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Fetal metabolic programming caused by the adverse intrauterine environment can induce

metabolic syndrome in adult offspring. Adverse intrauterine environment introduces fetal

long-term relatively irreversible changes in organs and metabolism, and thus causes fetal

metabolic programming leading metabolic syndrome in adult offspring. Fetal metabolic

programming of obesity and insulin resistance plays a key role in this process. The

mechanism of fetal metabolic programming is still not very clear. It is suggested

that epigenetic programming, also induced by the adverse intrauterine environment,

is a critical underlying mechanism of fetal metabolic programming. Fetal epigenetic

programming affects gene expression changes and cellular function through epigenetic

modifications without DNA nucleotide sequence changes. Epigenetic modifications

can be relatively stably retained and transmitted through mitosis and generations,

and thereby induce the development of metabolic syndrome in adult offspring. This

manuscript provides an overview of the critical role of epigenetic programming in fetal

metabolic programming.

Keywords: epigenetic programming, fetal metabolic programming, metabolic syndrome, obesity, insulin

resistance, adverse intrauterine environment

Metabolic syndrome is well-known as a syndrome involved in obesity, insulin resistance, impaired
glucose tolerance/diabetes, disturbance of lipid metabolism, and cardiovascular complications.
Metabolic syndrome includes at least three typical phenotypes as follow: (1) elevated abdominal
obesity, (2) elevated fasting glucose, (3) elevated blood pressure, (4) elevated fasting triglycerides
(TG), (5) reduced high-density lipoprotein cholesterol (HDL-C) (1). It is one of the most causes of
morbidity and mortality in both the developed and developing countries.

Obesity and insulin resistance are key factors resulting metabolic syndrome (Figure 1).
Prevalence of metabolic syndrome was thought to be mainly contributed by genetics under
an unhealthy lifestyle in adult. However, genetics cannot explain all reasons causing metabolic
syndrome. Nowadays, it is proposed that an adverse intrauterine environment can induce fetal
metabolic programming of obesity and insulin resistance and further metabolic syndrome in
adult offspring. Epigenetic programming, without DNA nucleotide sequence changes, is a critical
underlying mechanism of fetal metabolic programming of metabolic syndrome in adult offspring
(2–6). Intergenerational transmission of metabolic syndrome moves in cycles through fetal
metabolic programming and fetal epigenetic programming as shown in Figure 2.

FETAL METABOLIC PROGRAMMING

The concept of fetal programming was firstly proposed by Barker and Hales in 1998, and later
became the theory of developmental origins of health and disease (DOHaD) (7). This theory
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FIGURE 1 | Obesity and insulin resistance as key factors resulting metabolic

syndrome. IR, insulin resistance; IGT, Impaired glucose tolerance; DLM,

disturbance of lipid metabolism; CVD, cardiovascular diseases.

proposes that fetal metabolic programming caused by adverse
intrauterine environment induces offspring metabolic diseases in
adults. Fetal metabolic programming is involved in the relatively
permanent changes of metabolic signaling pathways in growth
and development, leading to relatively nonreversible effects on
the structure and/or functional changes of fetal growth and
development (8–10).

Although fetal metabolic programming is a relatively new
concept, there have been various supporting evidence. It is
proposed that the adverse intrauterine environment can cause
intrauterine growth retardation (IGR), small for gestational age
(SGA) and further metabolic syndrome risk in adult offspring.
The intrauterine environment of malnutrition or nutrition
deficiency can induce such fetal abnormal growth which is
associated with metabolic syndrome in adult offspring (11). On
the other hand, similar to intrauterine malnutrition, intrauterine
over-nutrition exposure, such as in obesity or gestational
diabetes, can also cause adverse fetal metabolic programming,
leading to neonatal SGA or Large for gestational age (LGA) and
further metabolic syndrome in adults (12–14).

Adverse intrauterine environment could introduce fetal long-
term relatively irreversible changes in organs and metabolism,
and thus may cause fetal metabolic programming of obesity and
insulin resistance, leading metabolic syndrome in adult offspring.

Fetal Programming of Obesity
Human Studies

Offspring obesity in adults can be caused by intrauterine
malnutrition exposure. This concept was first proposed in a study
that the male offspring’s obesity rate in adult was significantly
associated with severe malnutrition in pregnant women in 40s
Holland famine in the last century (15). Similar findings were
observed in other countries (16). Also, adult obesity risk of low
birth weight neonates was higher than normal weight neonates.

FIGURE 2 | Intergenerational transmission of metabolic syndrome. Adverse

intrauterine environment induced fetal epigenetic programming and fetal

metabolic programming may introduce a circle of metabolic syndrome across

generations without genetic changes. MS, metabolic syndrome; FMP, fetal

metabolic programming; FEP, fetal epigenetic programming; AIE, adverse

intrauterine environment; ULS, unhealthy lifestyle.

On the other hand, maternal over-nutrition or obesity is
also highly correlated with offspring obesity (17–21). It is also
proposed that pregnancy weight gain, independent of maternal
obesity, is an independent factor causing neonatal adipose
increase and subsequent obesity in children and adults (22).
Maternal insulin resistance and glucose levels were reported to
be important mediators of maternal obesity associated neonatal
adipose increase (23). Otherwise, hyperglycemia in gestational
diabetes could induce the risk of SGA or LGA.

Animal Model Studies

In the animal model studies, factors causing the prevalence of
obesity in offspring can be elaborately studied by gestational
interventions such as diet, drugs, surgery, and others. Animal
model studies also offer an opportunity to disclose the detailed
mechanism of fetal development programming.

In agreement with human studies, it was reported that
offspring obesity could be induced by maternal malnutrition or
over-nutrition during pregnancy, in studies in mice, rats, sheep,
and non-human primates. Offspring obesity has been reported to
be related to the significant expression changes of genes involved
in abnormal metabolism, such as mitochondrial dysfunction (24)
and significantly increased stress response (25, 26).

Rodent animal experiments have reported that fetal
developmental programming caused by adverse intrauterine
environment could induce hyperphagia leading offspring
obesity in adults. Additional studies reported that the factors
causing this offspring hyperphagia included hypothalamic
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programming of leptin resistance, increased neuropeptide Y
and decreased proopiomelanocortin (27–30). It was reported
that fetal development programming also introduced changes
in offspring behavior patterns (sedentary and reduced physical
activity), which contributed to the development of obesity in
adults (31, 32).

Fetal Programming of Hyperinsulinemia
and Insulin Resistance
Human Studies

The concept of fetal/neonatal hyperinsulinemia in pregnant
women with gestational diabetes mellitus has been proposed
a long time ago (33). Intrauterine hyperglycemia in
gestational diabetes mellitus can induce fetal/neonatal
hyperinsulinemia. Fetal/Neonatal hyperinsulinemia help to
induce LGA/macrosomia. Also, fetal/neonatal hyperinsulinemia
induced neonatal hypoglycemia in earlier hours after birth.

It is suggested that neonatal hyperinsulinemia may not only
be a transient phenomenon caused by neonatal hyperglycemia
but also reflect fetal or neonatal insulin resistance which
would induce metabolic syndrome in adults. For one thing,
fetal/neonatal hyperinsulinemia can be introduced by maternal
obesity, higher weight gain, a high-fat diet or other factors
(34–36). For another thing, it was reported that fetal/neonatal
hyperinsulinemia could also be induced in glucose-well-
controlled pregnant women with gestational diabetes (37, 38).

Fetal or neonatal insulin resistance was newly reported
to be induced by gestational diabetes (37–41). Otherwise,
fetal/neonatal insulin resistance can also be induced without
intrauterine hyperglycemia exposure. For example, insulin
resistance without hyperglycemia was reported in preterm
neonates (42). Fetal insulin resistance was associated with
maternal insulin resistance or insulin sensitivity in non-diabetic
pregnancies (34, 43). Fetal/neonatal hyperinsulinemia could
be induced in glucose-well-controlled pregnant women with
gestational diabetes (37, 38). Fetal/neonatal insulin resistance
was reported to be induced by maternal obesity (35, 44). Also,
LGA was reported to be associated with decreased fetal Insulin
sensitivity (39). Programming of fetal insulin resistance was
reported to be induced by intrauterine abnormal activation of
inflammation, adipokines and the endoplasmic reticulum (ER)
stress (35).

Animal Model Studies

It has been reported by animal experiments that various
maternal interventions could introduce hyperinsulinemia or
insulin resistance in offspring.

Earlier studies proposed that fetal/neonatal hyperinsulinemia
might be directly caused by fetal/neonatal simultaneous
hyperglycemia. However, it was reported in some animal
experiments that hyperinsulinemia can also be introduced
without hyperglycemia in offspring. For example, fetal/neonatal
hyperinsulinemia was reported to be induced by maternal
hyperinsulinemia (45).

Further related animal experiments suggested that not only
fetal/neonatal hyperinsulinemia but also fetal/neonatal insulin
resistance can be induced by various maternal gestational

interventions. It was reported that insulin resistance in offspring
can be induced by gestational interventions such as high-fat
diets (46–48), high-fructose diets (49), malnutrition or nutrition
deficiency (50, 51), chronic intermittent hypoxia exposure
(52, 53), abnormal levels of hormones (54–56), chemical or
drug induction (57–59), and diabetic induction by genetic or
non-genetic factors (60). Besides diabetes models, offspring
hyperinsulinemia exists without maternal hyperglycemia in some
other rodent animal experiments above (61, 62). Taken together,
besides hyperglycemia, it is suggested that there is some other
important potential mechanism causing fetal programming of
insulin resistance.

Some adverse intrauterine environment also induces
decreased number and/or function of pancreatic beta cells
leading decreased glucose-stimulated insulin secretion and
further abnormal glucose tolerance in adult offspring. For
example, in animal experiments, the decreased number of
pancreatic beta cells, introduced by maternal low-protein diet
exposure, is caused by reduced activity of the mTOR signaling
pathway (63). Besides, maternal low-protein diet exposure
also introduces a decreased Pdx1 and Glut2 levels in offspring
(64, 65). Both of them thereby may induce impaired glucose
tolerance of offspring in adults.

It was recently reported that there was transgenerational
programming of hyperinsulinemia, insulin resistance or glucose
tolerance in various studies (4, 66, 67). For example, in
several rodent studies, it has been reported that maternal
high-fat diet induced obesity, insulin resistance, and glucose
tolerance, not only in the first generation (F1) offspring but
also in the second generation (F2) offspring (68, 69). In
one of these studies above, it was observed that there were
hyperinsulinemia and hyperleptinemia in the F2 generation,
with normal body weight and glucose level (70). In another
mouse model, it was reported that maternal obesogenic diet
exposure induced hyperinsulinemia and expression alternation
of some hepatic genes in the F2 offspring, interestingly
without apparent phenotype in the F1 generation (71). Also,
some fetal experiments in sheep reported similar results of
transgenerational hyperinsulinemia, insulin resistance or glucose
tolerance (72).

FETAL EPIGENETIC PROGRAMMING

The critical mechanism underlying fetal metabolic programming
induced by adverse intrauterine environment is still not
very clear, while fetal metabolic programming has been
reported to be contributed by changes in the developmental
trajectories of tissues, stem cell numbers, neural circuits, and
so on. Epigenetic programming, also induced by the adverse
intrauterine environment, was reported to play an important role
in the differentiation and development of embryonic, tissue, and
stem cells (73–76). Could it be a critical underlying mechanism
of fetal metabolic programming?

Epigenetics is the inheritance of variation in gene expression
without changes in the DNA nucleotide sequence. Epigenetic
modification can be relatively stably transmitted in the

Frontiers in Endocrinology | www.frontiersin.org 3 December 2019 | Volume 10 | Article 764

https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles


Zhu et al. Fetal Epigenetic Programming

process of cell proliferation. The known mechanisms
include DNA methylation, histone modification, genomic
imprinting, chromatin remodeling, non-coding RNA, and
so on. Such mechanism regulates gene expression at levels
of pre-transcription (heterochromatinization), transcription
(chromatin activation, binding of the cis-acting element, and the
trans-acting factor) and post-transcription (protein translation).

DNA methylation and histone modification are known as
key epigenetic regulation factors underlying the regulation of
chromatin structure and gene transcription. DNA methylation
adds methyl on 5-cytosine by DNA methyltransferase (Dnmt)
at cis-acting element including promoter, enhancer, regulatory
regions and sequence, response element, and so on. DNA
methylation on such regions can cause DNA conformational
changes, which may affect the binding of trans-acting factor
and thereby regulate genes expression. Histone modification is
known as the “histone code” including histone methylation,
acetylation, phosphorylation, adenylation, ubiquitination, and
so on. Histone modifications affect the structure and function
of chromatin and thereby regulate the expression of the
located genes.

Genomic imprinting, a parent-of-origin-specific silencing
manner of certain gene alleles, is established (“imprinted”) in
the germline (sperm or egg cells) mainly through marks of DNA
methylation and histone modification. Non-coding RNA can be
divided into long chain non-coding RNA (lncRNA) and short
chain non-coding RNA (sncRNA), including miRNA, siRNA,
piRNA, dsRNA, Xist RNA, Tsix RNA, telomere RNA, and so on.
Micro RNA (miRNA) is the main executor of RNA interference
effect on gene expression. LncRNA plays an important role in cell
differentiation and individual development by multiple methods.
It is involved in X chromosome silencing, genomic imprinting,
chromatin modification, activation or inhibition of transcription,
transportation in nuclear, and other unknown functions.

The concept of epigenetic programming was proposed as the
potential key role of epigenetic modification in fetal metabolic
programming (77, 78). Epigenetic modification without genetic
changes is more easily induced by the adverse intrauterine
environment during germ cells and fetal development, and
relatively stably transmitted until adults (79). Epigenetic
modification induced changes in cellular or tissue function
can thereby be relatively stably transmitted earlier from
fetuses until adults, and induce the development of metabolic
syndrome in adult offspring. There is a sensitive “window” for
epigenetic programming when germ cells, embryos, and fetuses
are developing.

Epigenetic Programming of Obesity
Human Studies

Epigenetic programming of obesity was reported in human
studies to be involved in abnormal fetal growth, adipocytokines,
and other obesity-associated genes.

Global genome-wide epigenetic changes in offspring were
reported to be associated with offspring obesity or an adverse
intrauterine environment. Firstly, gestational diabetes induced
genome-wide methylation changes in neonatal cord blood (80–
82), adipose tissue or placenta (83). Genome-wide methylation

changes were also reported existing in peripheral blood
leukocytes of offspring at children (84, 85) or adult (86) exposed
to the diabetic intrauterine environment. In addition, changes
of global DNA methylation signatures were reported to exist
in adult offspring under prenatal famine exposure in Dutch
Hunger Winter and link to growth and metabolism (87). DNA
methylation of metastable epialleles in neonatal lymphocytes
and hair follicles was reported to be modulated by maternal
nutrition at conception induced by Gambian Seasonal diet (88).
Secondly, it was reported that maternal obesity was associated
with genome-wide epigenetic changes in children or adult
offspring (84, 89). Thirdly, DNA methylation changes in the
placenta or the cord Blood were reported to be associated with
abnormal birthweight or BMI in childhood (90, 91). Birth weight
was also reported to be associated with methylation changes
in children and adult offspring (92). What’s more, circulating
extracellular RNA ex- miR-122 was reported to be associated
with regional adiposity in adults (93). Lastly, other adverse
intrauterine environments, such as Arsenic or tobacco exposure,
were also reported to be associated with genome-wide DNA
methylation in cord blood (94, 95).

The insulin-like growth factor 2 (IGF2) and H19 genes
are imprinted genes. Hypomethylation of the IGF2 gene
and hypermethylation of H19 gene are associated with
significantly higher expression of IGF2 (lower transcribed
of H19), which induce neonatal adiposity through growth
promoting effects. Such methylation changes of IGF2 and
H19 in umbilical cord blood and placenta were reported to
be associated with macrosomia exposed to GDM induced
intrauterine hyperglycemia (96). Lower DNA methylation of the
imprinted IGF2 gene was also reported in individuals who were
prenatally exposed to famine during the Dutch Hunger Winter
compared with their unexposed, same-sex siblings, supporting
for the hypothesis that epigenetic changes induced by adverse
intrauterine environment could persist throughout life (97).
Changes in DNA methylation of the IGF2 gene was reported
in cord blood from female offspring of pregnant women with
an intervention of folic acid supplementation (98) or in blood
from neonates of physically active pregnant women (99) than
the control groups. In addition, in adult monozygotic twins
with discordant birthweight, a significant positive association
existed between birth weight and IGF1R DNA methylation
differences in adult blood. It was suggested that intra-uterine
growth differences were associated with methylation changes
in the IGF1R gene in adulthood, independent of genetic
effects (100). Higher methylation and lower expression of
proopiomelanocortin (POMC) in cord blood was associated
with lower birth weight and higher triglycerides in children
blood, suggesting an early predictive marker of future metabolic
syndrome (101).

Leptin could increase adipose tissue lipolysisl and
hepatic β-oxidation of fatty acids, and inhibit hyperphagia.
Hypermethylation and lower expression of the letpin gene in
placenta and cord blood were reported to be associated with
maternal impaired glucose tolerance (IGT) (102), GDM (103),
or obesity (104). On the contrary, Lower DNA methylation and
higher expression of the leptin gene were reported in the blood
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of obese children (105). Such inconsistency may be contributed
by the differences between the intrauterine environment and the
environment after birth. More interesting, the higher level of
leptin cannot inhibit hyperphagia because of the leptin resistance.
Adiponectin could increase GLUT4- mediated glucose uptake in
adipocyte, resulting in adipogenesis and adipocyte lipid storage.
Hypermethylation of adiponectin gene in newborn blood was
reported in GDM group (106).

It was reported that abnormal birth weight was associated
with cord blood or placental DNA methylation changes in
energy homeostasis genes (107) and LINE-1 (91). It was reported
that hypermethylations and lower expressions of the ATG2B,
NKX6.1, and SLC13A5 genes (respectively, related to autophagy,
beta-cell development and function, and lipid metabolism) and
hypomethylation and higher expression of GPR120 gene (related
to free fatty acid regulation) existed in the placenta and cord
blood from SGA newborns (107). Abnormal birth weight was
also reported to be related to placental methylation changes
in WNT2 gene (108), Glucocorticoid receptor gene (109), fat
mass- and obesity-associated genes (110), and Cardiometabolic
Risk genes (111). In gestational diabetes, it was reported that
hypermethylations and lower expressions of the lipoprotein
lipase gene in the placenta are associated with offspring body
composition at 5 years of age (112).

Studies in Animal Models or in vitro Models

Animal models and in vitro models disclosed more details of
epigenetic programming of obesity in various tissues, which
was involved in DNA or histone-modifying enzyme, abnormal
fetal growth, hyperphagia, energy balance regulation, adipocyte
differentiation/maturity, adipocytokines, hepatic metabolism,
microRNA, and so on.

In liver, muscle and adipose tissues of offspring mice, global
DNAmethylation was reported to be induced by amaternal high-
fat diet (113). A maternal high-fat diet induced epigenetically
alters in fetal hepatic chromatin structure in primates by histone
modifications and hence lends a molecular basis to the fetal
origins of adult disease hypothesis (114). Non-human primate
fetal hepatic multiple pathway dysregulation was reported to
be associated with marked lipid accumulation, in response to
maternal obesity induced by a high-fat, high-fructose diet prior to
pregnancy, by unbiased gene and microRNA abundance analyses
(115). DNA methylation levels in human in vitro maturation
(IVM) oocytes were reported to be changed by High-glucose
concentrations (116).

The fetal hepatic and placental expression of epigenetic
machinery genes, particularly histone acetylation pathway genes,
was reported to be sensitive to high-fat-diet-induced maternal
obesity, leading to fetal growth restriction (FGR) in mice (117).
More interesting, maternal weight loss appears beneficial to fetal
growth, but those maternal obesity-induced effects were retained
in offspring. Maternal high-fat diet increases fetal hepatic H3K14
acetylation with concomitant decreased SIRT1 expression and
in vitro deacetylase activity in non-human primates (118). The
protein deacetylase sirtuin-1 (SIRT1) was reported to be thought
as a potential central co-ordinator of nutrient-led short and
longer-term programming of tissue function (119).

Similar to human studies, the methylation changes in the
imprinted gene IGF2/H19 was reported being an important
factor involved in abnormal birth weight in various animal
models (120–122). Decreased Histone modifications and higher
expression of hepatic gene IGF1 were also reported in IUGR
rat (123). In this study, the modulation of the rate of
IUGR newborn catch-up growth may thus protect against
IGF1 epigenetic modifications and, consequently, obesity and
associated metabolic abnormalities.

Epigenetic programming of hyperphagia in offspring plays
a role in the fetal programming of obesity. Leptin inhibits
hyperphagia and stimulates energy expenditure through
interactions with neuronal pathways in the hypothalamus.
Leptin is higher in obese subjects. It was also reported that
higher expression of the leptin gene, associated with higher
histone or DNA methylation, was reported to be induced by
maternal high-fat diet exposure (124) and to be involved in
the transgenerational obesity (125). However, such obesogenic
hyperphagia above is not suppressed because leptin resistance
could be induced by epigenetic regulation of the leptin signaling
circuit (126).

Epigenetic changes in the mouse adiponectin gene promoters
were also reported to be associated with offspring obesity induced
by paternal high-fat diet exposure (127). Lower adiponectin level
and lower histone acetylation and higher histone methylation
levels of the adiponectin gene promoter were reported in adipose
tissues of mouse offspring with a high-fat-diet exposure during
pregnancy (124).

Maternal periconceptional undernutrition induced decreased
DNAmethylation and increased histone acetylation was reported
in pro-opiomelanocortin (POMC) (128) and the glucocorticoid
receptor (GR) (129) in ovine fetal hypothalamus. Such epigenetic
changes were associated with reduced POMC and increased
GR levels, which potentially resulted in the altered energy
balance regulation in the offspring. Another study reported
that the hypermethylation and decreased expression of pro-
opiomelanocortin gene caused hyperphagic obesity in mouse
offspring under pregnant triclosan exposure (130). In the
female hypothalamic paraventricular nucleus, it was reported
that a perinatal high-fat diet environment induced decreased
melanocortin 4 receptor (Mc4r) which was associated with food
intake and energy balance (131). Such Mc4r downregulation
may be contributed by histone acetylation of its promoter
binding thyroid hormone receptor-β (TRβ), an inhibitor of
Mc4r transcription, by using chromatin immunoprecipitation
and bisulfite sequencing.

Epigenetic programming plays a role in adipocyte
differentiation and maturity leading offspring obesity. DNA
(cytosine-5) methyltransferase 3a (Dnmt3a) in 3T3-L1
preadipocytes was reported to be transcriptionally upregulated
by Activator protein 2alpha (AP2alpha) through directly
binding to its proximal promoter region, leading to increased
promoter methylation of adipogenic genes which were required
for granting preadipocyte the ability to differentiate (132).
Also, it was reported that DNA methylation of obesity-related
genes in adipose-derived stem cells in low birthweight may
programme the mature adipocyte function which influences
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the risk of metabolic diseases (133). Decreased beige adipocyte
number and mitochondrial respiration were reported to coincide
with increased histone methyltransferase (G9a) and reduced
FGF21 gene expression in subcutaneous adipose tissue of
rats fed prenatal low protein and postnatal high-fat diets
(134). Significantly enhanced hepatic acetylation of histone
H3 surrounding fatty acid synthase (FAS) gene promoter was
reported in adult male offspring under fetal and neonatal
exposure to nicotine, associated with increased expression of
fatty acid synthase induced augmented hepatic and circulating
triglycerides (135). DNA and histone methylation modifications
of Zfp423 gene were reported to be induced by maternal
obesity and facilitate Zfp423 expression and enhance adipogenic
differentiation in fetal mice adipose tissue (136).

A high-fat diet during pregnancy was reported to induce
neonatal gender-specific hepatic fat accumulation by increased
Phosphoenolpyruvate carboxykinase (PEPCK) expression and
histone modification (137). These alterations were reported to
persistent in adult offspring by further studies from the same
team (135, 138). Developmental bisphenol A (BPA) exposure sex-
specifically altered DNA methylation and histone marks (H3Ac,
H4Ac, H3Me2K4, H3Me3K36), and decreased the binding of
several transcription factors (Pol II, C/EBPβ, SREBP1) within
the male Cpt1a gene, the key β-oxidation enzyme, which
may exacerbate high-fat diet-induced hepatic steatosis (139).
It was also reported that gestational high-fat diet programs
hepatic phosphoenolpyruvate carboxykinase gene expression
and histone modification in neonatal offspring rats (137) and
female adult offspring rats (138). Another study reported that
histone demethylase Plant Homeodomain Finger 2 (Phf2) was
a new transcriptional co-activator of the transcription factor
Carbohydrate Responsive Element (ChRE) Binding Protein, and
acted as a molecular checkpoint to prevent NAFLD progression
during obesity (140).

Changes of microRNA was reported to be induced by the
adverse intrauterine environment and associated with offspring
obesity (141). For example, maternal obesity-induced miRNA-
let-7g downregulation in fetal skeletal muscle was reported
to may enhance intramuscular adipogenesis during ovine fetal
muscle development (142).

Epigenetic Programming of Insulin
Resistance
Human Studies

Epigenetic programming of insulin resistance in human studies
was reported to be involved in the epigenetic modifying enzyme,
inflammatory/proinflammatory factors, insulin associated
signaling, energy balance regulation, and microRNA.

Global genome-wide epigenetic changes were reported to
be associated with insulin resistance. DNA methylation levels
in neonatal blood were reported to be associated with insulin
sensitivity in early childhood (90). In whole-blood of adults,
potential DNA methylation biomarkers changes were reported
to be strongly associated with obesity and insulin resistance
(143). In visceral adipose tissue of obese subjects, it was reported
that genome-wide DNA methylation pattern could differentiate

insulin-resistant from insulin-sensitive (144). In the human
liver of subjects with non-alcoholic steatohepatitis, methylation
alterations are related to insulin resistance (145).

Changes of histone deacetylase 3 (HDAC3) in peripheral
blood mononuclear cells is reported to be strongly related to
insulin resistance and related proinflammatory mediators in
patients with type 2 diabetes (143, 146).

Higher DNA methylation changes in neonatal adiponectin
gene were reported in gestational diabetes group (103, 106).
It was reported that IR was correlated negatively with DNA
methylation of complement factor C3 gene, and correlated
positively with the levels of complement factor C3, in adipose
tissue from obese subjects (147). DNA methylation of the
lymphocyte antigen 86 (LY86) gene was reported to be associated
with obesity, and insulin resistance through a multi-stage cross-
sectional study (148).

In white adipose tissue in insulin-resistant obese women,
significantly differentially methylated sites were reported in IR-
associated genes in pathways related to integrin cell surface
interactions and insulin signaling pathway (149). In adult
peripheral white blood cells, methylation changes of the
endoplasmic reticulum (ER) genes were also reported to be
associated with insulin resistance (150). DNA methylation of
hypoxia-inducible factor 3-alpha (HIF3A) in both blood cells
and subcutaneous adipose tissue (SAT) was reported to be
associated with BMI and whole-body insulin sensitivity (151).
Fatty acyl CoA reductase 2 (FAR2) gene methylation changes in
peripheral blood cells were reported to be associated with atypical
antipsychotic-induced insulin resistance and lipid metabolism
(152). Higher pro-opiomelanocortin (POMC) methylation in
cord blood was associated with hyperinsulinemia in children
blood, suggesting an early predictive marker of future metabolic
syndrome (101).

Expression of IR associated microRNA-15a and microRNA-
15b was reported to be increased in skeletal muscle from adult
offspring of women with diabetes in pregnancy (153). Circulating
extracellular RNA ex-miR-122 was reported in another study to
be associated with IR in children and adults (93).

Studies in Animal Models or in vitro Models

Epigenetic programming of insulin resistance was disclosed in
more details involved in DNA or histone-modifying enzyme,
adipocytokines, insulin associated signaling, lipid metabolism,
microRNA, and so on.

Global changes of decreased hepatic DNAmethylation andH4
acetylation or increased hepatic H3 acetylation was reported in
offspring exposed to gestational germinated brown rice and its
gamma-amino-butyric acid-rich, which could prevent high-fat-
diet-induced insulin resistance in first generation rat offspring
(154). Hepatic H3K14ac and H3K9me3 were reported to be
significantly increased in WT and G4 (±) fetal and 5-week
murine offspring with HFD exposure in utero (155).

Adipose DNAmethyltransferase 3a (Dnmt3a) was reported to
be a novel epigenetic mediator of insulin resistance in vitro and
in vivo (156). In cultured mouse and human adipocytes, Dnmt3a
was reported to be both necessary and sufficient to mediate
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diet-induced insulin resistance. Adipose-specific Dnmt3a knock-
out mice were reported to be protected from diet-induced
insulin resistance and glucose intolerance without accompanying
changes in adiposity. Fgf21, a key negatively regulated Dnmt3a
target gene, can rescue Dnmt3a-mediated insulin resistance.
Consistent with this, DNA methylation at the FGF21 locus
was elevated and negatively correlated with adipose FGF21
expression in human subjects with diabetes.

Epigenetic changes in the adiponectin gene play an important
role in mediating insulin resistance. It was reported that
insulin resistance was mediated by obesity-induced DNA
hypermethylation of the adiponectin gene (157). It was reported
in adipose tissue from HFD-induced obese mice that obesity-
induced suppression of adiponectin expression was induced
by the increased DNMT1 expression/enzymatic activity and
related DNA methylation and chromatin remodeling in the
adiponectin gene promoter, and could be stimulated by
DNMT inhibitor with amelioration of obesity-induced glucose
intolerance and insulin resistance in an adiponectin-dependent
manner. However, little is known about how does DNMT1
selectively methylate adiponectin gene, which is a critical issue
in fetal epigenetic programming. Another research reported that
gestational sleep fragmentation induced insulin resistance and
epigenetic changes in adiponectin gene in visceral white adipose
tissue (VWAT) of male adult offspring mice (158). Reductions in
5-hydroxymethylcytosine and H3K4m3 and an increase in DNA
5-methylcytosine and H3K9m2 in the promoter and enhancer
regions of adiponectin gene emerged in adipocytes from VWAT
and correlated with adiponectin gene expression, accompanied
with increased DNMT3a/b and reduced histone acetyltransferase
activity and TET1/2/3 expression.

In liver and muscle tissues of rats, it was reported that
offspring insulin resistance was programmed by IUGR with
infantile overnutrition through higher methylation and lower
expression of the peroxisome proliferator-activated receptor-
gamma coactivator-1alpha (PGC-1α) gene (159). Increased
methylation and decreased expression of glucose transporter 4
(Glut4) gene at the MYOD-binding site in gastrocnemius muscle
of rat was reported to be induced by phthalate exposure in utero,
associated with impaired insulin signaling (160). In a neonatal
overfeeding mouse model, epigenetic programming of histone
modifications at Monoacylglycerol O-acyltransferase 1 (Mogat1)
locus was reported to link neonatal overnutrition with long-
term hepatic insulin resistance and steatosis through increasing
intracellular diacylglycerol content (161). In mice skeletal
muscle, insulin sensitivity linked hypomethylation and increased
expression of the Nr4a1 gene were reported to be programmed by
the maternal high-fat diet and modulated by voluntary exercise
in mice (162). Hepatic H3K14ac and H3K9me3 were reported
to be significantly increased in WT and Glut4 (±) fetal and
5-week murine offspring with maternal high-fat-diet exposure
in utero (155). Pathway analysis of ChIP-on-chip data revealed
differential H3K14ac and H3K9me3 enrichment along pathways
that regulate lipid metabolism, specifically in the promoter
regions of Pparg, Ppara, Rxra, and Rora.

It was reported that elevated S-adenosylhomocysteine in
adipocytes in vitro induced changes of DNA methylation,

trimethylated histone H3-Lys27, and expression in genes
involving glucose disposal and lipolysis pathway (163). In
adipocytes differentiated from mesenchymal stem cells (MSCs)
in Wharton’s jelly of umbilical cord tissue of SGA neonates, it
was reported that the increased acyl-coenzyme A synthetase 1
(ACSL1) (key roles in lipid metabolism) was highly associated
with histone acetylation and could be a programmable mediator
of insulin sensitivity and cellular lipid content (164).

Hepatic decreased miR-122 and increased miR-370 in mice
offspring were reported to be induced by a maternal high-
fat diet (165). Expression of insulin signaling associated
hepatic miR-29b, miR-103, and miR-107 were reported to be
increased in lambs with maternal obesity, and be ablated by
maternal weight loss in the periconceptional period (166).
Downregulation of IRS-1 in adipose tissue of offspring of obese
mice was reported to be programmed cell-autonomously through
increased miR-126 (167).

Epigenetic Programming of Pancreas Islet
Beta Cell’s Development
More and more studies revealed that DNA methylation,
histone acetylation (168), non-coding RNA and other
epigenetic modifications were involved in the development
and differentiation of pancreatic beta cell (63, 169–171).
When exposed to the adverse intrauterine environment, fetal
development programming of pancreatic islet beta cells happens,
leading decreased number and/or function of pancreatic
beta cells.

Histone modifications and associated chromatin patterns
were reported in regulatory elements of silent genes that are
activated upon pancreas development fate choices (172). In
this process, the histone acetyltransferase P300 and the histone
methyltransferase Ezh2 had modulatory roles in the fate choice.
This study revealed a functional “prepattern” of chromatin
states within multipotent progenitors and potential targets to
modulate cell fate induction in pancreas development. Another
research reported Dynamics of genomic H3K27me3 domains
during pancreatic endocrine specification and Ezh2 as a critical
determinant of endocrine progenitor number (173).

During healthy neonatal life after birth in mice, DNA
methylation, especially DNMT3A, was reported to play a role to
direct the acquisition of pancreatic beta cell function of glucose-
stimulated insulin secretion (GSIS) (174). In this study, the
metabolic switch associated encoding hexokinase 1 (HK1) gene
and lactate dehydrogenase A (LDHA) gene were reported to be
bound and methylated by DNMT3A. Knockdown of these two
genes restored the GSIS response in islets from animals with
beta cell-specific Dnmt3a deletion. DNA methylation of Pdx-
1(175, 176) was also reported playing an important role in the
development and function of pancreatic beta cells (170, 177).

Increased miRNA-199a-3p and miRNA-342 were reported to
cause the decrease of the mTOR signaling pathway, and thereby
reduce the number of beta cells and insulin secretion (63, 178).
Long noncoding RNA H19 was reported to play an important
role in postnatal β-cell mass expansion in rats and contribute to
the mechanisms compensating for insulin resistance in obesity
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(179). Low-moderate exercise in obese fathers was reported to
induce partial restoration of pancreatic islet cell morphology and
the expression of pancreatic microRNAs (let7d-5p, 194-5p) in
male offspring (180).

Transgenerational Epigenetic
Programming
Transgenerational epigenetic programming was considered a
critical underlying mechanism of transgenerational inheritance
caused by environmental interventions (2, 67, 181–183).

The concept of transgenerational epigenetic programming is
proposed as epigenetic programming in germ cells. Twice
genome-wide demethylation and further remethylation
happen, respectively, during the development of germ cell
and preimplantation embryo (6). The time of the development
of germ cells and preimplantation embryos is considered to
be important “windows” which is sensitive to epigenetic DNA
methylation modification (184). Also, non-encoding RNA is
involved in the transgenerational epigenetic programming
(185, 185, 186). Such a concept means that the phenotype

TABLE 1 | Epigenetic programming in fetal metabolic programming.

Fetal programming Methylation Histone modification Non-coding RNA

Obesity Human study 1. Genome-wide epigenome1,2,3,4;

2. abnormal birth weight, epigenome1,2,3,,

IGF2/H191,1,2, IGF1R2, energy homeostasis

genes1, WNT23, Glucocorticord

receptor(GR)3, fat mass- and obesity-

associated genes3, Cardiometabolic Risk

genes3, POMC1;

3. body composition, lipoprotein lipase3;

4. adipocytokine, leptin1, adiponectin2

ex-miR-12210

Animal model 1. Genome-wide epigenome4,5,6;

2. abnormal birth weight, IGF2/H191,*,5,7;

3. adipocytokine, adiponectin*,2,4;

4. hyperphagia and energy balance regulation,

leptin*,2,4, POMC8, glucocorticoid receptor

(GR)8;

5. adipocyte differentiation and maturity,

Dnmt3a#,4, Zfp4234;

6. hepatic fat/steatosis, Cpt1a5

1. Genome-wide epigenome5;

2. adipocytokine, adiponectin*,2,4;

3. histone acetylation pathway genes#,3,5,

SIRT1#,5;

4. hyperphagia and energy balance regulation,

leptin*,2,4, thyroid hormone receptor-β

(TRβ)8;

5. adipocyte differentiation and maturity,

Zfp4234, G9a#,4, FGF214, fatty acid

synthase (FAS)5;

5. hepatic fat/steatosis, PEPCK5, Cpt1a5,

Phf2#,5, transcription factor Carbohydrate

Responsive Element (ChRE)5,

miRNA-let-7g6

In vitro 1. Genome-wide epigenome9;

2. adipocyte differentiation and maturity,

Dnmt3a#,4, obesity-related genes4

Insulin resistance Human study 1. Genome-wide epigenome2,4,5;

2. adipocytokine and proinflammatory factors,

adiponectin3, C33;

3. immune genes, LY862;

4. insulin associated signaling, ER2, HIF3A2,4,

FAR22;

5. energy balance regulation, POMC1

1. HDAC3#, 2, ex-miR-12210,

miR-15a6,

miR-15b6,

Animal model 1. Genome-wide epigenome5;

2. Dnmt3a#,4, FGF214;

3. adipocytokine, adiponectin4, DNMT1#,4;

5. insulin associated signaling, PGC-1α5,6,

Glut46, Nr4a16

1. Genome-wide epigenome5;

2. adipocytokine, adiponectin4,3;

3. insulin associated signaling, Mogat15;

4. lipid metabolism, Pparg, Ppara, Rxra,

and Rora5

miR-1225,

miR-3705,

miR-29b5,

miR-1035,

miR-1075,

miR-1264,

In vitro 1. Dnmt3a#,4;

2. glucose disposal and lipolysis

pathway genes4

1. Genome-wide epigenome4;

2. lipid metabolism, ACSL14

pancreas islet beta

cell’s development

Animal model 1. glucose-stimulated insulin secretion (GSIS),

DNMT3A#,7, HK17, LDHA7;

2. pancreas development, Pdx-17;

1. Genome-wide epigenome7;

2. pancreas development, P300#,7, Ezh2#,7,

regulatory elements of silent genes7

miRNA-199a-3p7,

miRNA-3427,

miRNA-let7d-5p7,

miRNA-194-5p7,

lncRNA H197,

1Gene imprinting, *transgenerational epigenetic programming, #DNA or histone-modifying enzyme.
1Cord blood, 2peripheral blood leukocytes, 3placenta, 4adipose tissue, 5 liver, 6muscle, 7pancreatic islet, 8hypothalamus, 9oocytes, 10circulating extracellular RNAs.
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changes of F2 generation offspring after birth are caused by
epigenetic programming in germ cells of F1 generation fetuses
when exposed to the adverse intrauterine environment in the
F0 generation.

Transgenerational epigenetic programming has been reported
to be involved in a variety of phenotypes, including diabetes (4,
66), insulin resistance (3, 187), hypertension (188), reproduction
(189), brain development (190, 191), and depression (185).

More and more researches supported the concept of
transgenerational epigenetic programming of metabolic
syndrome (4, 66, 183, 192). It was disclosed that
transgenerational epigenetic programming could mediate
the fetal programming of insulin resistance of insulin
resistance, which was induced by high-fat diet, obesity or other
interventions in F0 offspring (3, 68, 125). Transgenerational
epigenetic programming was reported in adipose tissue
development (5, 192). Also, transgenerational inheritance of
obesity consistent with a leptin resistant was reported to be
induced by transgenerational epigenetic programming of DNA
methylome in adipose tissue (193–195).

Significant differential methylation changes in the promoter
region of H19 were reported in a multigenerational model of
intrauterine growth restriction (IUGR) (120).

CONCLUSION

Fetal epigenetic programming is a concept that the intrauterine
environment induced fetal epigenetic modification and
associated gene expression activity is relatively stably transmitted
after birth until adults, and thereby decide the physiological
phenotype in adult from fetal development. Strong evidence
in this review indicates that fetal epigenetic programming
could be a critical underlying mechanism of fetal metabolic
programming, which induces the circle of metabolic syndrome
across generations.

Epigenetic modification involved in fetal metabolic
programming of metabolic syndrome has been discussed
above and demonstrated in Table 1. Obesity and insulin
resistance were the key factors resulting metabolic syndrome
(Figure 1). In brief, the detailed mechanism includes genes
involved in adipose tissue development (IGF2/H19, IGF1R,
Zfp423, FGF21, FAS), hyperphagia and energy balance
regulation (leptin, POMC, GR, WNT2, TRβ), lipid metabolism
(leptin, adiponectin, lipoprotein lipase, Cpt1a, PEPCK, Cpt1a),
insulin associated signaling (ER, HIF3A, FAR2, PGC-1α,
Glut4, Nr4a1), adipocytokine and proinflammatory factors
(adiponectin, C3, LY86), pancreas islet beta cell’s development
(HK1, LDHA, Pdx-1), and DNA or histone-modifying
enzymes (Dnmt3a, HDAC3, SIRT1,Phf2, G9a, P300, Ezh2).
These gene expression changes through fetal epigenetic
modification, which was induced by the adverse intrauterine
environment, and thereby contributes metabolic syndrome
in adult.

There are still some unknowns and challenges in fetal
epigenetic programming. Firstly, the molecular mechanism and

regulation of epigenetic programming have not been fully
disclosed. More key points and details are still required to be
discovered. Secondly, results of related experiments sometimes
could be disturbed by extra environmental disturbances not
designed in experiments. Thirdly, epigenetic programming easily
happens in susceptible “windows.” However, the threshold
value of the adverse intrauterine environment is still not
very clear in different types of diseases. Fourthly the size
of epigenetic modifications is generally small in the whole
epigenome. It may be caused by notable epigenetic modifications
in fewer selectively targeted genes along with tiny epigenetic
modifications in most non-targeted genes. The mechanism
underlying the selective modifications is still needed to research.
Beside of the selective epigenetic modifications around targeted
gene region, the effects of more epigenetic modifications in
other regions have not been well disclosed with their biological
significance. Lastly, more importantly, there still are some
limitations in the causality between epigenetic modifications
and metabolic syndrome. There are a great deal of evidences
of causality between epigenetic modifications and metabolic
syndrome contributed by prospective clinical studies, animal
and cell experiments in which the phenotypes of metabolic
syndrome changed through the inhibition of DNA or histone
modifying enzymes, and Chromatin immunoprecipitation assays
identifying sequence-specific DNA binding protein which help to
selectively modificate DNA or histone in a single gene’s particular
sequence. However, no molecular techniques have been invented
to give direct logical evidence proving that metabolic syndrome
could be induced or blocked by adding or erasing the epigenetic
selectively modification in a particular sequence of a single gene.
Here lies the most valuable breakthrough in epigenetic studies
in future.

In spite of such unknowns, limitations, and challenges,
the study of epigenetic programming in fetal metabolic
programming has been developing rapidly, accompanied
with more and more supporting evidence. It will not
be surprising if future breakthroughs come soon in
this field.
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