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Scope: Overnutrition in utero is a critical contributor to the susceptibility of diabetes

by programming, although the exact mechanism is not clear. In this paper, we aimed

to study the long-term effect of a maternal high-fat (HF) diet on offspring through

epigenetic modifications.

Procedures: Five-week-old female C57BL6/J mice were fed a HF diet or control diet

for 4 weeks before mating and throughout gestation and lactation. At postnatal week 3,

pups continued to consume a HF or switched to a control diet for 5 weeks, resulting in

four groups of offspring differing by their maternal and postweaning diets.

Results: The maternal HF diet combined with the offspring HF diet caused

hyperglycemia and insulin resistance in male pups. Even after changing to the control

diet, male pups exposed to thematernal HF diet still exhibited hyperglycemia and glucose

intolerance. The livers of pups exposed to a maternal HF diet had a hypermethylated

insulin receptor substrate 2 (Irs2) gene and a hypomethylated mitogen-activated protein

kinase kinase 4 (Map2k4) gene. Correspondingly, the expression of the Irs2 gene

decreased and that of Map2k4 increased in pups exposed to a maternal HF diet.

Conclusion: Maternal overnutrition programs long-term epigenetic modifications,

namely, Irs2 andMap2k4 genemethylation in the offspring liver, which in turn predisposes

the offspring to diabetes later in life.

Keywords: DNA methylation, insulin receptor substrate, MAPK, maternal high fat diet, epigenetics

INTRODUCTION

The incidence of type 2 diabetes mellitus (T2DM) is dramatically increasing. T2DM has become
a major public health problem worldwide. It is clear that genetic factors play important roles in
the incidence of T2DM. However, the genetic loci identified by genome-wide association studies
(GWASs) can account for only a small proportion of T2DM (<10%) (1, 2). Heritable factors cannot
explain the dramatic increase in T2DM, thus recent research has focused on lifestyle as a major
factor for the incidence of T2DM (3).

Among lifestyle factors, prenatal and postnatal nutrition imbalances lead to epigenetic
programming, which is associated with increased T2DM incidence, including both undernutrition
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and overnutrition (4). Maternal nutrition is important
in determining susceptibility to metabolic disease (5).
Epidemiological studies in humans revealed that both under-
and overnutrition of the mothers during pregnancy will have
far-reaching and long-term outcomes for the health of the
offspring in adult life (6, 7). For example, glucose intolerance
and insulin resistance were reported in offspring whose mothers
were exposed to undernutrition during gestation in the well-
known study of the Dutch famine, demonstrating an association
(8). Similarly, maternal obesity is associated with increased
susceptibility to T2DM in offspring (9, 10). Female rat pups
from mothers with high-fat (HF) diet-induced obesity were
more prone to obesity (11). We have reported that a maternal
low-chromium diet can also program the development of
diabetes in offspring (12).

Intrauterine programming has been proposed in which the
maternal nutrition environment could affect the metabolism
of the offspring throughout life (13). The prenatal and early
postnatal period is considered a critical time for adult life.
Moreover, the maternal nutrition environment and health status
induce epigenetic modifications that affect the incidence of
T2DM in offspring. The Developmental Origins of Health and
Disease (DOHaD) concept has been proposed, and epigenetic
mechanisms are considered to possibly underlie DOHaD (14, 15).
Development programming in the early life period can increase
the risk of T2DM in later life (14). Epigenetic modifications
mainly consist of DNA methylation, histone modifications and
non-coding RNAs. These epigeneticmodifications can affect gene
expression via environmental changes (16). DNA methylation is
defined as the addition of a methyl group to a cytosine, usually
in CpG islands (17). DNAmethylation at CpG-rich promoters or
gene regulatory regions is normally associated with the inhibition
of gene expression (17).

Recently, a small number of studies have described the role
of DNA methylation changes in fetal programming to metabolic
disease in human and animal models. In human research,
newborns with obese parents had altered methylation in multiple
imprinted genes in their cord blood (18). In animal research, the
results were not consistent. In one study, exposure to a maternal
HF diet caused DNA hypermethylation in offspring mouse livers
(19). However, Cannon et al. did not detect any effect of the
maternal diet on DNA methylation in the male mouse liver
(20). Another group reported that exposure of offspring to
a maternal HF diet could remodel the hepatic epigenome, if
they changed to a control diet during the postweaning period
(21). Hence, the precise molecular mechanisms underlying the
epigenetic changes induced by a maternal HF diet have not yet
been thoroughly identified.

Thus, in this study, we sought to determine whether genome-
wide changes in DNA methylation occur in the livers of
offspring exposed to a maternal HF diet and a postweaning
control diet. The liver was chosen because it is essential
for maintaining metabolic homeostasis (22). We performed a
genome methylation array to identify differentially methylated
genes in 8-week-old postweaning control diet-fed offspring from
HF diet-fed or control diet-fed dams. Differentially methylated
genes were assessed in the offspring mouse genome to determine

the epigenetic mechanism responsible for the maternal HF
diet effects.

MATERIALS AND METHODS

Animal Grouping and Treatments
All research procedures involving animals were approved
by the Animal Care Committee of Peking Union Medical
Hospital (Permit Number: MC-07-6004). Male and virgin female
C57BL6/J mice were purchased from the Institute of Laboratory
Animal Science, Chinese Academy of Medical Sciences and
Peking UnionMedical College (Beijing, China). All animals were
housed under specific pathogen-free conditions. Mice were kept
in a controlled environment (25 ± 1◦C) under a 12-h light/dark
cycle and allowed food and water ad libitum.

Five-week-old virgin females (n = 40) were divided into two
groups at random.One group ofmice was fed a standard AIN93G
control diet (CON group, n= 20, Research Diets, Inc.; 16, 64, and
20% of calories from fat, carbohydrate, and protein, respectively),
while the other group was fed a HF diet (n = 20; Research
Diets, Inc.; 45, 35, and 20% of calories from fat, carbohydrate,
and protein, respectively). Male mice were fed a normal diet
throughout the experiment. After 4 weeks, female mice were
housed overnight with males of the same age to mate at a ratio
of 2:1 in each cage. The presence of a vaginal plug the following
morning indicated the first day of pregnancy. During gestation
and lactation, the diet scheme did not change. On postnatal
day 21, one male pup was selected randomly from each dam.
Male pups from control diet-fed dams were weaned onto the
control diet (CON-CON, n = 10) or HF diet (CON-HF, n =

10). Meanwhile, male pups from HF diet-fed dams were weaned
onto the control diet (HF-CON, n= 10) or HF diet (HF-HF, n=

10). This process created four groups of pups: CON-CON group,
CON-HF group, HF-CON group, and HF-HF group. All animals
were sacrificed at 8 weeks of age, and the livers were immediately
collected and snap frozen in liquid nitrogen and then stored at
−80◦C. The animal experiment timeline is shown in Figure 1.

Body Weight, Fasting Blood Glucose, Oral
Glucose Tolerance Test (OGTT), and Insulin
Analysis
Body weight was measured at weaning time in mothers and
8 weeks of age in pups. Fasting blood glucose (Contour TS
glucometer, Bayer, Hamburg, Germany) and plasma insulin
(ELISA,Millipore, Billerica, MA) levels were measured at 8 weeks
of age. Insulin sensitivity was assessed using the HOMA-IR as
previously described (23). After 10 h of food deprivation, the
8-week-old offspring underwent OGTT, and the blood glucose
concentrations were immediately measured with a glucometer at
0, 30, 60, and 120min post gavage (2.0 g/kg). The area under the
glucose tolerance curve (AUC) of the OGTT was calculated as
previously described (23).

DNA Methylation Profiling Using Array
To determine the effect of maternal HF diet on DNAmethylation
in offspring livers, genomic DNA was extracted from the livers
of HF-CON and CON-CON pups (n = 3 in each group,
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FIGURE 1 | Timeline of animal experiment. CON-CON: control diet mother-post-weaning control diet; CON-HF, control diet mother-post-weaning high-fat diet;

HF-CON, high-fat diet mother-post-weaning control diet; HF-HF, high-fat diet mother-post-weaning high-fat diet.

selected randomly from different dams) using a DNeasy Blood
& Tissue Kit (Qiagen, Fremont, CA). Samples of genomic
DNA were sonicated into random fragments in a size range
of ∼100–500 bp. Immunoprecipitation of methylated DNA
fragments (MeDIP) was performed using a mouse monoclonal
anti-5-methylcytosine antibody (Diagenode). The total input
and immunoprecipitated DNA were labeled with Cy3- and
Cy5-labeled random 9-mers, respectively, and hybridized to
an Arraystar Mouse ReqSeq Promoter Array (Arrarystar Inc.,
Rockville, MD), which contains 22,327 well-characterized RefSeq
promoter regions [from ∼-1,300 to +500 bp of the transcription
start sites (TSSs)] totally covered by ∼180,000 probes. Scanning
was performed with an Agilent Scanner G2505C (Agilent
Technologies, Waldbronn, Germany).

Methylation Enrichment and Peak-Finding
The results were obtained using a sliding-window (750 bp)
peak-finding algorithm provided by NimbleScan v2.5 (Roche
NimbleGen). NimbleScan detects peaks by searching for at least
two probes above a minimum cutoff p-value (–log10) of 2.
Peaks within 500 bp of each other are merged. The M’ value
was calculated for each probe to compare differentially enriched
regions between the HF-CON and CON-CON groups as follows:

M’ = Average(log
MeDIP(HF−CON)/Input(HF−CON)
2 )−

Average(log
MeDIP(CON−CON)/Input(CON−CON)
2 ).

The differential enrichment peaks (DEPs) called by
the NimbleScan algorithm were filtered according to the
following criteria:

(1) At least one of the two groups has a median (log2
MeDIP/Input) ≥0.3 and M’ > 0.

(2) At least half of the probes in a peak may have a coefficient of
variability (CV) ≤ 0.8 in both groups.

To separate strong CpG islands from weak CpG islands,
promoters were categorized into three levels: high

CpG promoters/regions (HCPs), intermediate CpG
promoters/regions (ICPs), and low CpG promoters/regions
(LCPs) (24).

Pathway Analysis
DAVID Bioinformatics Resources 6.7 [http://david.abcc.ncifcrf.
gov/ (25)] was used to perform Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathway and Gene Ontology (GO)
functional enrichment analyses for the differentially methylated
genes (DMGs).

Bisulfite Sequencing PCR (BSP)
For validation of the methylation array, bisulfite conversion of
genomic DNA from offspring livers in the four groups (n =

10 in each group) was conducted using a kit (Zymo Research,
CA). The primers were designed using Methyl Primers Express
software 1.0 (Applied Biosystems, Foster City, CA) and are
shown in Table 1. The resulting PCR products were purified
using aQIAquick Gel Extraction Kit (Qiagen) and cloned into the
pMD18-T vector (Takara, Shiga, Japan). Individual clones were
grown, and plasmids were purified using a PureLink Miniprep
Kit (Invitrogen, Thermo Scientific Inc., Waltham, MA). At least
10 clones from each mouse were selected and sequenced.

Quantitative Reverse-Transcription PCR
Total RNA from offspring livers in the four groups (n = 10
in each group) was isolated using a Qiagen RNeasy Mini Kit
(Qiagen, Germantown, MD) according to the manufacturer’s
instructions. Reverse transcription was conducted with total
RNA using the TaKaRa RT kit (TaKaRa, Shiga, Japan). Real-
time PCR was performed on an ABI 7900 Real-Time PCR
Detection System (Applied Biosystems, Foster City, CA) using
the comparative Ct method (2−11Ct). The relative mRNA
expression levels of target genes were normalized to Gapdh. The
sequences of the primers used are shown in Table 2.
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TABLE 1 | PCR primer for bisulfite sequencing.

Gene Accession

number

Primer sequences (from 5′ to 3′) Production size CpG number

Irs2 NM_001081212 F: 5′-TTTAAGGGTATTTTTGGTTTGG−3′

R: 5′-ACCATTCACTTATCAAATTCCC−3′
301 30

Map2k4 NM_001316367 F: 5′-TGTTTTTTGATTTTTTTTTTGG−3′

R: 5′-AAAAACTTACAACCCCAAAACT−3′
439 7

Irs2, insulin receptor substrate 2; Map2k4, mitogen-activated protein kinase kinase 4.

TABLE 2 | qPCR primer.

Gene Accession

number

Primer sequences (from 5′ to 3′) Production size

Irs2 NM_001081212 F: 5′- CGAGTCAATAGCGGAGACCC−3′

R: 5′ CCCCTGAGACCCTACGGTAA−3′
119

Map2k4 NM_001316367 F: 5′- TCTGTGAAAAGGCACAAAGTAAGC−3′

R: 5′- TCTCAGTCTCTCTATGTGTGGGT−3′
134

Irs2, insulin receptor substrate 2; Map2k4, mitogen-activated protein kinase kinase 4.

Statistical Analysis
The results were statistically analyzed by Prism 5.0 (GraphPad
Software Inc., San Diego, CA). All values are presented as the
mean ± SEM. Dam body weights were compared by Student’s
t test. Body weight, blood glucose, plasma insulin, HOMA-IR,
methylation, and mRNA expression in offspring were analyzed
by two-way ANOVA (maternal diet x offspring diet). Statistical
significance was defined as P < 0.05.

RESULTS

HF Dams had Greater Body Weight
Dams in the HF group had higher body weights than those in the
CON group at weaning time (23.33 ± 1.40 g vs. 19.17 ± 1.14 g,
P < 0.01).

Maternal HF Diet Did Not Affect Body
Weight in Male Mice
At 8 weeks of age, the mean body weight of mice in the CON-HF
and HF-HF groups was significantly higher than that of CON-
CON and HF-CON mice (P < 0.01, Figure 2A). There was no
significant maternal HF diet effect on offspring body weight (P >

0.05, Figure 2A).

Male Mice From HF Dams Exhibited
Glucose Intolerance and Insulin Resistance
Fasting blood glucose was at similar higher levels in all HF
groups (P < 0.01, Figure 2B). Offspring from HF diet-fed dams
displayed higher fasting blood glucose (P < 0.05, Figure 2B).
The HF diet caused significant glucose intolerance in offspring
from control diet-fed dams (P < 0.01, Figure 2C). In particular,
offspring from HF diet-fed dams had higher blood glucose levels
at 30, 60, and 120min and greater AUCs during OGTTs (P <

0.01, Figures 2C,D). Even when they were fed with a control diet,
offspring from HF diet-fed dams had higher blood glucose levels
and AUCs (P < 0.01, Figures 2C,D). The postweaning HF diet

interacted with the maternal HF diet to increase fasting plasma
insulin levels and HOMA-IR (P < 0.01, Figures 2E,F).

Intrauterine Environment of HF
Damsaffects DNA Methylation Patterns in
Male Mice
All microarray data have been deposited into the gene expression
omnibus (GEO ID: GSE136814). To explore the mechanism
of glucose intolerance and insulin resistance observed in the
offspring from dams fed a HF diet, we performed methylation
arrays on the livers of the HF-CON and CON-CON groups (n
= 3). We found that a total of 1,099 differentially methylated
regions (DMRs, 955 annotated genes) were identified on 20
chromosomes in the HF-CON group compared with the CON-
CON group. Among these DMRs, 713 were hypermethylated
and 386 were hypomethylated. Among the hypermethylated
promoters, 487 (68.33%) were located in HCPs, 158 (22.1%)
in ICPs, and 68 (9.5%) in LCPs. Among the hypomethylated
promoters, 151 (39.1%) were located in HCPs, 105 (27.2%) in
ICPs, and 130 (33.7%) in LCPs (Figure 3A). DMRs were mainly
located on chromosomes 2, 4, 7, 9, and 11 (Figure 3B).

DMR-Related Gene Analysis
To further explore the molecular mechanism by which
the offspring were exposed to a HF diet in an intrauterine
environment, DMR-related genes were analyzed using GO
functional analysis and KEGG enrichment analysis. Significantly
enriched GO terms of DMR-related genes mainly participating
in molecular function are LBD domain binding, DNA binding,
RNA binding, protein binding, and cadherin binding involved
in cell-cell adhesion (Figure 4, Supplemental Table 1). The top
25 KEGG pathways of DMGs are enriched in the adipocytokine
signaling pathway, MAPK signaling pathway, pyruvate
metabolism, toxoplasmosis, hypertrophic cardiomyopathy,
Rap1 signaling pathway, regulation of actin cytoskeleton, protein
processing in endoplasmic reticulum, dilated cardiomyopathy,
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FIGURE 2 | The effect of maternal high-fat diet on metabolic variables of male mice offspring. (A) body weight at weaning; (B) fasting blood glucose; (C) oral glucose

tolerance test (OGTT); (D) area under curve (AUC) in OGTT; (E) plasma insulin; (F) HOMA-IR. **P < 0.01 offspring diet effect; #P < 0.05; ##P < 0.01 maternal diet

effect. Values are mean ± SEM (n = 10). CON-CON: control diet mother-post-weaning control diet; CON-HF, control diet mother-post-weaning high-fat diet;

HF-CON, high-fat diet mother-post-weaning control diet; HF-HF, high-fat diet mother-post-weaning high-fat diet.

pathways in cancer, citrate cycle, TGF-beta signaling pathway,
systemic lupus erythematosus, biosynthesis of antibiotics,
proteoglycans in cancer, RNA transport, signaling pathway
regulating pluripotency of stem cells, glycolysis/gluconeogenesis,
Ras signaling pathway, FoxO signaling pathway, PI3K-Akt
signaling pathway, carbon metabolism, hippo signaling pathway,
and gap junction (Figure 5, Supplemental Table 2).

Overall Differential DNA Methylation of Irs2
and Map2k4
KEGG pathway analysis revealed that insulin signaling and
MAPK may be mainly enriched among the DMGs regulated
by pup livers from maternal HF diet-fed mice. To verify the
methylation levels of candidate genes revealed by themethylation
array, we further studied Irs2 and Map2k4, which are involved
in the insulin signaling pathway and the MAPK pathway. As
shown in Figures 6A,B, the Irs2 gene promoter region underwent

a series of hypermethylations in all HF-fed groups, and this was
more pronounced in pups fromHF diet dams (P< 0.01).Map2k4
gene methylation was inhibited in CON-HFmice compared with
CON-CONmice (P< 0.01, Figures 6A,C). Thematernal HF diet
had an inhibitory effect onMap2k4 gene methylation in offspring
(P < 0.01, Figures 6A,C).

Gene Expression of Irs2 and Map2k4
qPCR was applied to confirm the abnormal expression of Irs2
and Map2k4 in the livers from offspring exposed to a HF
diet in utero or in adulthood. As illustrated in Figure 6D, the
relative expression of Irs2 mRNA was decreased markedly by
both a maternal HF diet and postweaning HF diet (P < 0.01).
Map2k4 mRNA expression increased significantly in HF diet-
fed mice (P < 0.01, Figure 6E). Furthermore, those exposed
to maternal HF diet displayed increased Map2k4 mRNA levels
(P < 0.01, Figure 6E).
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FIGURE 3 | Differentially methylated promoters between HF-CON group and CON-CON group. (A) CpG density of differentially methylated promoters. (B)

Chromosomal distribution of differentially methylated promoters. Red: differentially hypermethylated promoters; Green, differentially hypomethylated promoters.

Classification of all promoters with high (HCP), intermediated (ICP), and low (LCP) CpG content.

DISCUSSION

Our results showed that the postweaning HF diet increased

body weight in mice. However, the maternal HF diet did not
change pup body weight at 8 weeks of age. While some studies

reported that HF diet-fed offspring exposed to a maternal HF

diet had higher body weight in the adult period (26), other
studies did not report any difference (27). This discrepancy may
be because of different dietary components, fat sources or the
strain and sex of the mice used. Our results revealed that both
the maternal HF diet and postweaning HF diet led to glucose
intolerance in male mice. Similar observations have been made
in a previous study (26, 28–30). A systematic review of animal
models found that male offspring exposed to a maternal HF diet

independent of maternal obesity, birth weight or postweaning
macronutrient intake had glucose intolerance (31). Additionally,
a HF diet during fetal life, particularly if combined with the
same insult during the suckling period, can induce the type 2
diabetes phenotype (32–34). Maternal obesity interacted with
the postweaning HF diet to induce higher levels of glucose
intolerance in offspring rodents (35, 36). This programming
effect may have sex differences and lead to liver transcriptome
changes (37). We also found that fasting insulin levels increased
significantly both in mice exposed to the maternal HF diet
and postweaning HF diet. In several studies on rats, offspring
exposed in utero to a HF diet had increased fasting insulin levels
(34, 38). In our study, bothmaternal HF diet and postweaningHF
diet caused insulin resistance in pups. The discordance between
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FIGURE 4 | Top 5 significant GO term of differentially methylated genes in each classification. Red, molecular function (MF); Green, cellular component (CC); Blue,

biological process (BP).

FIGURE 5 | Top 25 significant KEGG pathways of differentially methylated genes.

an increased HOMA index and lack of an increase in plasma
insulin levels may be because of the high fasting blood glucose
levels in pups exposed to a maternal HF diet. Previous studies
have reported that offspring exposed to a maternal HF diet
in utero and/or postnatally developed manifestations of insulin
resistance (29, 39).

A HF diet may affect the epigenetic status through several
pathways. On the one hand, a HF diet can provoke inflammation
and hormone secretion and alter DNA methylation (40). On
the other hand, a HF diet can also act directly on epigenetic
modification and methylation pathways. A short-term HF
diet in healthy men induces widespread DNA methylation

Frontiers in Endocrinology | www.frontiersin.org 7 December 2019 | Volume 10 | Article 871

https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles


Zhang et al. Maternal High-Fat Offspring Glucose Methylation

FIGURE 6 | Validation of methylation array using bisulphite sequencing. (A) Schematic diagram of bisulphite sequencing results on 30 CpG sites on Irs2 and 7 CpG

on Map2k4. Open circles indicate unmethylated CpGs, and closed circles indicate methylated CpGs. Methylation ratio of Irs2 (B) and Map2k4 (C) in different groups.

Relative gene expression of Irs2 (D) and Map2k4 (E) in different groups. **P < 0.01 offspring diet effect; ##P < 0.01 maternal diet effect. Values are mean ± SEM (n

= 10). CON-CON, control diet mother-postweaning control diet; CON-HF, control diet mother-postweaning high-fat diet; HF-CON, high-fat diet mother-postweaning

control diet; HF-HF, high-fat diet mother-postweaning high-fat diet.
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changes in the skeletal muscle. These changes were only
partially reversed after 6–8 weeks (41). Roux-en-Y gastric
bypass (RYGB)-induced weight loss is associated with the
restoration of DNA methylation changes caused by obesity
in skeletal muscle (42) and adipose tissue (43, 44). These
DNA methylation changes involve pathways that control lipid
metabolism and mitochondrial function in skeletal muscle (42),
adipogenesis (43), and insulin-mediated glucose (44) uptake in
adipose tissue.

A maternal HF diet may also induce DNA methylation
changes in several metabolic genes (45) and their expression
(37) in male offspring livers. In rats, the hepatic cell cycle
inhibitor Cdkn1a was hypomethylated in offspring fromHF diet-
fed mothers (46). Increased methylation of the leptin promoter
and decreased methylation of Ppar-α was also observed in the
liver of female offspring from HF diet-fed dams (47). The
maternal diet also increased Ppar-γ and liver X receptor α

(LXRα) DNA methylation levels in male mouse livers (48).
The present study used genomic DNA methylation technologies
to examine DNA methylation profiles in mice exposed to a
HF diet. First, to address whether maternal HF diet exposure
induced methylation changes, we compared HF-CON and CON-
CON mice. One thousand 99 DMRs were identified, and gene-
associated DMRs clustered mainly in 25 pathways. We then
compared DNA methylation in the identified regions among
all four groups of mice to uncover the impact of HF diet
intake regardless of timing. From these metabolic pathways, we
concluded that the HF diet decreases Map2k4 DNA methylation
and increases Irs2 DNA methylation, as all of the HF-CON,
CON-HF, and HF-HF groups generally had lower Map2k4
DNA methylation and higher Irs2 DNA methylation than the
CON-CON group.

Previous studies revealed that exposure to both
undernutrition and overnutrition in utero induces gene-specific
DNA methylation modification (49–52) in animal models.

Several clinical studies revealed that genome-wide DNA
methylation significantly changed in offspring born to
overweight, obese or malnourished mothers (53–57). These
DNA methylation modifications in offspring cord blood involve
cardiovascular, inflammatory and apoptosis pathways (55, 57).
Moreover, exposure to a maternal HF diet in utero might
affect glucose and lipid metabolism of female offspring through
epigenetic modifications to adiponectin and leptin genes even for
multiple continuous generations (58). Exposure to normal diet
in utero in the subsequent generations after HF diet exposure for
three generations did not completely reverse the changes (59).
However, maternal short-term transition from a HF diet to a
normal diet before and during pregnancy and lactation without
weight loss is not beneficial and even aggravated offspring
obesity (60).

These observed methylation modifications affected by a
maternal HF diet may result from several mechanisms during
early life. In the perinatal period, de novo methyltransferases,
such as Dnm3a and Dnm3b, block de novo methylation, which
is important in normal development and disease (61). However,
during the postweaning period, DNAmethyltransferase DNMT1
carried out de novo and non-CG methylation (62). A HF diet in
utero may affect these methyltransferases. Folate- and methyl-
deficient diets in utero affect methyltransferase expression,
including DNMT1 and DNMT3 (63–66). The HF diet affected
the expression of DNMTs and their binding to the leptin
promoter (67).

The molecular pathway analysis based on the KEGG database
revealed that the differentially methylated Mapk gene was
enriched. In our research, theMap2k4 gene was hypomethylated
in pups exposed to a maternal HF diet. Map2k4 gene expression
increased in the HF-CON, CON-HF, and HF-HF groups
compared with expression in the CON-CON group. MAPKs
consist of p38 MAPK, JNK, and ERK (68, 69). Activated MAPKs
can inhibit expression of multiple targets, including insulin

FIGURE 7 | Epigenetic mechanism of high-fat diet in utero and adult on offspring. In utero expose to high-fat diet modify Irs2 and Map2k4 gene methylation and gene

expression in offspring, led glucose intolerance, and insulin resistance.
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receptor substrate (IRS) proteins (70, 71) and resulting in the
inhibition of insulin activity (72, 73).

Our results demonstrated that the Irs2 methylation level
increased in offspring exposed to a HF diet in utero. Moreover,
Irs2 gene expression was reduced in the livers of mice exposed
to a HF diet as adults and in utero. IRS proteins are key
components in the insulin signaling pathway (74, 75). Once
stimulated by insulin, IRS is phosphorylated and then triggers
intracellular signaling through the recruitment of proteins with
the Src homology-2 domain, including PI3K, Grb-2, Nck, fyn,
and Shp-2, among others (74, 76–78). Murine experiments
reveal that targeted depletion of IRS-1 or IRS-2 leads to insulin
resistance (79–82). Clinical and animal experiments prove that
T2D patients and insulin-resistant rodents have defects in the
phosphorylation of IRS proteins in vivo and in vitro (83, 84).
This evidence proves that IRS defects are the molecular basis
for insulin resistance. Hence, our results demonstrated that the
maternal HF diet activated hepatic Irs2methylation and reduced
Irs2 gene expression. These findings suggest that the potent
insulin resistance induced by a maternal HF diet may occur via
activation of the key insulin signaling pathway molecule IRS,
methylation, and reduced Irs2 expression.

CONCLUSIONS

In summary, we characterize the epigenetic alteration profile
in the livers of postweaning control diet-fed offspring exposed
to a maternal HF diet throughout gestation and lactation. In
particular, decreases in Map2k4 DNA methylation and increases
in Irs2 DNA methylation may play a central role in the livers of
pups exposed to a maternal HF diet (Figure 7). More evidence
needs to focus on the association of the epigenetic genome-
wide status of the liver with the diabetes status in offspring.
Furthermore, detailed studies exploring the function of candidate
genes in the regulation of the liver are needed and could
contribute to the prevention of the morbidity of metabolic-
related diseases resulting from maternal HF diets.
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