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Microglia are critical in neuroinflammation. M1/M2 polarization transitions of microglial

phenotypes determine the states of neuroinflammation and are regulated by multiple

pathways, including miRNAs and other epigenetic regulations. This study investigated

the polarization transitions of microglia induced by high glucose and glucose fluctuations,

and the role of miR-146a in regulating M1/M2 polarization transitions of microglia. BV-2

cells were cultured with 25 mmol/L glucose, 75 mmol/L glucose, and 25 mmol/L−75

mmol/L glucose fluctuation for 48 h. BV-2 cells overexpressingmiR-146a were generated

using a lentiviral vector. Quantitative real-time polymerase chain reaction (qRT-PCR) was

used to measure mRNA expression of miR-146a, CD11b, iNOS, Arg-1, IRAK1, TRAF6,

and NF-κB. Immunofluorescence was used to measure CD11b expression. Western

blot was used to measure protein expression of CD11b, iNOS, and Arg-1. Compared

with those in the 25 mmol/L glucose control group, expression of CD11b, iNOS, TNF-α,

and IL-6 in the 75 mmol/L glucose or glucose fluctuation groups of cultured BV-2 cells

were significantly increased, while Arg-1 and IL-10 was significantly decreased. These

effects were reversed by overexpression of miR-146a. Furthermore, expression of IRAK1,

TRAF6, and NF-κBwas significantly increased in the high glucose and glucose fluctuation

groups; this was reduced after miR-146a overexpression. In sum, high glucose and

glucose fluctuations induced polarization transitions from M1 to M2 phenotype in BV-2

cells. Overexpression of miR-146a might protect BV-2 cells from high glucose and

glucose fluctuation associated with M1/M2 polarization transitions by downregulating

the expression of IRAK1, TRAF6, and NF-κB.
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INTRODUCTION

Diabetic encephalopathy (DE) is a chronic complication of diabetes mellitus (DM), which can
cause cognitive decline, dementia, and mental disorders, which significantly affects the quality
of life of diabetic patients (1). Since the concept of DE was proposed by Nieleson in 1965,
our understanding of DE has deepened. Its pathogenesis involves various aspects, including
neuroinflammation (2, 3), blood-brain barrier (BBB) (2), vascular factors (4), insulin resistance,
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insulin deficiency (5, 6), and oxidative stress (3, 6). However,
controversy in the literature remains. Neuroinflammation
plays an important role in the pathogenesis of DE (7).
Neuroinflammation is a complex innate immune response of
the central nervous system that inhibits infection; removes
pathogens, cell debris, and misfolded proteins; and plays an
important role in nerve repair and evolution (8, 9). However, the
persistence or excessive activation of neuroinflammation can lead
to various neurological diseases.

Microglia are critical nervous system-specific immune cells
involved in the response to neuroinflammation. Microglial
polarization states comprise M1 and M2 phenotypes. M1
polarized microglia have pro-inflammatory effects and
phagocytic functions (10), mainly secreting pro-inflammatory
factors such as inducible nitric oxide synthase (iNOS), tumor
necrosis factor (TNF)-α, interleukin (IL)-6, and nitric oxide (NO)
to further aggravate neuronal damage. M2 polarized microglia
inhibit inflammatory responses, regulate neuroinflammation
(7), nourish nerves, and promote nerve repair (8, 11),
with overexpression of arginase-1 (Arg-1), IL-10, IL-4, and
transforming growth factor (TGF)-β. Polarization transitions to
M1 phenotype induced by high glucose and glucose fluctuations
have been observed in microglia both in vivo and in vitro. The
expression of iNOS in the hippocampus of diabetic mice was
significantly increased by inflammatory factors induced by high
glucose (11). Compared with that in the control group, the
expression of iNOS in microglia was upregulated after glucose
fluctuations. The expression of iNOS also significantly increased
after high glucose induction (12). Activation of nuclear factor
(NF)-κB and signal transducer and activator of transcription 1
(STAT1) may regulate M1 polarization of microglia, whereas
STAT6 and STAT3 activation may regulate M2 polarization (13).
Nevertheless, it remains unclear how hyperglycemia and glucose
fluctuations regulate polarization transitions of microglia.

In recent years, studies have reported that miRNAs are
involved in the regulation of microglia polarization. miR-
29b and miR-125a induce polarization transitions to M1
phenotype by inhibiting the expression of TNF-α-inducible
protein 3 (TNFAIP3) downstream of the NF-κB signaling
pathway (14). miR-146a plays an important role in the regulation
of inflammatory responses (15). Previous studies confirmed
that miR-146a directly regulates IRAK1 and TRAF6, thereby
regulating the pro-inflammatory factor NF-κB and expression of
inflammatory factors (16).

The present study therefore aimed to evaluate the role of
miR-146a on high glucose and glucose fluctuation-associated
polarization transitions of microglia. We hypothesized that miR-
146a was involved in the regulation of polarization transitions of
microglia induced by hyperglycemia and glucose fluctuations.

MATERIALS AND METHODS

Cell Culture
BV-2 cells were obtained from Chinese Academy of Sciences
(CAS) Kunming Cell Bank (Kunming, China) and cultured in
25mmol/L glucose Dulbecco’s Modified EagleMedium (DMEM)
(Gibco, USA) supplemented with 10% fetal bovine serum (FBS)

(Gibco, USA) and 1% penicillin-streptomycin (Hyclone, USA).
Cells were maintained in a humidified atmosphere containing 5%
CO2 at 37

◦C.
For glucose fluctuation BV-2 group culture, after cell

attachment, the cell culture medium was replaced with 25 or 75
mmol/L glucose in DMEM every 6 h and cultured for 48 h. High
glucose was the last fluctuation.

Stably transfected BV-2 cells overexpressing miR-146a were
generated using the overexpression plasmid vector GV369
(Addgene). miR-146a was amplified using the following
primers: forward primer, 5′-GAGGATCCCCGGGTACCGGT
ACAGGGCTGGCAGGATCTG-3; reverse primer, 5′- CACA
CATTCCACAGGCTAGCCCCACTCTCTCCACTCTTC
AAG-3 (Shanghai Gene Company, Shanghai, China). The
amplified sequences were inserted into GV369 by a recombinant
method (Genechem Company, Shanghai, China) according
to the manufacturer’s instructions. The resultant plasmid
was then transfected into 293T cells to construct a lentivirus
overexpressing miR-146a.

BV-2 at 3 × 104/well (six well plates) were seeded and
cultured for 12 h. A volume of 2mL enhanced infection solution
containing Lv-mmu-miR-146a (Genechem Company, Shanghai,
China) with the corresponding viral load and control virus
expressing spontaneous green fluorescent protein (GFP) with
puromycin acetyltransferase was incubated with cells. The load
of viral particles was quantified and normalized before the
addiction to the cells. At 12 h after infection, the medium was
replaced with conventional culture medium. After 72 h, GFP
expression was observed under a fluorescence microscope (Leica,
Germany). Complete medium containing 2µg/mL puromycin
(Sigma, Aldrich, USA) was used to screen virus-infected cells,
and 1 g/mL was used for further screening. Quantitative real-
time polymerase chain reaction (qRT-PCR) was used to assess
relative expression levels of miR-146a in the Lv-mmu-miR-146a
infection group.

Immunofluorescence Staining of CD11b
Cells grown on glass coverslips were fixed with 4%
paraformaldehyde, 0.1% Triton X-100, permeabilized, blocked
with 1% bovine serum albumin (BSA), and incubated with
anti-CD11b antibody (rat monoclonal antibody; Abcam, USA; 1:
500) at 4◦C overnight. After washes with 1× phosphate-buffered
saline (PBS), cells were incubated with the corresponding
secondary antibody conjugated with Alexa Fluor R© 647 (donkey
polyclonal secondary antibody to rat IgG, H&L; Abcam, USA;
1:100) in the dark for 1 h and analyzed using an inverted

fluorescence microscope (Leica, Germany). 4
′
,6-diamidino-2-

phenylindole (DAPI) was used to label cell nuclei. To assess BV-2
cell activation. ImageJ was used to calculate the expression of
CD11b fluorescence intensity per scaffold. At least five slides
were examined per treatment group for each experiment. A
comparison of the fluorescence intensity of CD11b between the
indicated groups was performed.

Quantitative RT-PCR (qRT-PCR)
Total RNA was extracted with TRIzol (RNAiso Plus) (Takara,
Japan). RNA was reversed transcribed into cDNA using the
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TABLE 1 | Primers of qRT-PCR.

Gene Primers sequence

CD11b Forward 5′ GAGCATCAATAGCCAGCCTCAGTG 3′

Reverse 5′ CCAACAGCCAGGTCCATCAAGC 3′

iNOS Forward 5′ GTTTACCATGAGGCTGAAATCC 3′

Reverse 5′ CCTCTTGTCTTTGACCCAGTAG 3′

Arg-1 Forward 5′ CATATCTGCCAAAGACATCGTG 3′

Reverse 5′ GACATCAAAGCTCAGGTGAATC 3′

β-actin Forward 5′ CTACCTCATGAAGATCCTGACC 3′

Reverse 5′ CACAGCTTCTCTTTGATGTCAC 3′

NF-κB Forward 5′ CAAAGACAAAGAGGAAGTGCAA 3′

Reverse 5′ GATGGAATGTAATCCCACCGTA 3′

TRAF6 Forward 5′ GAAAATCAACTGTTTCCCGACA3′

Reverse 5′ ACTTGATGATCCTCGAGATGTC 3′

IRAK1 Forward 5
′
GTTATGTGCCGCTTCTACAAAG 3′

Reverse 5′ GATGTGAACGAGGTCAGCTAC 3′

TNF-α Forward 5′ ATGTCTCAGCCTCTTCTCATTC 3′

Reverse 5′ GCTTGTCACTCGAATTTTGAGA 3′

IL-6 Forward 5′ CTCCCAACAGACCTGTCTATAC 3′

Reverse 5′ CCATTGCACAACTCTTTTCTCA 3′

IL-10 Forward 5′ TGCTAACCGACTCCTTAATGCAGGAC 3′

Reverse 5′ CCTTGATTTCTGGGCCATGCTTCTC 3′

U6 Forward 5
′
CTCGCTTCGGCAGCACA 3′

Reverse 5′ AACGCTTCACGAATTTGCGT 3′

miR-

146a−5p

Forward 5′ CGCTGAGAACTGAATTCCATGGGTT 3′

β-actin was used as mRNA and U6 as miRNA reference gene, with the 2−11Ct method

used for quantitation. Triplicate experiments were performed and repeated at least 3 times.

twostep method with PrimeScriptTM RT reagent Kit with gDNA
Eraser (Takara, Japan). Genomic DNA of miRNA was removed

using Recombinant DNase I (RNase-free) (Takara, Japan).
miRNA was reversed transcribed into cDNA using the Mir-X R©

miRNA FirstStrand Synthesis and SYBR R© qRT-PCR (Takara,
Japan). mRNA qRT-PCR was performed with the TB GreenTM

Premix Ex TaqTM (Tli RNaseH Plus) (Takara, Japan). miRNA
qRT-PCR was performed with Mir-XTM miRNA FirstStrand
Synthesis and SYBR R© qRT-PCR (Takara, Japan). The primers
used are shown in Table 1.

Western Blot
Total cell proteins were extracted and equal amounts of
protein (20 µg/sample) were separated by 10% SDS-PAGE and
transferred onto PVDF membranes (Millipore, USA). After
blocking with 5% skim milk at room temperature for 2 h, the
membranes were incubated with primary antibodies targeting
β-actin (mouse monoclonal antibody; Bioworld Technology,
USA; 1:10,000), Cd11b (rabbit polyclonal antibody; Abcam,
USA; 1:2,000), iNOS (rabbit polyclonal antibody; Abcam, USA;
1:600), and Arg-1 (rabbit polyclonal antibody; Abcam, USA;
1:1,000) overnight at 4◦C. Then, membranes were incubated with
secondary antibodies (anti-rabbit or anti-mouse IgG/HRP; CST;
1:5,000) for 2 h with shaking. After enhanced chemiluminescence
(ECL) (Merck Millipore, Germany) reaction, protein bands were

FIGURE 1 | Effects of high glucose and glucose fluctuations on miR-146a

levels in BV-2 cells. Expression levels of miR-146a, **p < 0.01 75 mmol/L Glc

vs. control, **p < 0.01 Glc fluctuation vs. control.

revealed on a Gel Imaging System (Syngene, USA). Gray values
were analyzed with Image Lab software (Bio-Rad, USA) using
β-actin as a loading control.

Enzyme-Linked Immunosorbent Assay
(ELISA)
The levels of TNF-α, IL-6, and IL-10 in cell culture supernatants
were evaluated with an ELISA kit (ABclonal, China), according
to the manufacturer’s instructions.

Statistical Analysis
SPSS 22.0 software (SPSS, USA) was used for data analysis.
Data are expressed as mean ± standard deviation (SD). Group
pairs were compared by t-tests. Normally distributed data were
analyzed 292 using one-way analysis of variance (ANOVA), and
non-normal 293 distributions were analyzed with the Kruskal–
Wallis H-test. Statistical differences were 297 considered as
significant if the P < 0.05.

RESULTS

Effects of High Glucose and Glucose
Fluctuation on miR-146a Expression in
BV-2 Cells
Compared with that in the 25 mmol/L glucose group, the
expression of miR-146a in the 75 mmol/L glucose group and
glucose fluctuation group was significantly decreased (0.69 ±

0.107 vs. 1.00 ± 0.037, ∗∗p = 0.001 and 0.74 ± 0.208 vs. 1.00 ±

0.037, ∗∗p= 0.003, respectively) (Figure 1).

miR-146a Overexpression in BV-2 Cells
Green fluorescent protein was expressed by more than 80%
of BV-2 cells 72 h after transfection with miR-146a lentivirus
and control virus (Figure 2A). After stable transfection and

Frontiers in Endocrinology | www.frontiersin.org 3 October 2019 | Volume 10 | Article 719

https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles


Huang et al. miR-146a Regulating Microglial Polarization Transitions

FIGURE 2 | GFP expression and miR-146a expression levels after lentiviral infection in BV-2. (A) GFP expression after BV-2 transfection with over-expression of

miR-146a lentivirus and control virus. (B) miR-146a expression levels before and after BV-2 transfection with over-expression of miR-146a lentivirus, ***p < 0.001

Lv-mmu-miR-146a group vs. control.

puromycin screening, miR-146a levels in the Lv-mmu-miR-146a
group were significantly higher than those of the control group
(3.63 ± 0.208 vs. 1.00 ± 0.086, ∗∗∗p < 0.001) (Figure 2B). These
findings indicated that miR-146a overexpressing lentiviruses
were successfully transfected into BV-2.

Effects of miR-146a Overexpression on
M1/M2 Polarization Transitions
Microglial Activation Marker CD11b
Immunofluorescence analysis (Figure 3) indicated that the
expression of theM1 phenotype polarizationmarker, CD11b, was
significantly increased in the 75 mmol/L glucose (15.75± 3.98 vs.
6.47 ± 0.996, ###p < 0.001) and fluctuation group (11.5 ± 1.952
vs. 6.47 ± 0.996, ##p = 0.008) compared to that in the control
group. The expression of CD11b was significantly decreased
in the 75 mmol/L glucose+Lv-mmu-miR-146a group compared
with that in the 75 mmol/L glucose group (6.74 ± 0.916 vs.
15.75 ± 3.98, ∗∗∗p < 0.001). Similar results were observed
in the glucose fluctuation+Lv-mmu-miR-146a group when
compared with the glucose fluctuation group (6.76 ± 1.487 vs.
11.50± 1.952, ∗∗∗p < 0.001).

BV-2 cells were cultured in 25 mmol/L glucose, 75 mmol/L
glucose, or glucose fluctuation groups for 24 h, and qRT-PCR
was used to measure the expression of CD11b (Figure 4A).
Compared with that in the 25 mmol/L glucose group, the
expression of CD11b mRNA was significantly increased in the
75 mmol/L glucose group (2.13 ± 0.269 vs. 1.00 ± 0.093, ###p
< 0.001) and glucose fluctuation group (1.57 ± 0.141 vs. 1.00
± 0.093, ##p = 0.002). The expression of CD11b mRNA was
significantly decreased in the 75 mmol/L glucose+Lv-mmu-miR-
146a group compared with that in the 75 mmol/L glucose group
(1.16 ± 0.074 vs. 2.13 ± 0.2691, ∗∗∗p < 0.001). Similar results
were observed in the glucose fluctuation+Lv-mmu-miR-146a
group when compared with the glucose fluctuation group (1.015
± 0.266 vs. 1.57± 0.141, ∗∗p= 0.002).

Western blot (Figures 4B,C) revealed that the expression of
CD11b protein was significantly increased in the 75 mmol/L
glucose (2.13 ± 0.422 vs. 1.00 ± 0.110, ##p = 0.007)
and fluctuation group (1.80 ± 0.360 vs. 1.00 ± 0.110, ##p
= 0.003) compared with that in the control group. The
expression of CD11b protein was significantly decreased in
the 75 mmol/L glucose+Lv-mmu-miR-146a group compared
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FIGURE 3 | Immunofluorescence for CD11b in BV-2 cells overexpressing

miR-146a induced by high glucose and glucose fluctuations for 48 h. (A)

Immunofluorescence was used to measure the expression of CD11b protein in

BV-2 cells overexpressing miR-146a induced by high glucose and glucose

fluctuation. (B) Comparison of CD11b protein immunofluorescence intensity.
###p < 0.001, 75 mmol/L Glc vs. control; ##p < 0.01, Glc fluctuation

group vs. control. ***p < 0.001, 75 mmol/L Glc+Lv-mmu-miR-146a group vs.

75 mmol/L Glc group, Glc fluctuation+Lv-mmu-miR-146a group vs. Glc

fluctuation group.

with that in the 75 mmol/L glucose group (1.01 ± 0.102 vs.
2.13 ± 0.422, ∗∗∗p < 0.001). Similar results were observed
in the glucose fluctuation+Lv-mmu-miR-146a group when
compared with the glucose fluctuation group (0.899 ± 0.077 vs.
1.80± 0.360, ∗∗∗p < 0.001).

M1 Phenotype Polarization Marker iNOS
BV-2 cells were cultured in 25 mmol/L glucose, 75 mmol/L
glucose, or glucose fluctuation groups for 24 h, and qRT-PCR was
used to detect the expression of iNOS (Figure 4D). Compared
with that in the 25mmol/L glucose group, the expression of iNOS
mRNA was significantly increased in the 75 mmol/L glucose
group (2.45 ± 0.071 vs. 1.00 ± 0.030, ###p < 0.001) and glucose
fluctuation group (1.35 ± 0.173 vs. 1.00 ± 0.030, #p = 0.02).
The expression of iNOS mRNA was significantly decreased in
the 75 mmol/L glucose+Lv-mmu-miR-146a group compared
with that in the 75 mmol/L glucose group (1.36 ± 0.188 vs.
2.45 ± 0.071, ∗∗∗p < 0.001). Similar results were observed
in the glucose fluctuation+Lv-mmu-miR-146a group when
compared with the glucose fluctuation group (0.98 ± 0.072 vs.
1.35± 0.173, ∗p= 0.014).

Western blot results (Figures 4B,E) revealed that the
expression of iNOS protein was significantly increased in
the 75 mmol/L glucose (2.07 ± 0.449 vs. 1.00 ± 0.055, #p =

0.028) and fluctuation group (1.96 ± 0.104 vs. 1.00 ± 0.055,
#p = 0.03) compared with that in the control group. The
expression of iNOS protein was significantly decreased in
the 75 mmol/L glucose+Lv-mmu-miR-146a group compared
with that in the 75 mmol/L glucose group (1.53 ± 0.257 vs.
2.07 ± 0.449, ∗∗∗p < 0.001). Similar results were observed
in the glucose fluctuation+Lv-mmu-miR-146a group when
compared with the glucose fluctuation group (1.43 ± 0. 239 vs.
1.96± 0.104, ∗∗p= 0.001).

M2 Phenotype Polarization Marker Arg-1
BV-2 cells were cultured in 25 mmol/L glucose, 75 mmol/L
glucose, or glucose fluctuation groups for 24 h, and qRT-PCR was
used to measure the expression of Arg-1 (Figure 4F). Compared
to that in the 25 mmol/L glucose group, the expression of
Arg-1 mRNA was significantly decreased in the 75 mmol/L
glucose group (0.38 ± 0.005 vs. 1.00 ± 0. 095, ###p < 0.001)
and glucose fluctuation group (0.56 ± 0.055 vs. 1.00 ± 0.095,
###p < 0.001). The expression of Arg-1 mRNA was significantly
increased in the 75 mmol/L glucose+Lv-mmu-miR-146a group
compared with that in the 75 mmol/L glucose group (0.57 ±

0.112 vs. 0.38± 0.005, ∗p= 0.018). Similar results were observed
in the glucose fluctuation+Lv-mmu-miR-146a group when
compared with the glucose fluctuation group (0.91 ± 0.131 vs.
0.56± 0.055, ∗∗∗p < 0.001).

Western blot results (Figures 4B,G) revealed that the
expression of Arg-1 protein was significantly decreased in the
75 mmol/L glucose (0.41 ± 0.150 vs. 1.00 ± 0.269, #p = 0.016)
and fluctuation group (0.52± 0.170 vs. 1.00± 0.269, #p= 0.042)
compared with that in the control group. The expression of Arg-1
protein was significantly increased in the 75mmol/L glucose+Lv-
mmu-miR-146a group compared with that in the 75 mmol/L
glucose group (0.96± 0.274 vs. 0.41± 0.150, ∗p= 0.023). Similar
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FIGURE 4 | Effects of miR-146a on polarization transitions in BV-2 cells induced by high glucose and glucose fluctuation. (A) CD11b mRNA expression levels. ***p <

0.001, 75 mmol/L Glc+Lv-mmu-miR-146a group vs. 75 mmol/L Glc group; **p < 0.01, Glc fluctuation+Lv-mmu-miR-146a group vs. Glc fluctuation group; ###p <

0.001, 75 mmol/L Glc vs. control; ##p < 0.01, Glc fluctuation group vs. control. (B) Western blot for CD11b, iNOS, and Arg-1 protein detection. (C) Expression

levels of CD11b protein. ***p < 0.001, 75 mmol/L Glc+Lv-mmu-miR-146a group vs. 75 mmol/L Glc group; **p < 0.01, Glc fluctuation+Lv-mmu-miR-146a group vs.

(Continued)
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FIGURE 4 | Glc fluctuation group; ##p < 0.01, 75 mmol/L Glc vs. control; ##p < 0.01 Glc fluctuation group vs. control. (D) iNOS mRNA expression levels. ***p <

0.001, 75 mmol/L Glc+Lv-mmu-miR-146a group vs. 75 mmol/L Glc group; *p < 0.05 Glc fluctuation+Lv-mmu-miR-146a group vs. Glc fluctuation group, ###p <

0.001, 75 mmol/L Glc vs. control, #p < 0.05, Glc fluctuation group vs. control. (E) Expression levels of iNOS protein. *p < 0.05 75 mmol/L Glc+Lv-mmu-miR-146a

group vs. 75 mmol/L Glc group; *p < 0.05, Glc fluctuation+Lv-mmu-miR-146a group vs. Glc fluctuation group; ###p < 0.001, 75 mmol/L Glc vs. control; ##p <

0.01 Glc fluctuation group vs. control. (F) Arg-1 mRNA expression levels. *p < 0.05 75 mmol/L, Glc+Lv-mmu-miR-146a group vs. 75 mmol/L Glc group; ***p <

0.001 Glc fluctuation+Lv-mmu-miR-146a group vs. Glc fluctuation group; ###p < 0.001, 75 mmol/L Glc vs. control; ###p < 0.001, Glc fluctuation group vs.

control. (G) Expression levels of Arg-1 protein. *p < 0.05, 75 mmol/L Glc+Lv-mmu-miR-146a group vs. 75 mmol/L Glc group; **p < 0.01, Glc

fluctuation+Lv-mmu-miR-146a group vs. Glc fluctuation group; #p < 0.05, 75 mmol/L Glc vs. control; #p < 0.05, Glc fluctuation group vs. control.

results were observed in the glucose fluctuation+Lv-mmu-miR-
146a group compared with that in the glucose fluctuation group
(1.17± 0.373 vs. 0.52± 0.170, ∗∗p= 0.009).

Inflammation Cytokines

TNF-α

BV-2 cells were cultured in 25 mmol/L glucose, 75 mmol/L
glucose, or glucose fluctuation groups for 24 h, and qRT-PCR was
used tomeasure the expression of TNF-α (Figure 5A). Compared
to that in the 25 mmol/L glucose group, the expression of TNF-
α mRNA was significantly increased in the 75 mmol/L glucose
(1.23 ± 0.056 vs. 1.0 ± 0.134, #p = 0.022). There was no
significant difference between the fluctuation group and control
group(1.11 ± 0.02 vs. 1.0 ± 0.134, p = 0.161). The expression
of TNF-α mRNA was significantly decreased in the 75 mmol/L
glucose+Lv-mmu-miR-146a group compared to the 75 mmol/L
glucose group (1.0 ± 0.051 vs. 1.23 ± 0.056, ∗p = 0.017). No
significant difference between the glucose fluctuation+Lv-mmu-
miR-146a group and the glucose fluctuation group (1.00 ± 0.172
vs. 1.11± 0.020, p= 0.368) was observed.

ELISA (Figure 5B) results showed that compared to that in the
25 mmol/L glucose group, the expression of TNF-α protein was
significantly increased in the 75 mmol/L glucose (993.11 ± 5.06
vs. 828.09± 20.953, #p= 0.02). No significant difference between
the fluctuation group and control groups (919.70 ± 5.025 vs.
828.09 ± 20.953, p = 0.071) was observed. The expression of
TNF-α protein was significantly decreased in the 75 mmol/L
glucose+Lv-mmu-miR-146a group compared to the 75 mmol/L
glucose group (857.74 ± 13.91 vs. 993.11 ± 5.06, ∗∗p = 0.009),
and significantly decreased in the glucose fluctuation+Lv-mmu-
miR-146a group compared to the glucose fluctuation group
(871.03± 4.649 vs. 919.7± 5.025, ∗∗p= 0.003).

IL-6

BV-2 cells were cultured in 25 mmol/L glucose, 75 mmol/L
glucose, or glucose fluctuation groups for 24 h, and qRT-PCR was
used to measure the expression of IL-6 (Figure 5C). Compared
to that in the 25 mmol/L glucose group, the expression of IL-
6 mRNA was significantly increased in the 75 mmol/L glucose
(1.27± 0.072 vs. 1.0± 0.114, ##p= 0.009). The expression of IL-6
mRNAwas significantly decreased in the 75mmol/L glucose+Lv-
mmu-miR-146a group compared to the 75 mmol/L glucose
group (0.21 ± 0.052 vs. 1.27 ± 0.072, ∗p < 0.001), and similarly
significantly decreased in the glucose fluctuation+Lv-mmu-miR-
146a group compared to the glucose fluctuation group (0.30 ±

0.047 vs. 1.02± 0.064, ∗∗∗P < 0.001).

ELISA (Figure 5D) results showed that compared to that in
the 25 mmol/L glucose group, the expression of IL-6 protein was
significantly increased in the 75 mmol/L glucose (12.830± 0.125
vs. 11.36 ± 0.032, ##p = 0.008 compared with control groups.
No significant difference was observed between the fluctuation
group and control groups (111.79 ± 0.483 vs. 11.36 ± 0.032,
p = 0.826). The expression of IL-6 protein was significantly
decreased in the 75 mmol/L glucose+Lv-mmu-miR-146a group
compared to the 75 mmol/L glucose group (5.84 ± 0.828 vs.
12.830 ± 0.125, ∗p = 0.02), and similarly significantly decreased
in the glucose fluctuation+Lv-mmu-miR-146a group compared
with the glucose fluctuation group (6.17 ± 0.343 vs 11.79 ±

0.483, ∗∗p= 0.001).

IL-10

BV-2 cells were cultured in 25 mmol/L glucose, 75 mmol/L
glucose, or glucose fluctuation groups for 24 h, and qRT-PCR was
used to measure the expression of IL-10 (Figure 5E). Compared
to that in the 25 mmol/L glucose group, the expression of
IL-10 mRNA was significantly decreased in the 75 mmol/L
glucose (0.434 ± 0.017 vs. 1.0 ± 0.045, ###p < 0.001)and in
the fluctuation group (0.63 ± 0.089 vs. 1.0 ± 0.045, ###p <

0.001).The expression of IL-10 mRNAwas significantly increased
in the 75 mmol/L glucose+Lv-mmu-miR-146a group compared
with the 75 mmol/L glucose group(1.52 ± 0.042 vs. 0.434
± 0.017, ∗∗∗p < 0.001), and similarly significantly increased
in the glucose fluctuation+Lv-mmu-miR-146a group compared
with the glucose fluctuation group (1.32 ± 0.078 vs. 0.63 ±

0.089, ∗∗∗p < 0.001).
ELISA (Figure 5F) results showed that compared to that in

the 25 mmol/L glucose group, the expression of IL-10 protein
was significantly decreased in the 75 mmol/L glucose (4.53 ±

0.276 vs. 8.55 ± 0.296, ##p = 0.001). No significant difference
was observed between the fluctuation group and control groups
(5.56 ± 1.788 vs. 8.55 ± 0.296, p = 0.083). The expression of IL-
10 protein was significantly increased in the 75 mmol/L glucose
Lv-mmu-miR-146a group compared with the 75 mmol/L glucose
group(10.0 ± 0.915 vs. 4.53 ± 0.276, ∗p = 0.01), and similarly
significantly increased in the glucose fluctuation Lv-mmu-miR-
146a group compared with the glucose fluctuation group (12.21
± 1.046 vs. 5.56± 0.788, ∗p= 0.011).

miR-146a Regulation of Polarization
Transitions via IRAK1/TRAF6/NF-κB
Signaling
The expression of IRAK1 mRNA (Figure 6A) was significantly
increased in the 75 mmol/L glucose (1.82 ± 0.151 vs. 1.0 ±
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FIGURE 5 | Effects of miR-146a on inflammatory cytokines expression in BV-2 cells induced by high glucose and glucose fluctuation. (A) TNF-α mRNA expression

levels. #p < 0.05, 75 mmol/L Glc vs. control; *p < 0.05, 75 mmol/L Glc+Lv-mmu-miR-146a group vs. 75 mmol/L Glc group. (B) ELISA results of TNF-α. #p < 0.05,

75 mmol/L Glc vs. control; **p < 0.01, 75 mmol/L Glc+Lv-mmu-miR-146a group vs. 75 mmol/L Glc group; Glc fluctuation+Lv-mmu-miR-146a group vs. Glc

fluctuation group. (C) IL-6 mRNA expression levels. ##p < 0.01, 75 mmol/L Glc vs. control; ***p < 0.001, 75 mmol/L Glc+Lv-mmu-miR-146a group vs. 75 mmol/L

Glc group; ***p < 0.001, Glc fluctuation+Lv-mmu-miR-146a group vs. Glc fluctuation group. (D) ELISA results of IL-6. ##p < 0.01, 75 mmol/L Glc vs. control; *p <

0.05, 75 mmol/L Glc+Lv-mmu-miR-146a group vs. 75 mmol/L Glc group; **p < 0.01, Glc fluctuation+Lv-mmu-miR-146a group vs. Glc fluctuation group. (E) IL-10

mRNA expression levels. ###p < 0.001, 75 mmol/L Glc vs. control; ###p < 0.001, Glc fluctuation vs. control; ***p < 0.001, 75 mmol/L Glc+Lv-mmu-miR-146a

group vs. 75 mmol/L Glc group. ***p < 0.001, Glc fluctuation+Lv-mmu-miR-146a group vs. Glc fluctuation group. (F) ELISA results of IL-10. ##p < 0.01, 75 mmol/L

Glc vs. control; *p < 0.05, 75 mmol/L Glc+Lv-mmu-miR-146a group vs. 75 mmol/L Glc group; *p < 0.05, Glc fluctuation+Lv-mmu-miR-146a group vs. Glc

fluctuation group.

0.079, ###p < 0.001) compared with that in the control group. No
significant difference between the fluctuation group and control
group was observed (1.23± 0.05 vs. 1.0± 0.079, p= 0.067). The

expression of IRAK1 mRNA was significantly decreased in the
75 mmol/L glucose+Lv-mmu-miR-146a group compared with
that in the 75 mmol/L glucose group (1.3 ± 0.247 vs. 1.82 ±
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FIGURE 6 | miR-146a regulation of polarization transitions via the

IRAK1/TRAF6/NF-κB signaling pathway. (A) IRAK1 mRNA expression levels.
###p < 0.001, 75 mmol/L Glc vs. control; **p < 0.01, 75 mmol/L

Glc+Lv-mmu-miR-146a group vs. 75 mmol/L Glc group. (B) TRAF6 mRNA

expression levels. ###p < 0.001, 75 mmol/L Glc vs. control, Glc fluctuation

group vs. control; ***p < 0.001, 75 mmol/L Glc+Lv-mmu-miR-146a group vs.

75 mmol/L Glc group, Glc fluctuation+Lv-mmu-miR-146a group vs. Glc

fluctuation group. (C) NF-κB mRNA expression levels. ###p < 0.001, 75

mmol/L Glc vs. control, Glc fluctuation group vs. control; ***p < 0.001, 75

mmol/L Glc+Lv-mmu-miR-146a group vs. 75 mmol/L Glc group, Glc

fluctuation+Lv-mmu-miR-146a group vs. Glc fluctuation group.

0.151, ∗∗p = 0.03). No significant difference between the glucose
fluctuation+Lv-mmu-miR-146a group and glucose fluctuation
group was observed (0.94± 0.275 vs. 1.23± 0.05, p= 0.14).

The expression of TRAF6 mRNA (Figure 6B) was
significantly increased in the 75 mmol/L glucose (2.98 ±

0.199 vs. 1.0 ± 0.071, ###p < 0.001) and fluctuation group (1.59
± 0.137 vs. 1.0 ± 0.071, ###p < 0.001) compared with that in the
control group. The expression of TRAF6mRNAwas significantly
decreased in the 75 mmol/L glucose+Lv-mmu-miR-146a group
compared with that in the 75 mmol/L glucose group (1.24
± 0.048 vs. 2.98 ± 0.199, ∗∗∗p < 0.001), as well as in the
glucose fluctuation+Lv-mmu-miR-146a group compared with
that in the glucose fluctuation group (1.02 ± 0.207 vs. 1.59 ±

0.137, ∗∗∗p < 0.001).
The expression of NF-κBmRNA (Figure 6C) was significantly

increased in the 75 mmol/L glucose (2.39± 0.083 vs. 1.0± 0.088,
###p < 0.001) and fluctuation group (1.8 ± 0.07 vs. 1.0 ± 0.088,
###p < 0.001) compared with that in the control group. The
expression of NF-κB mRNA was significantly decreased in the 75
mmol/L glucose+Lv-mmu-miR-146a group compared with that
in the 75 mmol/L glucose group (0.6 ± 0.287 vs. 2.39 ± 0.083,
∗∗∗p < 0.001), as well as in the glucose fluctuation+Lv-mmu-
miR-146a group compared with that in the glucose fluctuation
group (1.03± 0.036 vs. 1.8± 0.07, ∗∗∗p < 0.001).

DISCUSSION

This study demonstrated that high glucose and glucose
fluctuations induced polarization transitions to M1 phenotype
in BV-2 cells. M1 phenotype parameters including CD11b
and iNOS were significantly increased while the expression
of M2 phenotype polarizing parameter Arg-1 was significantly
decreased. These effects were reversed by overexpression of miR-
146a. Furthermore, IRAK1, TRAF6, and NF-κB expression was
significantly increased in the high glucose group and glucose
fluctuation group. Similarly, these effects were reduced after
miR-146a overexpression.

Neuroinflammation is a double-edged sword.
Neuroinflammation plays an important role in suppressing
infection, removing pathogens, clearing cell debris andmisfolded
proteins in the nervous system, and nerve repair. However,
persistent neuroinflammation induces damage to the nervous
system. The role of neuroinflammation depends primarily on
the polarization transitions of M1/M2 phenotypes of microglia.
Microglia are critical cells that mediate neuroinflammation and
have different effects according to polarization phenotype. The
M1-polarized phenotype secretes inflammatory cytokines and
damages nerve cells, while the M2-polarized phenotype exerts
protective effects on nerve cells. Most microglia in the central
nervous system are in a relative “quiescent state.” Upon changes
to the surrounding environment, microglia are activated, which
induces M1/M2 polarization transitions. An in vitro study
suggested that hyperglycemia induced polarization transitions
to M1 polarization in microglia (17). In the cortex of diabetic
mice, M1 phenotype polarization of microglia was increased,
whereas M2 phenotype polarization of microglia was decreased.
Similarly, microglia in the hypothalamus of streptozotocin-
induced diabetic rats demonstrated M1 phenotype polarization
transition (18). The deleterious effects of glucose fluctuations on
diabetic macroangiopathy has been reported (19, 20). However,
few studies on the effects of diabetic encephalopathy have been
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performed. An in vitro study indicated that glucose fluctuations
significantly activated microglia (12). Nevertheless, more studies
are required to confirm these findings.

In this study, we use 25 mmol/L glucose DMEM for BV-2
cell culture. We found that 25 mmol/L glucose didn’t impact the
level of miR-146a, while in the high glucose group, miR-146a
expression was reduced. However, Chen et al. demonstrated that
25 mmol/L of glucose decreased the expression of miR-146a in
human retinal microvascular endothelial cells (21).

We measured the microglial activation marker CD11b as
well as M1 and M2 phenotype markers. We observed that both
hyperglycemia and glucose fluctuations induced polarization
transitions to M1 phenotype in microglia, leading to increased
expression of pro-inflammatory factors including TNF-α and
IL-6. Previous studies suggested that excessive M1 phenotype
polarization induces inflammatory factor secretion in diabetic
encephalopathy, leading to central nervous system damage
in diabetes. The expression of iNOS was up-regulated in
the hippocampus of diabetic mice and aggravated neuronal
damage (22). Our study verified that high glucose and glucose
fluctuations induced M1 phenotype polarization transitions in
microglia in vitro, which is a possible mechanism underpinning
diabetic encephalopathy.

Hyperglycemia and blood glucose fluctuations induce
cell activation through multiple pathways (23). Of these, the
TLR4/NF-κB signaling pathway is one of the main pathways
involved. Dasu et al. reported that high glucose induced up-
regulation of toll-like receptors (TLR; including TLR2 and
TLR4) in human monocytic THP-1 cell lines and initiated
intracellular myeloid differentiation factor 88 (MyD88)/IRAK-
1/NF-κB signaling pathway, which induced inflammatory
responses (24). In recent years, a growing number of studies has
reported that epigenetic regulation is an important regulatory
mechanism underscoring neuroinflammation, especially
microRNAs (25–28). Different miRNAs are expressed depending
on phenotype polarization of microglia; in turn, miRNA affect
polarization transitions of microglia (29). For example, high
expression of miR-155 in microglia induced M1 phenotype
polarization and inhibited M2 phenotype polarization (30).
miR-124 induced M2 phenotype polarization by targeting
inhibition of M1 phenotype polarization to maintain the resting
state of microglia and macrophages (31). miR-689, miR-124,
and miR-155 are involved in M1 phenotype polarization. In
contrast, miR-124, miR-711, and miR-145 are implicated in
M2 phenotype polarization in lipopolysaccharide (LPS) or
IL-4 stimulated primary mouse microglia based on miRNA
expression profiling and bioinformatics analysis (29). To date,
there have been no reports on miR-146a in the context of
microglial phenotype polarization. Previous studies reported
that miRNA-146a played an important role in the regulation of
inflammation mainly through the NF-κB pathway. Taganov et al.
reported that miR-146a regulated two key adapter molecules,
TRAF-6 and IRAK1, which were downstream of the TLR
signaling pathway, thereby regulating the activation of the
pro-inflammatory factor NF-κB and negatively regulating the
release of pro-inflammatory factors (16). Yang et al. reported
that miRNA-146a negatively regulated mouse T-cell activation,

and the regulatory mechanism also affected the expression of
NF-κB by regulating the expression of TRAF-6 and IRAK1
(32). Studies have indicated that miR-146a inhibited M1
polarization and induced M2 polarization in mouse alveolar
macrophages induced by LPS (33). Further, the M1 phenotype
polarizing factors IL-6 and TNF-α were increased, while the
M2 phenotype polarizing factor MGL-1 was decreased in
alveolar macrophages by inhibiting the expression of miR-155
or miR-146a. miR-146a and miR-155 may be involved in the
anti-inflammatory activity of macrophages and participate
in the mechanisms underpinning M1 and M2 polarization
transitions (34).

miR-146a induced M2 phenotype polarization and up-
regulated tumor-associated macrophages expression to regulate
breast cancer tumor growth (35). Our results showed that high
glucose increased TNF-α and IL-6 expression while reduced
IL-10 expression, which was reversed by overexpression of
miR-146a. Similar results was observed in another study.
Overexpression of miR-146a attenuated the inhibitory effects
of NIFK-AS1 M2 phenotype polarization in macrophages,
while the expression of IL-10 and Arg-1 were increased (36).
Altered expression of miR-146a in the brains of patients with
Alzheimer’s disease (AD) underpinned inflammatory senile
plaque lesions in AD brains (37, 38). miR-146a expression
was decreased in DRG cells in hyperglycemia studies of
diabetic peripheral neuropathy; cell survival rate was decreased,
but this was attenuated by miR-146a mimics (39, 40). Rong
et al. reported that the expression of miR-146a in plasma
of patients with type 2 diabetes was significantly decreased
(29). Our study revealed that the expression of miR-146a was
significantly decreased in cell cultures by high glucose and
glucose fluctuations, which partially verified that low levels
of miR-146a expression were induced by hyperglycemia (41).
Both in vitro and in vivo studies suggest that miR146a is
involved in the regulation of neuroinflammation and plays
an important role in various diseases such as diabetes and
neurodegenerative diseases. Therefore, we speculated that miR-
146a was involved in regulating the polarization transitions of
microglia induced by high glucose and glucose fluctuations.
Overexpression of miR-146a regulated polarization transitions
induced by high glucose and glucose fluctuations promoting M1
to M2 phenotype polarization.

A negative feedback loop between miR-146a and NF-κB
may be at play in this process. The expression of miR-
146a was decreased in the hippocampus of diabetic rats,
while increased expression of IRAK1, TRAF6, and NF-kB
aggravated hippocampal inflammation and apoptosis (42).
However, compared with that in the control group, the
expression of miR-146a and NF-κB were increased, expression
of TRAF6 was decreased, and expression of TNF-α, IL-6, and
IL-1β were increased in the sciatic nerve of DM rats, indicating
that loss of NF-κB/miR-146a in the negative feedback loop may
underpin the pathogenesis of diabetic peripheral neuropathy
(43). Further, miR-146a regulates the expression of target genes
IRAK1, TRAF6, and NF-κB. Thus, the regulation may be
involved in the NF-κB pathway. In this study, overexpression
of miR-146a regulated M1/M2 polarization transitions by
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downregulating the expression of IRAK1, TRAF6, and NF-κB
in microglia. This could be a regulatory mechanism in the
response of microglial inflammation induced by high glucose and
glucose fluctuation.

Central nervous system inflammation is a complex
process involving various glial cells, macrophages,
neuronal cells, and vascular endothelial cells. The
results of this study were only observed in vitro, which
precludes inferences on the neuroinflammatory effects
of polarization transitions of microglia in diabetic
encephalopathy. However, this study provides insight
into the pathogenesis of diabetic encephalopathy. We
observed that overexpression of miR-146a contributed
to polarization transitions from M1 to M2 phenotype in
microglia. Our results provide a potential strategy for the
treatment of diabetic encephalopathy. Future studies should
further investigate how miR-146a regulates polarization
transitions in microglia induced by high glucose and
glucose fluctuations.
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