, ceramide has
been reported to activate Bax and inactivate Bcl-2 in the
apoptotic pathway (38–40). Our study suggests that myriocin
treatment decreased Bax and cytochrome c expression and
increased Bcl-2 expression in HFD-fed animals. Briefly, the anti-
apoptosis effect in the liver of rats with NAFLD was mediated
via the JNK signaling pathway and treated with a ceramide
synthesis inhibitor.

In conclusion, myriocin, an inhibitor of de novo ceramide
synthesis, is considered to have anti-steatosis and anti-fibrosis
effects, by activating anti-apoptosis and anti-inflammation
mechanisms in HFD-fed NAFLD pathological animals.
Therefore, ceramide appears to be a potential target for
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developing treatment therapies for NAFLD and NASH, which
are induced by hepatic apoptosis and inflammation.
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