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Bone marrow adipose tissue (BMAT) is increased in both obesity and anorexia. This

is unique relative to white adipose tissue (WAT), which is generally more attuned to

metabolic demand. It suggests that there may be regulatory pathways that are common

to both BMAT and WAT and also those that are specific to BMAT alone. The central

nervous system (CNS) is a key mediator of adipose tissue function through sympathetic

adrenergic neurons. Thus, we hypothesized that central autonomic pathways may be

involved in BMAT regulation. To test this, we first quantified the innervation of BMAT

by tyrosine hydroxylase (TH) positive nerves within the metaphysis and diaphysis of the

tibia of B6 and C3H mice. We found that many of the TH+ axons were concentrated

around central blood vessels in the bone marrow. However, there were also areas

of free nerve endings which terminated in regions of BMAT adipocytes. Overall, the

proportion of nerve-associated BMAT adipocytes increased from proximal to distal

along the length of the tibia (from ∼3–5 to ∼14–24%), regardless of mouse strain. To

identify the central pathways involved in BMAT innervation and compare to peripheral

WAT, we then performed retrograde viral tract tracing with an attenuated pseudorabies

virus (PRV) to infect efferent nerves from the tibial metaphysis (inclusive of BMAT) and

inguinal WAT (iWAT) of C3H mice. PRV positive neurons were identified consistently from

both injection sites in the intermediolateral horn of the spinal cord, reticular formation,

rostroventral medulla, solitary tract, periaqueductal gray, locus coeruleus, subcoeruleus,

Barrington’s nucleus, and hypothalamus. We also observed dual-PRV infected neurons

within themajority of these regions. Similar tracings were observed in pons, midbrain, and

hypothalamic regions from B6 femur and tibia, demonstrating that these results persist

across mouse strains and between skeletal sites. Altogether, this is the first quantitative

report of BMAT autonomic innervation and reveals common central neuroanatomic

pathways, including putative “command” neurons, involved in coordinating multiple

aspects of sympathetic output and facilitation of parallel processing between bone

marrow/BMAT and peripheral adipose tissue.
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INTRODUCTION

Within the peripheral nervous system, sympathetic adrenergic
signals are transmitted by several distinct sets of ganglia, which
regulate regions in the head, trunk, viscera, and limbs. Common
higher order processing centers are needed to ensure rapid,
precise coordination of whole-body responses such as changes in
vascular tone and energy metabolism. Consistent with this, the
central nervous system (CNS) is recognized as a key mediator of
peripheral adipose tissue function (1–7). The bonemarrow is also
an important site of peripheral adiposity with evidence for unique
regulation and function [reviewed in (8)]. However, to date, very
little is known about the neural control of bone marrow adipose
tissue (BMAT) or its relationship to other adipose tissue depots
across the central neuraxis.

The existence and prevalence of sympathetic neurons within
the skeleton and bone marrow is well established (9–12).
Ducy et al. first functionally demonstrated that central leptin
administration reduced bone mass (13). This was later followed
by other studies demonstrating that this effect was mediated via
sympathetic nerves and modulation of β-adrenergic signaling
(14, 15). Centrally, key neuropeptides associated primarily
with the hypothalamus (e.g., NPY, CART, AgRP, POMC)
have also been implicated in regulating bone homeostasis
[reviewed in (16)]. Despite current work linking both the
hypothalamus and sympathetic nerves to modulation of the bone
microenvironment, the central regulatory regions influencing the
skeleton are still relatively undefined.

We hypothesized that shared central neural pathways,
relative to white adipose tissue (WAT), may be involved in
BMAT regulation. To test this hypothesis, we performed viral
transneuronal tract tracing from bone marrow and inguinal
WAT. Viral tract tracing is a tool used to identify neural circuits.
In particular, attenuated pseudorabies virus (PRV) recombinants
such as the PRV-Bartha strain are well-established tracers that
can be used for multi-synaptic directional tracing (17–19). After
local PRV injection, all exposed viral axons within the site are
infected. The virus then traffics to the cell body, replicates, and
spreads across retrograde efferent synapses. This facilitates multi-
synaptic tracing through the spinal cord and CNS.Whilst sensory
cell bodies can be infected with PRV, they will not sort viral
particles into central axons across afferent synapses and thus,
viral transmission terminates in these cells. These properties
make PRV tracers ideal for identifying and mapping efferent
pathways from peripheral tissues, inclusive of those within the
sympathetic nervous system (SNS).

Several previous reports have used tracing techniques to begin
to map the higher order autonomic networks that regulate
bone, adipose tissues, and other organs (4, 5, 20–27). However,
shared regulatory regions between bone marrow/BMAT and
peripheral WAT have not been identified. Thus, in this study,
we first determined the proportion of BMAT adipocytes that

are innervated by the SNS in C3H/HeJ (C3H) and C57BL/6J

(B6) mice. Then, we used PRV to trace efferent neuroanatomical

circuits from both tibial bone marrow (inclusive of BMAT) and
inguinal WAT of C3H animals. Tracing from B6 femur/tibia was
used as a control to examine strain- and skeletal site-specificity.

To accomplish this, we used replication competent, isogenic,
attenuated strains of the PRV virus (PRV-Bartha) in which the
gG locus had been replaced with a fluorescent reporter (28).

METHODS

Mice
The Institutional Animal Care and Use Committee (IACUC)
at Washington University in St. Louis approved all procedures,
and these experiments were performed in AAALAC accredited
facilities. For all experiments, C3H/HeJ (C3H, Stock:000659) and
C57BL/6J (B6, Stock:000664) mice were obtained from Jackson
Labs; mice were acclimatized for 1 week prior to experiments.
Mice were housed on a 12-h light/dark cycle at 70 ± 2 degrees
Fahrenheit and fed standard chow (LabDiet R© 5053). Relative to
B6 mice, C3H mice are known to have a significant expansion of
BMAT in the proximal tibia by 12-weeks of age (29).

Retrograde Viral Tract Tracing
Mice at 12-weeks of age underwent surgery and were euthanized
for analysis 5–6 days after viral infection. This timing is sufficient
to allow for retrograde transsynaptic transport of virus through
3 synaptic relays, up to 4 orders of neurons (1). Two isogenic
pseudorabies retrograde tracing viruses were obtained from
the NIH Center for Neuroanatomy with Neurotropic Viruses
(CNNV): PRV-152 (30, 31) and PRV-614 (28). The PRV-152 virus
has EGFP as the reporter, while mRFP is the reporter for PRV-
614. C3H: Half the mice received PRV-152 into the tibia and
PRV-614 into iWAT; whilst the other half received PRV-614 into
the tibia and PRV-152 into iWAT. B6: Half the mice received
PRV-152 into the proximal tibia and PRV-614 into distal femur;
whilst the other half received PRV-614 into tibia and PRV-152
into femur. Figure 1A lists the viral loads injected at each site (fat
vs. bone). A drilled bone defect model was used to place virus
directly in bone using a pulled glass needle, microinjector, and
stereotaxic apparatus to deliver 0.10 µL (PRV-152) or 0.15 µL
(PRV-614) of viral solution at depths of 2.5, 3, and 3.5mm from
the top of the bone including the cartilage (Figures 1B–D). The
injection site was sealed with bone wax to prevent leakage of the
virus. For iWAT injections, 0.15 µL (PRV-152) or 0.20 µL (PRV-
614) of virus was injected using a pulled glass needle at each
of four sites along the length of the iWAT. All mice were given
Buprenorphine SR (ZooPharm, 1.0 mg/kg) and monitored daily
post-surgery until euthanasia. In our hands, 25% of injected C3H
mice and 36% of injected B6 mice did not display evidence of
infection in the brain. This could be due to failed ejection of the
viral solution from the microinjector tip, failed viral infection,
replication and/or spread, or mis-injection into the circulation.
Previous work has shown that IV injection of PRV does not cause
central neuronal infection (32).

Tissue Collection
Mice were sedated with Ketamine/Xylazine and perfused through
the left ventricle with 25mL of phosphate buffered solution (PBS)
followed by 25mL 4% paraformaldehyde (PFA) at a rate of 5.0mL
per minute using a peristaltic pump. Tissues were post-fixed
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FIGURE 1 | Virus placement and weight loss. (A) Viral titers and injection volumes. (B) Virus placement in the tibia at depths of 2.5, 3.0, and 3.5mm from the top of

the tibia or femur. Access to the tibial bone marrow was gained at the knee between the medial and lateral tibial condyles (B6 and C3H mice). Access to the femoral

bone marrow was also via the joint surface (B6 mice only). (C) Representative computed tomography image of the needle tract into the tibial metaphysis (green dot). A

pulled glass microinjector was used to minimize any disturbance to the surrounding bone and marrow. (D) Representative computed tomography of the needle tract

into the femur (green dot).

overnight in 4% PFA and then placed in PBS for storage or
processed and analyzed as described below.

MicroCT
Post-fixation, bones were embedded in 2% agarose gel. The
proximal ends of the tibiae were scanned at 20µm voxel
resolution using a Scanco µCT 40 (Scanco Medical AG)
calibrated using a hydroxyapatite phantom. Scans were used to
verify placement of the needle into the bone (Figures 1C,D).

Immunostaining and Analysis
Tibia

To assess skeletal innervation, whole tibiae from 13-week old
C3H and B6 male mice were sectioned transversely at 50µm
along the length of the bone. Tissues were processed in 30%
sucrose and embedded in Tissue-Plus OCT compound (Fisher
Scientific, Hampton, New Hampshire, USA, 23-730-571) prior
to cutting. Sections were blocked in 10% normal donkey serum
(Sigma, St. Louis, MO, USA, D9663) in TNT buffer (0.1M
Tris-HCl pH 7.4; 0.15 NaCl; 0.05% Tween-20). The sections
were then incubated for 48-h with primary antibodies to
tyrosine hydroxylase (TH) and perilipin (Supplemental Table 1).
Following three rinses in TNT buffer, primary antibody staining
was visualized using fluorescently-tagged secondary antibodies.
The sections were rinsed again with TNT buffer and incubated

in DAPI (1:1,000 dilution; Sigma, St. Louis, MO, USA, D9542)
for 5-min before mounting with Fluoromount-G (ThermoFisher
Scientific, Waltham, Massachusetts, USA, 00-4958-02). Tiled
sections were imaged at 10X on a Nikon spinning disk
confocal microscope. Images were reconstructed and analyzed in
ImageJ/FIJI (33). The number of perilipin positive adipocytes was
counted manually in each section and the proportion adjacent
to a TH+ axon was recorded (<5µm spacing). It is important
to note that only TH+ structures the bone marrow with a size
and morphology that was consistent with an autonomic axon
fiber were considered in our analysis (size ∼1µm in diameter,
fibrous/branching, no nuclei—see Figure 2A as an example).

Spinal Cord

After perfusion, processing in 30% sucrose, and embedding
in Tissue-Plus OCT compound, whole embedded spines were
stored at −80◦C until sectioning. The entire spinal cord
was sectioned at 50µm on a cryostat (Leica CM1850)
and then collected onto Superfrost charged slides (Fisher
Scientific, Hampton, New Hampshire, USA, 12-550-15). Every
8th section was stained. The sections were thawed at room
temperature for 10-min, prior to immunostaining. Sections
were first blocked in 10% normal donkey in TNT buffer.
The sections were then incubated for 48-h in primary
antibodies against RFP and GFP (Supplemental Table 1).

Frontiers in Endocrinology | www.frontiersin.org 3 September 2019 | Volume 10 | Article 668

https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles


Wee et al. Autonomic Connections Between Bone and Fat

FIGURE 2 | Innervation of BMAT adipocytes by sympathetic autonomic nerves. (A) Cross-section of the proximal tibial metaphysis with immunohistochemical stains

for adipocytes (perilipin, red) and sympathetic adrenergic nerves (tyrosine hydroxylase, green) overlaid with dapi (blue). In some regions, perilipin+ adipocytes are

observed immediately adjacent to TH+ axons (∼1µm in diameter, fibrous/branching, representative inset, white arrowheads). B, bone. Scale bar = 50µm. (B)

Representative distribution of bone marrow adipose tissue (BMAT) in a C3H and B6 male, 13-week old tibiae. Osmium stain and CT reconstruction.

Immunohistochemical sections along the length of the tibia were analyzed for adiposity and TH+ innervation as indicated. (C) The number of perilipin positive

adipocytes in a full tibial cross-section (see example in A) was counted in each region as indicated in B and normalized to the volume of the bone marrow. As

previously reported Scheller et al. (29), C3H mice had increased density of BMAT adipocytes along the length of the tibia relative to B6 animals (2-way ANOVA). (D) In

the same regions, the number of adipocytes <5µm from a TH+ nerve were counted and expressed relative to the total number of adipocytes within the section [“%

BMAT Innervation (TH+)”]. Despite differences in adipocyte density, the proportion of BMAT adipocytes that were adjacent to a TH+ axon remained relatively

consistent between strains. In addition, the % of innervated BMAT adipocytes was highest in distal regions of the tibia of both B6 and C3H mice. N = 3, C3H; N = 5,

B6. 2-way repeated measures ANOVA. Graphed as mean ± SD.

Following three rinses in TNT buffer, primary antibody staining
was visualized using fluorescently-tagged secondary antibodies.
The sections were rinsed again with TNT buffer and incubated
in DAPI for 5min before mounting with Fluoromount-
G. The sections were imaged with a Hamamatsu 2.0-HT
NanoZoomer at 20x magnification. Spinal cord sections were
analyzed using the Allen Spinal Cord Atlas as a reference
database (34).

Brain

Dry ice (solid CO2) was crushed to make a powder; each
brain was rolled in the CO2 and then left to freeze solid on
dry ice. Each sample was mounted using Tissue-Plus OCT
compound to a H/I Cryo-Histomat MK-3 (Hacker Instruments,
Winnsboro, South Carolina, USA) and cut into slices of 30µm

thickness. Sections were split into six series and stored in
cryoprotectant solution (0.2M phosphate buffer pH 7.4, ethylene
glycol, sucrose) until stained. Sections were washed in TNT
buffer and blocked in 0.1M PBS with 0.05% Tween 20 and
5% normal donkey serum. Primary antibodies to GFP, RFP,
and/or TH were diluted in 0.1M PBS with 0.05% Tween 20
and 1% normal donkey serum and were incubated overnight at
4◦C (Supplemental Table 1). Following rinsing in TNT buffer,

sections were incubated with secondary antibody for 1-h at

room temperature (Supplemental Table 1). Sections were then

incubated with DAPI (1:1,000) and then arranged onto slides

and coverslipped with Fluoromount-G. Imaging was performed

with a Hamamatsu 2.0-HT NanoZoomer at 20x magnification.

Sections spanning the entire brain werematched to images in The
Mouse Brain in Stereotaxic Coordinates Brain by Paxinos and
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Franklin (35) in order to identify traced central sites. For figure
generation, a subset of sections were imaged at 10Xmagnification
on a Leica confocal microscope.

FIGURE 3 | Spinal cord. The axon of the most distal neuron within bone or fat,

also known as the postganglionic autonomic neuron, connects to its cell body

in the sympathetic chain ganglia. Within the ganglion, this cell body synapses

with a new neuron, the sympathetic preganglionic neuron (SPN). The cell

bodies of the SPNs are located in the spinal cord in the intermediolateral (IML)

nuclei. Spinal cord neurons are then controlled by supraspinal circuits from the

brain, which send target axons to synapse on SPNs through descending

pathways. These are ultimately responsible for the coordinated regulation of

neuro-skeletal and neuro-adipose tissue interactions. (A,B) In the presented

case, PRV-614 (RFP) was injected into the tibia, whilst PRV-152 (GFP) was

injected into iWAT. Yellow neurons are neurons that have become infected with

both viruses (arrow). Scale bar = 500µm (A) and 100µm (B). Lf, lateral

funiculus. (C) We observed positive cells within dorsal root ganglia (DRG)

ipsilateral to the site of infection. In some cases, we also observed positive

DRG cells on the contralateral side. However, spread to the brain through

ascending spinal cord pathways was not noted. Representative image,

PRV-614 (RFP) into iWAT. Scale bar = 500µm.

Statistics

Statistics were performed in GraphPad Prism R©.
Statistical tests are indicated in the figure legends.

TABLE 1 | Traced brain regions from C3H tibial bone marrow [tibia, inclusive of

bone marrow adipose tissue (BMAT)] and inguinal white adipose tissue (iWAT).

Region of the brain Abbreviation Tibia

(N = 5)

iWAT

(N = 5)

Dual labeled

neurons

MEDULLA AND RETICULAR FORMATION

Raphe obscurus nucleus ROb 4 4 Yes

Raphe magnus nucleus RMg 5 3 Yes

Raphe pallidus nucleus RPa 5 4 Yes

Gigantocellular reticular

nucleus

GRN 5 4 Yes

Lateral

paragigantocellular

nucleus

LPGi 4 4 Yes

Rostroventral medulla RVLM 3 2 –

Nucleus of the solitary

tract

NTS 5 4 Yes

Area postrema AP 4 2 –

PONS

Barrington’s Nucleus BN 5 5 Yes

Locus coeruleus LC 5 5 Yes

Subcoeruleus nucleus SLC 5 5 Yes

MIDBRAIN

Dorsomedial

periaqueductal gray

DMPAG 5 3 Yes

Lateral periaqueductal

gray

LPAG 5 3 Yes

Ventrolateral

periaqueductal gray

VLPAG 4 3 Yes

HYPOTHALAMUS

Paraventricular

hypothalamic nucleus,

dorsal cap

PaDC 4 4 Yes

Paraventricular

hypothalamic nucleus,

lateral magnocellular part

PaLM 5 4 Yes

Paraventricular

hypothalamic nucleus,

medial magnocellular part

PaMM 5 3 Yes

Paraventricular

hypothalamic nucleus,

posterior part

PaMP 5 4

Paraventricular

hypothalamic nucleus,

medial parvicellular part

PaPo 4 4 Yes

Lateral hypothalamus LH 5 2 Yes

Posterior hypothalamic

area

PH 4 1 –

Arcuate nucleus Arc 3 1 –

Dorsomedial

hypothalamus

DMH 2 2 Yes

Ventromedial

hypothalamus

VMH 2 0 –

Suprachiasmatic nucleus SCN 2 0 –

OTHERS

Amygdala Me 3 2 –

Pyriform cortex Pir 2 2 –
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An unpaired t-test was used to assess differences in
body mass.

RESULTS

Sympathetic Adrenergic Innervation of
Tibial BMAT Adipocytes in C3H and B6
Mice
Sympathetic adrenergic axons in bone and adipose tissues
are rich in TH+ varicosities and terminate as free nerve
endings (9, 36, 37). The proximity of the axon facilitates
diffusion of neurotransmitters and subsequent actions on
surrounding target cells, such as adipocytes. Thus, we performed
immunohistochemical analysis of TH+ adrenergic nerve fibers

and quantified their relationship to perilipin positive BMAT
adipocytes at four sites along the length of the tibia. Consistent
with previous reports (9, 38), we found that many of the TH+

axons were concentrated around central blood vessels in the
bone marrow. However, there were also sparse areas of free
nerve endings, particularly in the proximal metaphysis, which
terminated in regions of BMAT adipocytes (Figure 2A). The
relationship of BMAT adipocytes with TH+ axons was further
explored by quantifying the percent of BMAT adipocytes that
were directly adjacent to an axon (<5µm away) along the
length of the tibia in both C3H and B6 mice (Figures 2B–D).
These included all adipocytes along the length of the neuron,
not just at the axon terminal. As expected, the tibial adipocyte
density was significantly greater in C3H mice relative to
B6, particularly within the diaphysis (Figure 2C). However,

FIGURE 4 | Co-infection of neurons from bone marrow/BMAT and iWAT in the medulla and pons. In the presented case, green neurons are traced from the tibia,

whilst red neurons are from iWAT. Yellow neurons are those that have become infected with both viruses (white arrows). (A,B) Brainstem medulla, scale bar = 1mm.

(C) Pons, scale bar = 1mm. Insets, scale = 100 µm: (1) Raphe obscurus (ROb), (2) nucleus of the solitary tract (NTS), (3) gigantocellular reticular nucleus (GRN),

lateral paragigantocellular nucleus (LPGi) and rostral ventrolateral medulla (RVLM), (4) raphe pallidus (RPa), and (5) locus coeruleus (LC). RMg, raphe magnus.
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despite this difference in density, the proportion of innervated
BMAT adipocytes was comparable between strains and increased
gradually from proximal to distal along the length of the tibia
(Figure 2D). Specifically, from the proximal metaphysis to the
region of the tibia/fibula junction, innervation increased from
5.2±1.2% to 24.2±16.0% in the C3H mice and 2.9±1.4% to
14.4±4.5% in B6 (Figure 2D).

PRV Tracing Identifies Central Pathways
Mediating Efferent Innervation of Bone
Marrow (Inclusive of BMAT) and iWAT
Infection Rate and Viral Characteristics

Male C3H mice at 12-weeks of age were injected with isogenic
PRV viruses as detailed in Figures 1A,B. Half received PRV-
152 (EGFP) into tibia and PRV-614 (mRFP) into iWAT, and the
other half had PRV-614 (mRFP) into tibia and PRV-152 (EGFP)
into iWAT. Though not uniformly reported or discussed in
previous publications, PRV infection causes weight loss, lethargy,
and eventually death in experimental animals (5, 19). C3H
animals that were positively infected with one or both viruses
demonstrated weight loss of 15±1.6%, whilst mice negative for
viral infection lost <3.9 ± 0.6% body weight (p = 0.003).
At the end of the experiment, 75% of mice demonstrated
positive infection with at least one virus that had progressed
to the brain. Upon µCT verification of needle placement, one
mouse was excluded due to needle perforation through the
tibial cortical bone. The results from the remaining animals are
described below.

Spinal Cord
Autonomic pathways consist of a two-neuron relay, which
connects the tissue of interest to the spinal cord. In our
experiments, the spinal cord was examined using serial thick
frozen sections from the upper thoracic to the lower sacral
regions. Labeling was observed to some extent at all levels of the
thoracic, lumbar, and sacral spinal cord, except for the lowest
sacral portions. Though a unilateral predominance was generally
noted, the majority of the cases had progressed to a point where
bilateral spread was evident. In all cases, cellular staining was
notable in the sympathetic preganglionic neurons (SPNs) of the
intermediolateral (IML) nuclei (Figure 3A). Connections from
the IML were commonly present across the intercalated nucleus
and labeling was also prominent within the central autonomic
nucleus (lamina X). In the surrounding white matter, positive
axons were noted to be crossing the lateral funiculus from the
surface of the spinal cord (Figure 3B).

Positive axons were also observed in the lateral reticulospinal
tract just outside of the IML, in laminae II, V, and VII, and
occasionally in the ventral horn. In mice where dual labeling
was present in the brain, the staining pattern was the same as
described above. In addition, though the majority of labeled
neurons in the spinal cord were of a single color/origin, a small
subset of dual-labeled neurons was present.

Lastly, given our cross-sectional analysis paradigm, we were
able to observe several of the dorsal root ganglia. Though the
PRV virus used is only capable of crossing between neurons

at retrograde synapses of efferent axons, it initially infects all
axons within the target tissue, including sensory afferent neurons.
Consistent with this, we observed positive staining in a subset of
the dorsal root ganglia; infection within contralateral ganglia was
also present in some cases (Figure 3C). However, further spread
from these neurons through anterograde spinal cord pathways
was not noted.

Medulla, Pons, and Midbrain
The spinal cord connects to the brainstem at the base of the skull,
transitioning into the medulla. Consistent with previous studies
(4, 5, 20–27), PRV infection occurred bilaterally within the brain,
even though only the right tibia and right iWAT were injected. A
summary of traced brain regions and their incidence is presented
inTable 1. Within the medulla, we observed pronounced positive
staining in the area postrema (AP), the nucleus of the solitary
tract (NTS), including the medial and ventrolateral parts, and
the reticular formation of the medulla, originating from both
regions of BMAT and iWAT (Figures 4A,B; Table 1). Within the
median reticular formation, the nucleus raphe obscurus (ROb),
the raphe pallidus (RPa) and nucleus raphe magnus (RMg)
were consistently traced with PRV (Figures 4A–C). Moderate
staining was also consistently observed between samples in
the gigantocellular reticular nucleus (GRN) and the lateral
paragigantocellular nucleus (LPGi) (Figures 4A,B). Adjacent to
the reticular formation, staining from bone marrow/BMAT
and iWAT was notable in the rostroventral medulla (RVLM)
(Figure 4B). In the pons, located between the medulla and the
midbrain, tracing was prominent from both injection sites within
the locus coeruleus (LC), subcoeruleus (SLC), and Barrington’s
nucleus (BN) (Figures 4C, 5A,B). As performed previously (22,
39), co-stains with TH were used to distinguish these three
regions (Figure 5). In the midbrain, positive infection from
bone marrow and iWAT was detected in the periaqueductal
gray (PAG) (Figures 6A–C). Staining within the PAG was
predominantly identified in the dorsomedial, lateral, and the
ventrolateral areas.

In multi-labeled samples, dual infected neurons from both
injection sites were present in the medullary reticular formation
(ROb, RMg, RPa, GRN, LPGi) and NTS (Figure 4). We similarly
observed a subset of pontine LC, SLC, and BN neurons that
were co-infected with viruses originating from bone marrow
and iWAT (Figure 5). Lastly, several dual traced neurons were
present in the PAG (Figure 6).

Hypothalamus and Forebrain
PRV infection was prominent within the hypothalamus,
most notably within the paraventricular hypothalamus (PVH)
(Figure 7; Supplemental Figures 1, 2). Infection of the PVH
was bilateral from both bone marrow and iWAT; however,
there was typically a discernable difference with a greater
number of neurons stained on one side than the other
(Supplemental Figure 1). This may be due to the virus crossing
the midline via interneurons and then proceeding up into
the brain, thus viral infection may lag on contralateral side,
leading to the observed difference. In dual positive-infected
mice, we observed a substantial number of neurons arising
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FIGURE 5 | Tyrosine hydroxylase staining identifies co-infected ‘command neurons’ in the locus coeruleus (LC), subcoeruleus (SLC), and Barrington’s nucleus (BN). In

the presented case, green neurons are traced from the tibia, whilst red neurons are from iWAT. A co-stain for tyrosine hydroxylase (TH) was used to define the

boundaries of the locus coeruleus and subcoeruleus (LC and SLC, TH+) relative to Barrington’s nucleus (BN, TH–). Yellow neurons are those that have become

infected with both viruses without co-staining for tyrosine hydroxylase (TH) (white arrow). White neurons are those that are triple positive for GFP, RFP, and

TH—indicating co-infection of a TH+ neuron within the LC or SLC as indicated (white arrowheads with black borders). (A) Overview of pons including the locus

coeruleus (LC) and Barringtons nucleus (BN) at −5.52mm from bregma. Scale bars: 1mm and 200µm (inset). (B) Overview of pons including the subcoeruleus (SLC)

at −5.02mm from bregma. Scale bars: 1mm and 200µm (inset). Individual channels for GFP (green), RFP (red), and TH (magenta) are shown for reference.

from the tibial injection and a number of neurons arising
from iWAT in both posterior and medial parts of the PVH
(Figures 7A–C). Again, similar to regions of the medulla and
pons, we also identified neurons that were co-infected with both
viruses (Figure 7; Table 1). Other regions of the hypothalamus
with positive PRV infection include the lateral hypothalamus
(LH), posterior hypothalamic area (PH), arcuate nucleus (ARC),
dorsomedial hypothalamus (DMH), ventromedial hypothalamus
(VMH), and suprachiasmatic nucleus (SCN) (Figure 7; Table 1).
Lastly, we found robust labeling of neurons in the amygdala
in a subset of animals (Figure 7B; Supplemental Figure 3). In
close proximity to the amygdala, PRV-infected neurons were
also present in the pyriform cortex in a 2/5 tracings from bone
marrow/BMAT and iWAT (Table 1; Supplemental Figure 3).

PRV Tracing From B6 Femur and Tibia
Mimics That Observed From C3H Mice
To examine the strain- and skeletal site-specificity of PRV, we
traced to the brain from the proximal tibia and distal femur
of a matched set of male 12-week-old, B6 mice. As above,

some mice received PRV-152 (EGFP) into tibia and PRV-
614 (mRFP) into femur while in others this was reversed. At
the end of the experiment, needle placement was confirmed
with µCT. Due to minor issues with tissue processing, the
medulla and reticular formation could not be included in these
analyses. However, in the pons, infection from the tibia and
femur was observed in the BN, LC, and SLC (Table 2). Staining
from both sites was also identified in the midbrain, specifically
within the PAG (Table 2). As in C3H mice, the hypothalamus
contained positive PRV infection predominantly in the PVH
(Table 2; Supplemental Figure 4). Additional traced neurons
were identified in the LH, PH, DMH, and SCN from a subset
of animals (Table 2). Lastly, one of four cases from the tibia and
two of three from the femur resulted in PRV infection in the
amygdala (Table 2).

DISCUSSION

Shared innervation has been established between peripheral
WAT and BAT adipose tissues (1–7). However, to date, our
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FIGURE 6 | Co-infection of neurons from bone marrow/BMAT and iWAT in the periaqueductal gray (PAG). In the presented case, green neurons are traced from the

tibia, whilst red neurons are from iWAT. Yellow neurons are those that have become infected with both viruses (white arrows). (A–C) Overview of tracing around the

central aqueduct (Aq) at three regions including −2.92, −4.16, and −4.72mm from bregma. Scale bar = 1mm. (A’–C’) Magnified insets showing individually traced

neurons and those with co-infection from both sites (arrowheads). Scale bar = 200µm. Green boxes on the sagittal sections denote the relative location of the

displayed regions.

understanding of neural interactions with bone marrow/BMAT
has been limited. We have previously demonstrated that
cold exposure, a model of elevated sympathetic tone and
catecholamine release, depleted BMAT from the proximal end
of the tibia (29). More recently, it was shown that bone marrow
adipocytes respond to isoproterenol (pan-adrenergic agonist—
β1, β2, and β3) by increased phospho-hormone sensitive lipase,
whilst the response following treatment with a β3 agonist, a
major regulator of lipolysis in other adipose tissues, was present
at a lower level (40). Together, this information suggests that
there is likely some shared regulation of adipose tissues within
the body but also that there may be subtle differences between
BMAT and other adipose depots. Building on previous work, this

study has been able to establish the presence of shared autonomic
pathways between BMAT and iWAT. Dual labeled “command”
neurons were noted regions such as the reticular formation, NTS,
LC, PBN, SLC, BN, and hypothalamus—indicating that common
neurons may be involved in the central regulation of both sites.
Though the prevalence of dual infection reflects a wide range
of variables including initial infection and viral trafficking, the
overlap in our current study appears to range from 7 to 18%
depending on the region (Figures 4–7). This is consistent with
previous work on dual injections of PRV into different adipose
depots which identified an incidence of 5–55% of dual-infected
neurons, indicative of shared innervation between fat depots
(41). The results provide the foundation for future studies to
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FIGURE 7 | Co-infection of neurons from bone marrow/BMAT and iWAT in the hypothalamus. In the presented case, green neurons are traced from the tibia, whilst

red neurons are from iWAT. Yellow neurons are those that have become infected with both viruses (white arrows). (A) Overview of hypothalamic tracing at −1.94mm

from bregma. Scale bar = 1mm. (B) Overview of hypothalamic tracing, including amygdala, at −1.06mm from bregma. Scale bar = 1mm. (C) Medial portion of the

paraventricular hypothalamus and suprachiasmatic nucleus at −0.82mm from bregma. Scale bar = 1mm. Insets: (1) dorsomedial hypothalamus (DMH), scale =

100µm, (2) lateral hypothalamus (LH), scale = 100µm, (3) amygdala (Me), scale = 200µm and (4) paraventricular hypothalamus (PVH), scale = 200µm. Regions

identified include: third ventricle (3V), arcuate nucleus (Arc), dorsomedial hypothalamus (DMH), lateral hypothalamus (LH), amygdala (Me), posterior hypothalamus

(PH), paraventricular hypothalamus (PVH), and suprachiasmatic nucleus (SCN).

evaluate the functional roles of the identified central regulatory
regions on BMAT, particularly within the contexts of shared
regulation of WAT, bone, and bone marrow.

Innervation of BMAT
The presence of sympathetic neurons in the skeleton is well
established (9–12). Similarly, the innervation of WAT adipocytes
is well-documented (42, 43). In WAT, EM studies demonstrate
that ∼5% of WAT adipocytes are immediately adjacent to
a sympathetic nerve axon (43). By contrast, beige or brown
adipocytes have an innervation rate that approaches 100%,
often with multiple nerve fibers per cell (43, 44). Our results
suggest that TH+ innervation of BMAT is more similar to
what has been documented for WAT, with ∼5–25% of the
BMAT adipocytes located immediately adjacent to a TH+ axon
(Figure 2). This helps to define when and where locally-released
neurotransmitters have the potential to act directly on the cells.
Conversely, it suggests that upwards of 70% of BMAT adipocytes
are relatively disconnected from the local adrenergic nerve supply
(though regulatory impulses could be communicated indirectly
or by diffusion). In the metaphysis, TH+ axons were occasionally
observed to branch and terminate in regions of BMAT. In the
diaphysis, the trajectory of the axons was generally restricted

to the arterial vasculature, with less branching. It is unknown
whether positioning of a BMAT adipocyte near an axon along
its length vs. at the termini impacts the ability of the neuron to
act on the cell. In other organ systems, axons have been shown
to release neurotransmitters along their entire length (45). More
work is needed, however, based on this data it is clear that TH+

neurons are well-positioned to signal to a subset of BMAT cells.

Shared Pathways—Vasoregulatory
Responses
A key strength of these experiments is our ability to examine the
results within the context of the extensive range of previously
published PRV tracing studies across most major organ systems.
Upon doing so, several patterns emerge. First, there are multiple
regions that have been traced in nearly all studies to date. This
includes early infection in areas of the pontine and medullary
reticular formation, RVLM, raphe nuclei, and PVH from organs
including spleen (21, 22), kidney (23, 24), adrenal gland (25), BAT
(5, 27), sympathetic ganglia (25), pancreas (26), lumbar muscle
(46), and iWAT/eWAT (4). These structures represent a common
neural circuit controlling sympathetic autonomic outflow to a
diverse set of organs (Figure 8). One likely explanation for this is
the need for coordinated, whole-body regulation of vascular tone
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TABLE 2 | Traced brain regions—B6 tibia and femur bone marrow (inclusive of

BMAT).

Region of the brain (from B6

mice)

Abbreviation Tibia

(N = 4)

Femur

(N = 3)

PONS

Barrington’s Nucleus BN 4 2

Locus coeruleus LC 4 3

Subcoeruleus nucleus SLC 3 3

MIDBRAIN

Dorsomedial periaqueductal gray DMPAG 0 1

Lateral periaqueductal gray LPAG 1 2

Ventrolateral periaqueductal gray VLPAG 3 2

HYPOTHALAMUS

Paraventricular hypothalamic

nucleus, dorsal cap

PaDC 4 3

Paraventricular hypothalamic

nucleus, lateral magnocellular part

PaLM 3 3

Paraventricular hypothalamic

nucleus, medial magnocellular part

PaMM 3 3

Paraventricular hypothalamic

nucleus, posterior part

PaMP 4 3

Paraventricular hypothalamic

nucleus, medial parvicellular part

PaPo 4 3

Lateral hypothalamus LH 2 2

Posterior hypothalamic area PH 2 2

Arcuate nucleus Arc 0 2

Dorsomedial hypothalamus DMH 2 2

Ventromedial hypothalamus VMH 0 2

Suprachiasmatic nucleus SCN 2 2

OTHERS

Amygdala Me 1 2

Pyriform cortex Pir 0 2

by the autonomic nervous system (47). For example, functional
studies in cats and primates demonstrate that stimulation of the
PVH causes systemic vasopressor responses that are mediated
by the descending autonomic vasomotor fibers on the surface
of the spinal cord, which synapse on SPNs in the IML to signal
to peripheral tissues (48). In our study, this is consistent with
prominent labeling in regions including the PVH (Figure 7), the
surface of the lateral funiculus of the spinal cord, the SPNs of the
IML nucleus and the medially associated cord/SPN regions such
as the intercalated nucleus and central autonomic area (lamina
X) (Figure 3) (49). Similarly, the pre-sympathetic neurons of the
RVLM, traced from both sites in this study, are a key source
of excitatory inputs to the SPNs in the spinal cord that help to
maintain baseline arterial pressure (Figure 4) (50).

Many of these areas have also been implicated in reflex
autonomic control of vascular tone, a collection of diverse
mechanisms by which the body integrates information from
peripheral sensory inputs to subsequently coordinate autonomic
responses. Within the spinal cord, for example, stimulation
of sensory roots can influence the activity of autonomic SPNs
(48). Locally, this may be explained by modulation of SPNs
by autonomic interneurons within the dorsal horn (Figure 3)

[discussed in (51, 52)]. To date, pre-sympathetic interneurons
have been identified in laminae V, VII, and X. In our study, we
also observed tracing in these laminae (Figure 3), emphasizing
the potential for integration and modulation of sensory and
sympathetic signals to iWAT/BMAT within the spinal cord
(48). Integration also occurs within the brain. From this
study, labeled central sites including the LC, NTS, RVLM,
and medullary raphae (ROb, RMg, RPa) have the potential
to integrate peripheral sensory inputs (e.g., somatosensory
stimuli, peripheral chemoreceptors, arterial baroreceptors)
with subsequent regulation of autonomic responses, including
vascular tone (47, 50, 53–55). Thus, our work puts bone
marrow/BMAT and iWAT into the same vasoregulatory network
as organs including the spleen, kidney, adrenal gland, BAT,
muscle and pancreas; however, future functional studies are
needed to explore differences, if any, in the magnitude and
timing of centrally-evoked responses.

Shared Pathways—Energy Utilization and
Lipolysis
Nerve endings in both WAT and bone marrow exist as free
terminals and lack conventional synapses with surrounding
cells [reviewed in (56)]. Thus, peripheral neurotransmission is
mediated by bulk release and diffusion of signaling factors.
The catecholamine norepinephrine has a well-established role
in mediating SNS activity to peripheral tissues. Norepinephrine
controls local SNS-mediated vasoregulation (57), SNS-mediated
lipolysis (56, 58), and SNS-mediated thermogenesis/beiging (59).
Though its expression is not restricted to neurons, there is
also evidence that neuropeptide Y (NPY), another sympathetic
neurotransmitter, can regulate peripheral adipose tissues both via
central circuits and locally through direct actions on adipocytes
and surrounding cells (60, 61). This emphasizes that those central
pathways which cause bulk peripheral neurotransmitter release,
as described above for vasoregulation, may also promote lipolysis
and/or adipose tissue thermogenesis. Few studies have examined
the effect of sympathetic neurotransmitters on BMAT directly
and this is an area that could be the further explored in the future.

Central integration of peripheral inputs is similarly critical to
ensure optimal autonomic contributions to energy partitioning.
A key mediator of this relationship is the adipocyte-secreted
hormone leptin. Our viral tracing demonstrated prominent
labeling from iWAT and bone marrow/BMAT in leptin-
responsive regions such as the PVH, ARC, DMH, VMH, and
AP. In addition to known actions on food intake, leptin has
been implicated in the central regulation of bone marrow and
peripheral adipocytes. Studies examining leptin deficient models
(ob/ob) have found increased BMAT (62, 63). Leptin treatment
of ob/ob mice reduces BMAT number and size due to lipid
mobilization and apoptosis whilst simultaneously increasing
bone formation (63, 64). In addition, leptin delivery to the
VMH of healthy rats for 5 days induces a significant depletion
of peripheral fat pads and also BMAT (65); this functionally
demonstrates that central regulatory regions such as the VMH,
also identified in our study, can simultaneously influence both
BMAT and peripheral adipose tissues.
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FIGURE 8 | Summary and model. (1) Nerve endings were infected by PRV-bartha virus after local injection into inguinal white adipose tissue (iWAT) or regions of

BMAT in the proximal tibia. (2) Infection of sympathetic post-ganglionic axons and their ganglionic cell bodies progressed to infect the sympathetic preganglionic

neurons (SPNs) within the intermediolateral nucleus (IML) of the spinal cord. Infection within the spinal cord was also noted across the intercalated nucleus and in

laminae V, VII, and X. *Infection was also present in the dorsal root ganglia. This is due to the ability of PRV-Bartha to infect free endings of afferent neurons. However,

after this, it is not able to traffic across afferent synapses toward the brain. (3) Viral tracing ascended through efferent pathways to central brain regions (4). The full list

of traced regions is available in Tables 1, 2. Functionally, traced central regions are capable of coordinating autonomic signals through shared pathways, which

descend to the target tissues. These regions have previously been implicated in regulation of vascular tone, lipolysis, and bone turnover.

Regulation of Skeletal Homeostasis
While our focus is on adipose tissue comparisons, it should be
noted that the bone injections would label nerves that interact
with a heterogeneous population of cells: bone cells, bone
marrow, and BMAT. Signaling in the VMH, for example, may
link bone marrow with splenic innervation. Functionally, the
VMH has been shown to suppress splenic lymphocyte activity
(66) and natural killer cell cytotoxicity (67) demonstrating a clear
role for sympathetic regulation of hematopoietic cells in spleen
that may mirror what has been described for bone marrow (68).

In addition to hematopoiesis, for the past two decades, there
have been numerous studies demonstrating the effects of central
regulation on bone mass; interactions between the brain and
bone mass have primarily focused on the hypothalamus (13,
14, 69). Consistent with this, we observed robust staining from
bone to hypothalamic regions: LH, PH, ARC, DMH, VMH, and
SCN. To date, the arcuate nucleus has a well-established role
in regulating bone mass through AgRP/NPY neurons (70, 71)
and more recently Kiss neurons (72). Interestingly, deletion of
the estrogen receptor from Kiss1 neurons had sex-specific effects
on bone mass with females having a striking 500% increase in
cancellous bonemass in the distal femur, whilst males had normal
bonemass in comparison to controlWTmice (72). These studies,

while focused on a single regulatory center of the brain, the
arcuate nucleus, demonstrate the potential impact of modulating
neuronal activity on the bone microenvironment. This same
region is strongly linked to the regulation of energy homeostasis
and the modulation of BAT andWAT, thus is a good candidate to
further study to elucidate the effect of arcuate neurons on BMAT.

Similar to other adipose tissues, the bone microenvironment
is also influenced by circulating cues such as leptin, which can
influence sympathetic tone and also act directly on progenitor
cells within the skeleton [reviewed in (73)]. Early work by
Karsenty et al. demonstrated that leptin could inhibit bone
formation via a central hypothalamic relay (13); this work
predominantly examined the effects on vertebral bone mass,
a site in the mouse that does not typically have many bone
marrow adipocytes. The effects of leptin on bone have been
complicated and been much debated; in ob/ob mice restoration
of peripheral leptin signaling has an anabolic effect on bone
mass (74), which opposes the central effects. This was also
demonstrated when Prrx1-cre or Col3.6-cre was used to remove
the leptin receptor; these mice had a significant increase in bone
mass (75, 76).

In addition to the hypothalamus, the area postrema (AP)
is another region that can respond to physiological factors
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as they enter the CNS and can influence autonomic control
(77). The subpostrema, a V-shaped area, is located adjacent
to the AP and on the upper limit of the commissural
part of the NTS; it too is involved in autonomic regulation
and provides bidirectional connections between area postrema
and the NTS (78). Recently, Zhang et al. determined that
Neuropeptide FF receptor 2 (Npffr2) signaling regulated
NPY neuron activity in the arcuate nucleus and influenced
BAT activity via the PVH (79). In addition to Npffr2
expression in the ARC, retrograde tracing from the ARC
demonstrated that brainstem regions such as the area postrema,
subpostrema, and NTS could provide input and regulate ARC
neurons (79). Npffr2 deficient mice on a high fat diet show
increased adiposity, reduced whole body energy expenditure,
reduced UCP-1 protein in BAT and increases in cancellous
bone mass (79). This study shows that brainstem neurons
are able to influence the hypothalamus and regulate the
bone microenvironment.

Other factors also implicated in energy homeostasis have
been shown to influence the bone microenvironment via central
signaling. Kajimura et al. (80) showed that adiponectin could
influence sympathetic tone by regulating neurons within the
locus coeruleus; leading to an inhibition of bone formation
and increased bone resorption through RANKL (80). Notably,
the central actions of adiponectin were apparent in older
adiponectin deficient mice and differed from younger mice.
Young adiponectin deficient mice had reduced bone mass,
consistent with the direct effects of adiponectin to inhibit
proliferation and induce apoptosis in osteoblasts (80). Similarly,
hypocretin (also known as orexin) has been reported to
reduce serum leptin levels via central signaling and reduce
cancellous bone mass (81). Although sympathetic tone was
not evaluated in that study, the changes in central orexin
signaling were abolished in leptin deficient (ob/ob) mice
suggesting that changes in leptin levels are affecting sympathetic
tone (81). These studies highlight the notion that peptides
can act through multiple pathways and thus, our study is
a good tool for identifying potential regulatory regions that
influence BMAT to assist with examining and targeting these
central effects.

LIMITATIONS

While we hypothesize that there may be unique sites that signal
to the BMAT environment in a context-specific manner, our
viral tract tracing is limited as it is only able to establish the
presence of infection and co-infection vs. iWAT. For example,
we identified infected neurons from bone marrow/BMAT in only
2 out of 5 cases of positive PRV infection in the VMH, but
not when traced from iWAT (Table 1). However, previous work
has shown that stimulation of the leptin-responsive neurons in
the VMH significantly affects both WAT and BMAT adipose
tissue depots (65). Thus, the absence of infection in neuronal
tracing studies does not mean that a region is functionally
unimportant. In addition, while we can focus and integrate
information known about single neural sites, it is also important

to consider that these central regulatory regions are connected
and interact with each other, i.e., the arcuate nucleus sends
projections to other regions within the hypothalamus (82),
that subsequently project to other parts such as the locus
coeruleus, solitary tract, and reticular formation. Thus, several
regions may actually work together to regulate bone, bone
marrow and BMAT. Lastly, though expression of TH has been
widely used to characterize peripheral nerves within bone,
bone marrow, and the periosteum (9, 11, 83, 84), it has the
potential to be upregulated with nerve stimulation (85). Thus,
it is possible that the proportion of TH+ nerve-associated
BMAT adipocytes may be higher in settings of increased
sympathetic tone.

PROSPECTUS AND CONCLUSION

A large proportion of work into understanding the neural
regulation of adipose tissue was originally performed in Siberian
hamsters. Siberian hamsters (Phodopus sungorus) display large
variations in body composition depending on the photoperiod
they are exposed to: hamsters exposed to long days can have
around 50% adiposity whilst exposure to shorter days leads
to around 20% adiposity (86, 87). This connection between
circadian rhythm and adiposity suggested a potential role
for the CNS in regulating adipose tissue. While there are
distinctive roles of the SNS in regulating brown adipose tissue
(BAT) function in comparison to WAT, PRV retrograde tracing
reveals that the central regulatory regions are similar between
these peripheral adipose depots (5, 27). Consistent with this,
we demonstrate that PRV tracing from bone marrow/BMAT
identifies many of the same regions. In addition, we define
a novel population of dual PRV-infected “command” neurons
that are connected to both bone marrow/BMAT and iWAT.
These neurons may coordinate multiple aspects of sympathetic
output and facilitate parallel processing for local effects such
as lipolysis, thermogenesis and vasoregulation (88–92). Moving
forward, more work is needed, both at the level of the brain
and locally within the bone marrow, to understand how and
in what contexts neural impulses are necessary regulators of
BMAT function.
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Supplemental Figure 1 | Paraventricular hypothalamus from all C3H mice

injected with PRV into the tibia or iWAT. Medial portion of the paraventricular

hypothalamus from each mouse injected with either PRV-152 (GFP) or PRV-614

(RFP) and the site of injection, tibia or iWAT. Scale bar: 1mm.

Supplemental Figure 2 | PRV infection from bone marrow/BMAT traces to

various parts within paraventricular hypothalamus. PRV-152 (GFP) was injected

into the tibia and the following sites showed PRV infection: (A) Suprachiasmatic

nucleus (SCN) and paraventricular hypothalamic nuclei: dorsal cap (PaDC), lateral

magnocellular part (PaLM), and medial magnocellular part (PaMM); (B) Posterior

paraventricular hypothalamic nuclei: posterior part (PaMP) and medial parvicellular

part (PaPo).

Supplemental Figure 3 | Amygdala and pyriform cortex traced from tibia. (A)

Overview of brain slice. (B) Amygdala. (C) Overview of pyriform cortex relative to

amygdala. (D) Pyriform cortex.

Supplemental Figure 4 | Paraventricular hypothalamus from all B6 mice injected

with PRV into the tibia or iWAT. Medial portion of the paraventricular hypothalamus

from each mouse injected with either PRV-152 (GFP) or PRV-614 (RFP) and the

site of injection, tibia or iWAT. Scale bar: 1mm.

Supplemental Table 1 | Antibodies used for immunostaining.
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