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Background: Improved understanding of the pathophysiology causing diabetic kidney

disease (DKD) is imperative. The aim of this study was to uncover associations between

serum metabolites and renal outcomes.

Methods: Non-targeted serum metabolomics analyses were performed in samples

from 637 persons with type 1 diabetes using two-dimensional gas chromatography

coupled to time-of-flight mass-spectrometry. Longitudinal data at follow-up (median

5.5 years) on renal events were obtained from national Danish health registries. A

composite renal endpoint (n = 123) consisted of estimated glomerular filtration rate

(eGFR) decline from baseline (≥30%), progression to end-stage renal disease and

all-cause mortality. Metabolites with significant associations (p < 0.05) in any of the

cross-sectional analyses with eGFR and albuminuria were analyzed for specific and

composite endpoints. Adjustments included traditional cardiovascular risk factors and

correction for multiple testing.

Results: A data-driven partial correlation analysis revealed a dense fabric of co-regulated

metabolites and clinical variables dominated by eGFR. Ribonic acid and myo-inositol

were inversely associated with eGFR, positively associated with macroalbuminuria (p <

0.02) and longitudinally associated with higher risk of eGFR decline ≥30% (HR 2.2–2.7,

CI [1.3–4.3], p < 0.001). Ribonic acid was associated with a combined renal endpoint

(HR 1.8, CI [1.3–2.3], p = 0.001). The hydroxy butyrate 3,4-dihydroxybutanoic acid

was cross-sectionally associated with micro- and macroalbuminuria, urinary albumin

excretion rate and inversely associated with eGFR (p < 0.04) while branched chain

amino acids were associated with eGFR and lower risk of the combined renal

endpoint (p < 0.02).
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Conclusions: Alterations in serum metabolites, particularly polyols and amino acids,

were associated with renal endpoints in type 1 diabetes highlighting molecular pathways

associated with progression of kidney disease. External validation is needed to further

assess their roles and potentials as future therapeutic targets.

Keywords: diabetic kidney disease, type 1 diabetes, metabolomics, end-stage renal disease, amino acids, polyols

INTRODUCTION

With the worldwide increase in diabetes prevalence, there is
also an increasing prevalence of diabetic kidney disease (DKD).
Although control of classical cardiovascular risk factors delays
disease progression, DKD remains the leading cause of end stage
renal disease (ESRD) in the western world and is associated
with a substantially higher risk of cardiovascular disease and
mortality (1). This may partly be explained by late initiation of
therapy and limited specific treatment options. DKD is often
asymptomatic and the classical biomarkers estimated glomerular
filtration rate (eGFR) and urinary albumin to creatinine ratio
(UACR) used to diagnose and monitor disease, may not be
altered until the later stages of the disease. Kidney biopsies which
are invasive and require special physician skills and resources
are rarely performed in individuals with diabetes. Omics-based
technologies offer opportunities for an extensive characterization
of metabolic traits associated with DKD. A better understanding
of the underlying pathophysiology may lead to discovery of
new therapeutic targets. Research on metabolomics in kidney
disease is of particular interest as metabolite levels are influenced
in various ways by the kidney function. Moreover, it has
previously been demonstrated that different metabolite patterns
are associated with different causes of chronic kidney disease
(2). Several previous studies of untargeted metabolomics in DKD
have been performed in individuals with type 2 diabetes (3–7). In
a study by Haukka et al. in persons with type 1 diabetes, several
uremic toxins, and carnitine metabolites were associated with
progression from normo- to microalbuminuria (8) while a study
from Joslin Diabetes Center revealed nine modified metabolites
that were associated with eGFR slope and progression to ESRD
(9), also in individuals with type 1 diabetes. In the present study,
cross-sectional associations between metabolites in serum and
measures of renal impairment in Danish individuals with type 1
diabetes were examined. Further, metabolites identified in cross-
sectional analyses were tested for association to longitudinal
outcomes including eGFR and albuminuria slopes, ESRD and
all-cause mortality.

MATERIALS AND METHODS

Study Inclusion
A study population consisting of 676 persons with type 1 diabetes
from Steno Diabetes Center Copenhagen was included over 2
years from 2009 in a cross-sectional study, also including a
biobank for future research. The details of the selection process
have previously been described (10). Participants were classified
as having normoalbuminuria if UAER was <30 mg/24 h or mg/g,

microalbuminuria if UAER was or formerly had been recorded
between 30 and 299 mg/24 h or mg/g, and macroalbuminuria if
UAER was or formerly had been recorded≥300 mg/24 h or mg/g
in at least two of three consecutive measurements. Individuals
classified as having normoalbuminuria did not have a history
of former micro- or macroalbuminuria. Individuals with prior
or present ESRD, defined as dialysis, renal transplantation or a
glomerular filtration rate (GFR)/eGFR < 15 mL/min/1.73 m2

were excluded. For the current metabolomics study, analyses
were performed in the year 2018 on serum (at the research
biobank) from 637 (94%) individuals. The study was performed
in accordance with the Declaration of Helsinki. The Ethics
Committee E, Region Hovedstaden, Denmark, approved the
original and follow-up research protocol. Written informed
consent was obtained from all participants for the original study
and the biobank.

Biochemical and Other Measures at
Baseline
Hemoglobin A1c (HbA1c), plasma (p)-cholesterol and p-
triglyceride levels were measured by standardized methods in the
routine laboratory at Steno Diabetes Center Copenhagen, serum
creatinine was determined by an enzymatic reaction (IDMS).
UAER was measured in three consecutive 24 h urine collections
by enzyme immunoassay. The eGFR was calculated from serum
creatinine using the Chronic Kidney Disease Epidemiology
Collaboration (CKD-EPI) equation (11). Brachial blood pressure
was measured in the sitting position after at least 10min rest with
an automatic oscillometric device and an appropriately sized cuff.
Body mass index (BMI) was calculated as weight in kilograms
divided by height in meters squared. Based on standardized
questionnaires, current users of >1 cigarettes, cigars or pipes
per day were classified as smokers and all others were classified
as non-smokers. Information on medication was collected from
electronic medical records at study baseline.

Metabolomics Analyses
The serum samples were immediately stored at −80◦C until
analysis. For the analysis, a Leco Pegasus 4D GC×GC-TOFMS
instrument (Leco Corp., MI, USA) was used. The method
has previously been described in detail (12). The GC×GC-
TOFMS data were processed (i.e., alignment and normalization)
using Guineu (13).With the present metabolomics platform 75
metabolites were identified and included in data analyses. These
metabolites included amino acids, free fatty acids, compounds
from the energy metabolism pathways and polyols. Peak areas
were normalized to spiked internal standards (glutamic acid-d5,
heptadecanoic acid-d33, succinic acid-d4, uric acid-2N15, and
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valine-d8), and median-corrected for between batch variation
in R. Metabolites with equal to or <20% missing/undetectable
values were included and all missing values were imputed with
the k-nearest neighbor algorithm and log2-transformed (14). The
proportion of imputed values for eachmetabolite ranged from 0.1
to 7%. Per metabolite information on missing values is given in
the Supplementary Table S1.

Longitudinal Endpoints
All data regarding hospital admission and related ICD-
10 diagnoses (www.who.int/classifications/icd/en/), procedural
codes [according to the Nordic Classification of Surgical
Procedures (NCSP); www.sst.dk] and date of death were obtained
from the Danish National Health Register until December
31st 2016 (15, 16). Information concerning causes of death
was available from the Danish National Death Register until
December 31st 2015. Biochemical measurements (p-creatinine
and UACR) were obtained from electronic laboratory records.
We did not have access to information concerning changes in
medication during follow-up.

Albuminuria (logUACR) slope was calculated based on all the
available measurements from outpatient visits during follow-up,
in participants with at least two measurements and a minimum
follow-up of 3 years (n = 485). Decline in eGFR was assessed as
time to the first occurrence of ≥30% decrease from baseline, as
proposed by Coresh et al. (17) and as eGFR slope. An endpoint
of ≥40% decrease in eGFR from baseline was computed for a
sensitivity analysis. ESRD was defined as CKD stage 5 (ICD-10
code N18.5), chronic dialysis (procedural code BJFD2), kidney
transplantation (procedural code KKAS 00, 10 and 20) or eGFR
< 15 ml/min/1.73 m2. A combined renal endpoint included
≥30% decline in eGFR, ESRD and all-cause mortality, with time
to first event. A similar combined renal endpoint is often used in
clinical outcome trials, although here modified in terms of eGFR
decline since this is an observational study with no initial decline
in eGFR caused by intervention.

Statistical Analyses
Tests of clinical variables were done with SAS Enterprise
Guide version 7.11. Continuous variables were reported
as mean ± standard deviation (SD) for normally
distributed data. Skewed data were reported as median
(interquartile range, IQR) and were log2-transformed for
analyses. Categorical variables were presented as total
numbers with corresponding percentages. Comparisons of
continuous and categorical variables between groups were
performed using the analysis of variance (ANOVA) and
X2-test, respectively.

All data analyses with metabolite data were done in
R-3.4.2. Partial correlation network of metabolites and
clinical variables was computed and visualized with R-
package qgraph using the graphical LASSO algorithm
and extended Bayesian information criterion to select the
model complexity. Data were imputed and auto-scaled prior
to model-fitting.

Cross-sectional associations between single metabolites and
eGFR, logUAER or albuminuria groups were assessed with

linear regression models adjusted to clinical variables using R-
package limma. P-values for each analysis were corrected for
multiple testing using the Benjamini–Hochberg method (pBH)
(18, 19). Significant associations between clinical variables and
metabolites were visualized as a bipartite network using R-
package ggplot2.

Metabolites with pBH < 0.05 in one or more of the adjusted
cross-sectional models were further examined longitudinally
using survival analysis with the Cox proportional hazards model
using R-package survival. First, hazard ratios (HRs) with 95%
CI on the log2-scale, were computed for the combined renal
endpoint, both, in crude and adjusted models. Metabolites
associating with the combined renal endpoint in the crude model
(pBH < 0.05) were included for testing of three specific endpoints:
≥30% decline in eGFR, ESRD and all-cause mortality. HRs of
the metabolites were visualized in forest plots grouped by the
dependent variable using R-package ggplot2. In the longitudinal
analyses correction for multiple testing was based on the number
of included metabolites in each analysis. Metabolites associating
with the specific endpoints in the adjusted Cox models were
visualized with the respective Kaplan-Meier curves and outcome-
specific violin plots.

In addition to cross-sectional and survival analyses,
metabolites with an association in one or more of
the adjusted cross-sectional models were tested with
adjusted linear models for association to eGFR and
albuminuria slopes.

Clinical baseline variables that were included in cross-
sectional and longitudinal multivariate models were age, sex,
HbA1c, systolic blood pressure, smoking, statin treatment,
body mass index, p-triglycerides, total p-cholesterol, eGFR,
and UAER, as these variables may affect both the metabolites
levels as well as the endpoints of interest (20). As a sensitivity
analysis, associations between renin-angiotensin-aldosterone
system (RAAS)-inhibition and metabolites were tested (data
not shown).

Sensitivity analyses with further adjustment for previous
cardiovascular disease and retinopathy were performed for the
metabolites that were significantly associated with the endpoints
in longitudinal analyses. In addition, an endpoint of eGFR
decline ≥40% from baseline was tested.

Sample-size calculation was done to assess the sample
size needed for reproducing the reported associations to the
combined renal endpoint. To do this, each metabolite was
dichotomized to a binary value representing a level above
or below median of the metabolite. The crude hazard ratio
for combined renal endpoint was re-estimated using the
dichotomized metabolite variables. Finally, the required sample
size for estimating the respective hazard ratio at alpha level of
0.05, power of 0.8 and observed probability of event at 0.19,
was calculated.

RESULTS

The study included 637 Caucasian individuals with type 1
diabetes with a mean age of 55 ± 13 years, a median diabetes
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TABLE 1 | Baseline characteristics according to albuminuria group.

All participants

(n = 637)

Normoalbuminuria

(n = 297)

Microalbuminuria

(n = 158)

Macroalbuminuria

(n = 182)

Normo- vs. micro- vs.

macro-albuminuria

(p)

Female 287 (45) 147 (49) 61 (39) 79 (43) 0.074

Age, years 55 ± 13 53 ± 14 58 ± 12 55 ± 10 <0.001

Diabetes duration, years 35 [25–44] 30 [9–41] 36 [26–48] 39 [31–45] <0.001

Body mass index, kg/m2 25 ± 6 25 ± 4 26 ± 4 26 ± 9 0.042

Systolic blood pressure,

mmHg

132 ± 17 129 ± 16 133 ± 18 134 ± 19 0.002

Diastolic blood pressure,

mmHg

74 ± 9 75 ± 9 73 ± 9 74 ± 10 0.021

HbA1c, %

(mmol/mol)

8.0 ± 1.1

(64 ± 13)

7.8 ± 1.0

(62 ± 12)

8.1 ± 1.2

(65 ± 13)

8.4 ± 1.2

(68 ± 13)

<0.001

Total cholesterol, mmol/l 4.7 ± 0.9 4.7 ± 0.8 4.7 ± 0.9 4.6 ± 1.0 0.333

LDL cholesterol, mmol/l 2.5 ± 0.8 2.5 ± 0.7 2.5 ± 0.8 2.5 ± 0.9 0.592

HDL cholesterol, mmol/l 1.7 ± 0.5 1.8 ± 0.6 1.7 ± 0.5 1.6 ± 0.5 0.001

Triglycerides, mmol/l 1.0 [0.7–1.3] 0.9 [0.7–1.2] 0.9 [0.7–1.4] 1.1 [0.8–1.5] <0.001

eGFR, ml min−1 1.73

m−2

81 ± 26 92 ± 18 81 ± 23 63 ± 28 <0.001

*UAER, mg/24-h 18 [8–65] 8 [6–13] 33 [18–62] 136 [32–473] <0.001

Retinopathy grade

Nil

Simplex

Proliferative

Blind

135 (21)

262 (41)

218 (34)

19 (3)

104 (35)

139 (47)

48 (16)

3 (1)

24 (15)

75 (47)

55 (35)

4 (3)

7 (4)

48 (26)

115 (63)

12 (7)

<0.001

Smokers 133 (21) 56 (19) 31 (20) 46 (25) 0.221

RAAS inhibition treatment 426 (67) 126 (43) 129 (82) 171 (94) <0.001

Statin treatment 480 (60) 122 (41) 106 (67) 152 (84) <0.001

Follow-up

Decline in eGFR ≥ 30 % 91 (14) 10 (3) 19 (12) 62 (34) <0.001

End stage renal disease 21 (3) 0 2 (1) 19 (10) <0.001

All-cause mortality 58 (9) 12 (4) 21 (13) 25 (14) <0.001

Combined renal endpoint 123 (19) 16 (5) 29 (18) 78 (43) <0.001

Data are n (%, rounded), mean ± SD or median [IQR]. HbA1c hemoglobin A1c, eGFR estimated glomerular filtration rate, UAER urinary albumin excretion rate, RAAS renin-angiotensin-

aldosterone system. The combined renal endpoint consisted of ≥ 30% decrease in eGFR, ESRD and all-cause mortality. *Some individuals with previous persistent micro- or

macroalbuminuria had lower values at baseline presumably due to reno-protective medical therapy.

duration of 35 [25–44] years and 45% women (Table 1).
Overall, 47% had persistent normoalbuminuria at baseline, 25

and 29% had a history of or current microalbuminuria and

macroalbuminuria, respectively. At baseline mean eGFR was
81 ± 26ml min−1 1.73 m−2 and median UAER was 18 [8–

65] mg/24-h. During follow-up, 91 participants experienced

a decline in eGFR ≥ 30%, 21 individuals developed ESRD,

123 had at least one event in the combined renal endpoint

and 58 died (Supplementary Figure S1). Median follow-up time

with available measurements was 5.2 [2.7–6.2] years for ≥30%

decline in eGFR, 5.2 [4.8–5.7] years for progression to ESRD
and 6.2 [5.8–6.7] years for all-cause mortality. The eGFR and

UACR slopes were based on medians of 6 measurements in
485 participants and 16 measurements in 484 participants,
respectively. The mean yearly change in eGFR was −1.4 ± 3.6
ml/min/year and the median yearly change in UACR was 3.5
[−13.0 to 8.7]%.

Network of Metabolic Regulation
A dense co-regulation network of metabolites and clinical

variables was computed (Figure 1). Metabolites partially

correlated into four main clusters: free fatty acids (top-left),
amino acids (top-right), glucose metabolism (bottom-

right), and polyols (bottom-left). The highest number of
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FIGURE 1 | Partial correlation network of serum metabolites and clinical covariates. Nodes are measured variables and edges (lines) are inferred associations (width:

strength; color: sign). Circular and rectangular nodes, respectively, are metabolites and clinical variables. Node size is the degree of the node (number of associations

with the node). The highest-degree clinical node is highlighted in yellow and other nodes are colored by the respective Spearman correlation to the yellow node (red

and blue for positive and inverse correlation, respectively). Blue color represents increased levels of the metabolites with deteriorating kidney function.

associations between metabolites and clinical variables were
with eGFR, which was associated with 11 metabolites and a

central node. Particularly polyols ribonic acid, myo-inositol,

and ribitol were inversely associated with eGFR but were
independent of HbA1c. Also, the balance of hydroxybutyrates
was disturbed, and amino acids valine and isoleucine were
associated with eGFR.

Cross-Sectional Associations Between
Metabolites and Renal Function Measures
After the data-driven network analysis, we focused on detecting
associations between metabolites and clinical variables. In
cross-sectional analyses, 3,4-dihydroxybutanoicacid (3,4-
DB) was positively associated with microalbuminuria
and macroalbuminuria vs. normoalbuminuria, UAER and
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FIGURE 2 | Cross-sectional associations between metabolites and clinical variables. Associations with pBH < 0.05 between clinical variables (left) and metabolites

(right) are shown in a bipartite network. Sign of the coefficient is shown in color (red and blue for positive and inverse association, respectively) and magnitude of the

coefficient is shown in the width of the line. Associations related to eGFR and logUAER are highlighted with opaque lines while other associations are shown in

transparent lines.

inversely associated with eGFR (pBH < 0.04, Figure 2 and
Supplementary Material, p. 13, 14, 25, and 56). Ribonic
acid, myo-inositol, 2,4-dihydroxybutanoic (2,4-DB) acid
and 4-hydroxybenzeneacetic acid were positively associated
with macroalbuminuria vs. normoalbuminuria and inversely
associated with eGFR (pBH < 0.04). Additionally, 24 metabolites
primarily from amino acids, carboxylic acids, and free fatty
acids, were associated with eGFR (pBH < 0.05). Although large
part of the metabolomic associations were with eGFR, 33 other
metabolites were associated with other clinical variables, such as
HbA1c (Figure 2).

Metabolites Associated With eGFR or
Albuminuria Slope
In longitudinal adjusted analyses of slopes, 4-
hydroxybenzeneacetic acid (β = 0.68; pBH = 0.004) and
4-deoxytetronic acid (β = 0.28; pBH = 0.03) were positively
associated with albuminuria slope (Supplementary Material,
p. 243). Ribitol (β = −0.03; pBH = 0.008) and octanoic acid
(β = −0.02; pBH = 0.008) were inversely associated with eGFR

slope while succinic acid was positively associated with eGFR
slope (β = 0.01; pBH = 0.04; Supplementary Material, p. 247).

Candidate Biomarkers for Risk of
Longitudinal Renal Endpoints
Overall, higher levels of hydroxybutyrates and polyols were
associated with higher risk while several amino acids were
associated with lower risk of progression to the combined renal
endpoint (pBH < 0.05) in crude models (Figure 3, left). After
multivariate adjustment, ribonic acid remained significantly
associated with higher risk and isoleucine, leucine and valine
associated with lower risk of the combined renal endpoint (pBH
< 0.02, Figure 3, right).

In analyses of each of the endpoints included in the combined
renal endpoint several metabolites were associated with all-
cause mortality, eGFR decline ≥30% and ESRD in crude
models although most of these associations were attenuated
after multivariate adjustments (Figure 4). Higher levels of the
polyols ribonic acid and myo-inositol were though steadily
associated with a higher risk of eGFR decline ≥30%, also in
the multivariate Cox model (pBH < 0.002). The baseline median
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FIGURE 3 | Hazard ratios of prioritized metabolites for progression to the combined renal endpoint. Hazard ratios (HRs) to the combined endpoint for metabolites that

had pBH < 0.05 in any of the cross-sectional analyses. The combined renal endpoint includes ≥30% decrease in eGFR, ESRD and all-cause mortality with time to first

event. HRs are presented per 1 SD increase of the log2 metabolite and are shown for crude model (left) and for model adjusted for age, sex, HbA1c, systolic blood

pressure, smoking, body mass index, statin treatment, p-triglycerides, total p-cholesterol, eGFR and logUAER (right).

level of both ribonic acid and myo-inositol in individuals with
eGFR decline≥30% was equal to 75% quartile in individuals who
did not experience this event (Supplementary Material, p. 188).
Kaplan–Meier curves for eGFR decline ≥30% demonstrated
that individuals with values above the median levels of myo-
inositol and ribonic acid had a higher risk of eGFR decline≥30%

(Figure 5).
In sample size calculation for replicating the reported

associations to the combined renal endpoint, required sample
sizes ranged from 96 to 753 with 3,4-dihydroxybutanoic acid at
96, ribitol at 98, ribonic acid at 115 and myo-inositol at 128. A
full table of the estimated required sample sizes are reported in
the Supplementary Material, p. 186.

Sensitivity Analyses
Sensitivity analyses with additional adjustments to previous
cardiovascular disease (n= 137) and retinopathy were performed
(Supplementary Material, p. 129, 149). In a further sensitivity
analysis, an endpoint of development of eGFR decline ≥40%

(n = 54) was tested (Supplementary Material, p. 169). In
brief, the findings reported in this study proved robust in all
sensitivity analyses.

DISCUSSION

We examined serum metabolomic profiles in persons with type
1 diabetes to evaluate potential cross-sectional associations with
renal function (eGFR) and albuminuria as the clinical features
of DKD. Together with the follow up information of the cohort,
we analyzed if metabolites were also associated with progressing
renal function impairment, ESRD and mortality.

The main findings were: (1) Polyols ribonic acid and myo-
inositol were inversely associated with eGFR and positively
associated with macroalbuminuria in cross-sectional analyses.
Both were also associated with higher risk of eGFR decline≥30%
and ribonic acid was associated with higher risk of the combined
renal endpoint. (2) Among the investigated clinical variables,
eGFR had the highest number of significant associations with
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FIGURE 4 | Hazard ratios of prioritized metabolites for progression to the three specific endpoints: all-cause mortality, eGFR decline (>30%) and end-stage renal

disease. Hazard ratios (HRs) to the specific endpoints for metabolites that had pBH < 0.05 in crude survival models for the combined renal endpoint. Results for the

three endpoints are shown in respective vertically arranged sub-figures. HRs are presented per 1 SD increase of the log2 metabolite and shown for crude model (left)

and for model adjusted for age, sex, HbA1c, systolic blood pressure, smoking, body mass index, statin treatment, p-triglycerides, total p-cholesterol, eGFR, and

logUAER (right).

metabolites. (3) Amino acids isoleucine, leucine and valine
had significant positive cross-sectional associations with eGFR.
Further, they were associated with lower risk of the combined
renal endpoint in longitudinal analyses. (4) 3,4-DB had positive
cross-sectional association with micro- and macroalbuminuria,
UAER and inverse association with eGFR.

In the present study of individuals with type 1 diabetes, higher
levels of myo-inositol and ribonic acid, also known as ribonate,
were associated with a higher risk of all-cause mortality and
ESRD, although only in crude models. In addition to ESRD, both
the metabolites were associated with a high risk of eGFR decline

≥30%, and ribonic acid was associated with higher risk of the
combined renal endpoint.

Interestingly, a previous study in individuals with CKD
reported associations between ribonate, fumarate and allantoin
and a higher risk of all-cause mortality (21), although only
10% in the discovery cohort and none in the replication cohort
had diabetes. In another study from the same cohorts, four
metabolites were associated with ESRD (22), however, there was
no overlap between those findings and the current.

Ribonate can be synthesized from ribose which is involved
in the pentose phosphate pathway. A previous study performed
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FIGURE 5 | Kaplan–Meier curves for eGFR decline ≥ 30% for levels of myo-inositol and ribonic acid. Above (red) and below (blue) the median with 95% confidence

intervals.

in rat models demonstrated that inducing diabetes resulted in
a higher activity of key enzymes of the pathway, suggesting a
potential role of the pentose phosphate pathway in early diabetes-
induced renal hypertrophy (23). Whether this is also the case in
humans is currently unknown.

However, four pathogenic molecular pathways in diabetes
complications induced by high glucose influx into endothelial
cells and production of reactive oxygen species causing
accumulation of glycolysis intermediates have previously been
proposed by Brownlee (24). The pentose phosphate pathway is
not directly involved in the four pathways but is interconnected
with glycolysis. Myo-inositol may though be directly affected by
one of the four pathways, the polyol pathway (25).

Our results in type 1 diabetes replicate previous results in
type 2 diabetes where higher levels of myo-inositol were also
associated with higher risk of ESRD (3). In a cross-sectional study
of retinopathy in type 2 diabetes, myo-inositol and metabolites
of the pentose phosphate pathway were associated with diabetic
non-proliferative retinopathy (26).

Increased amounts of amino acids isoleucine, leucine, and
valine were associated with lower risk of ESRD in crude models
and with lower risk of the combined renal endpoint in adjusted
models. In a study from Joslin Diabetes Center in individuals
with type 2 diabetes, comparing progressors to ESRD with non-
progressors over 8–12 years follow-up, higher levels of leucine
and valine were also associated with lower risk of progression

to ESRD, although not significant after adjustment for HbA1c,
albumin excretion, eGFR and multiple testing (3). In another
study of circulating amino acids in individuals with type 2
diabetes from the ADVANCE study, higher levels of leucine were
associated with a lower risk of all-cause mortality (7).

A possible link between BCAAs, such as leucine and
isoleucine, development of diabetes (27), insulin resistance (28)
and the gut microbiome (12), have previously been hypothesized.
Gut dysbiosis has been proposed as a mechanism leading to
inflammation, a leaky gut barrier and renal and endothelial
damage by circulating gut bacteria derived metabolites (29).

The hydroxy butyrate 3,4-DB was significantly associated
with all cross-sectional endpoints and 2,4-DB was associated
with macroalbuminuria. Both these hydroxy butyrates were also
associated with all-cause mortality, eGFR decline ≥30% and
ESRD in crude models and have previously been shown to be
associated with retinopathy (26). In the network analysis they
were strongly correlated with creatinine and the polyols and they
may reflect renal clearing.

Other short-chain fatty acids have previously been proposed
to derive from the gut microbiota (30) and a study of fecal
samples in type 1 diabetes demonstrated lower levels of the
short-chain fatty acid butyrate and other related compounds
when compared to healthy controls (31). In a study from Joslin
Diabetes Center including individuals with type 1 diabetes, there
were no overlapping results with the present study in terms
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of metabolites associated with eGFR slope or ESRD. Part of
the explanation for these differing results may be that only
metabolites associating significantly with eGFR slope were tested
for association to ESRD and that the different platforms used to a
large extent generate data on non-overlapping metabolites (9).

We recognize several limitations in our study. Data
concerning potential changes in concomitant medication
during follow-up were not available, although particularly
changes in antihypertensives and statins would have been of
relevance. Data regarding diet, gut microbiota composition or
day-to-day variability were not available, although these factors
may affect the measured metabolome (32, 33).

The main limitation in this study is the lack of a replication
cohort. Validation in an independent cohort is a requirement
for assessment of potential biomarkers. A general challenge in
the metabolomics field, which also applies here, is the diversity
of analysis platforms and the quantification on a relative scale
as no analytic platform can capture all metabolites and thus we
may have missed relevant metabolites with our platform. Despite
this, we did identify polyols and amino acids that have also
demonstrated significant associations to relevant outcomes in
previous studies. The major strengths of this study are the large
population of individuals with type 1 diabetes, the well-described
comprehensive analyses of metabolites, and, the availability of
longitudinal register data for up to 7 years.

In conclusion, a broad range of associations between
metabolites, particularly polyols, amino acids, and
hydroxybutyrates with renal endpoints in type 1 diabetes
were revealed. These findings highlight molecular pathways
associated with progression of kidney disease, however, need
external validation to further assess their roles and potentials as
future therapeutic targets.
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