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The G Protein-Coupled Estrogen Receptor (GPER) is a novel membrane-bound receptor

that mediates non-genomic actions of the primary female sex hormone 17β-estradiol.

Studies over the past two decades have elucidated the beneficial actions of this receptor

in a number of cardiometabolic diseases. This review will focus specifically on the cardiac

actions of GPER, since this receptor is expressed in cardiomyocytes as well as other

cells within the heart and most likely contributes to estrogen-induced cardioprotection.

Studies outlining the impact of GPER on diastolic function, mitochondrial function, left

ventricular stiffness, calcium dynamics, cardiac inflammation, and aortic distensibility

are discussed. In addition, recent data using genetic mouse models with global or

cardiomyocyte-specific GPER gene deletion are highlighted. Since estrogen loss due

to menopause in combination with chronological aging contributes to unique aspects

of cardiac dysfunction in women, this receptor may provide novel therapeutic effects.

While clinical studies are still required to fully understand the potential for pharmacological

targeting of this receptor in postmenopausal women, this review will summarize the

evidence gathered thus far on its likely beneficial effects.

Keywords: diastolic dysfunction, estrogen, heart failure with preserved ejection fraction, calcium homeostasis,

chymase, inflammation, oxidative stress, LV remodeling

INTRODUCTION

Among measures of cardiac function, diastolic performance is one of the most
comprehensive—integrating myocardial relaxation, mitochondrial bioenergetics,
cardiomyocyte/myocardial structure, and left ventricular (LV) ejection with respect to proximal
aortic distensibility—and is a potential barometer of cardiac health (1). LV diastolic function
is impaired by all of the common pathological processes that affect LV function or produce LV
hypertrophy or fibrosis, including hypertension, diabetes mellitus, obesity, sleep apnea, ischemia,
aortic stenosis, and can occur before development of symptoms or changes in electrocardiogram
and wall motion (2). The heart is designed to be a supple, elastic muscle that fills with blood
easily at low pressure. Diastolic dysfunction with elevated filling pressures is a central feature of
heart failure with preserved ejection fraction (HFpEF) (3) and disproportionally affects women
with a sex ratio of about 2:1 (4–6). HFpEF is the most common form of heart failure (3, 7) and is
outpacing other forms of heart failure as a result of the expanding elderly population (7–9).
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Despite a marked female sex-specific predilection in HFpEF,
relatively little is known regarding the mechanisms by which
sex hormones, particularly the estrogens, and estrogen receptors
(ERs) impact diastolic function. Over the last decade, we
and others have explored the roles of the newest estrogen
receptor, G protein-coupled estrogen receptor (GPER; previously
known as GPR30), in the maintenance of cardiac function
and structure after estrogen loss. In this review, the effects
of pharmacologic activation of GPER by its specific agonist
G1 on mitigating the adverse consequences of estrogen loss
on relaxation, mitochondrial function, LV stiffness, and aortic
distensibility will be presented. The influence of global and
cardiomyocyte-specific GPER gene deletion on function and
structure at the cardiomyocyte, whole heart, and conduit vessel
levels will also be discussed.

WHAT IS DIASTOLIC DYSFUNCTION?

Diastolic dysfunction denotes a condition whereby the LV cannot
fill adequately despite normal filling pressure. Slowing, delayed,
and incomplete myocardial relaxation results from alterations
in intracellular calcium handling, impairments in energy
metabolism, and increases in LV stiffness due to hypertrophic
and/or interstitial remodeling. Elevations in LV filling pressure
initially compensate, but eventually pulmonary congestion
develops as a result of increased left atrial (LA) pressure (10).
While a wide range of diastolic function parameters can be
obtained by Doppler-echocardiography (11), a simple composite
of blood flow and tissue Doppler measures, as reviewed by
ourselves and others (12–14) can sensitively detect and predict
diastolic dysfunction in humans (15–17), non-human primates
(18, 19), and preclinical rodent research models (20–25). The
spectrum of diastolic dysfunction is portrayed schematically
in Figure 1. Essentially, as described in detail by Nagueh and
colleagues in the American Society of Echocardiography and
European Association of Cardiovascular Imaging Guideline (11),
the healthy adult LV fills primarily during the early filling phase
of diastole, defined by transmitral Doppler E wave velocity,
followed by a small contribution from atrial systole, defined

Abbreviations: ACE, angiotensin-converting enzyme; ANF, atrial natriuretic

factor; Ang I, angiotensin I; Ang II, angiotensin II; Ang-(1-12), angiotensin-(1-
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induced calcium release; E2, estradiol; EKG, electrocardiogram; eNOS, endothelial

nitric oxide synthase; ER, Estrogen receptor; ERα, Estrogen receptor subtype α;

ERβ, Estrogen receptor subtype β; ET-1, endothelin-1; FBS, fetal bovine serum;

GPER, G-protein-coupled estrogen receptor; GPR30, G-protein-coupled receptor;

HFpEF, heart failure with preserved ejection fraction; HTN, hypertension;

ICa,L., L-type calcium channels Cav1.2; i.p., intraperitoneal; IL, interleukin; ISO,

isoproterenol; KO, knockout; LA, left atrium; LAP, left atrial pressure; LV, left

ventricular; MCT, monocrotaline; MnSOD, manganese superoxide dismutase;

mtDNA, mitochondrial DNA; NCX, sodium/calcium exchanger; NOX4, NADPH

oxidases; OVX, ovariectomy; PAH, pulmonary arterial hypertension; PKA, protein

kinase A; PLB, phospholamban; PMCA, plasma membrane calcium ATPase;

pPLB, phosphorylated phospholamban; RAS, renin angiotensin system; ROS,

reactive oxygen species; RV, right ventricular; RVT, right ventricular free wall

thickness; RyR, ryanodine receptor; s.c., subcutaneous; SD, Sprague Dawley; SLN,

sarcolipin; SR, sarcoplasmic reticulum; SERCA2a, sarco/endoplasmic reticulum

Ca2+ATPase 2a.

by the late or transmitral A wave. Normally, E is equal to
or greater than A. In addition, the longitudinal and radial
myocardial fibers adjacent to the mitral annulus elongate and
“twist” during early filling, creating a “suction-like” effect that
helps propel blood into the LV. This motion of the mitral
annulus during diastole is measured using tissue Doppler, and
is termed e′. With increasing age (>50 years), in the initial
stages of hypertension, and even in asymptomatic ischemia, early
filling is slowed, delayed, or impaired and atrial contraction
increases to partly compensate and augment ventricular volume.
In this scenario, E wave velocity is less than the A wave
velocity (e.g., E < A). In addition to the changes in filling
dynamics, myocardial relaxation, assessed as e′, is reduced. With
progressive worsening of diastolic dysfunction, LA size and
pressure increase. Because the LA functions as a reservoir to
help maintain an appropriate atrioventricular pressure gradient
during diastole, this increase in LA pressure that occurs with
progressive deterioration of diastolic function helps “load” blood
into the non-compliant LV. In so doing, the transmitral flow
velocity profile may appear normal (e.g., E > A); however,
given that the mitral annular motion, or e′, remains reduced,
the mitral inflow velocity profile represents a “pseudonormal”
pattern, indicative of increased severity of diastolic dysfunction.
Normally, the LV produces suction in order to fill while
in the presence of advanced diastolic dysfunction, the left
atrium produces loading in order to compensate and achieve
adequate filling.

WHAT EVIDENCE SUPPORTS A ROLE FOR
ESTROGEN IN THE MAINTENANCE OF
DIASTOLIC FUNCTION?

The increased prevalence of HFpEF in older women compared
with men of the same age appears related to the loss
ovarian hormones, and primarily estrogens, that occur during
menopause (7, 26). Epidemiologic evidence further suggests
that premature or early natural menopause (27–29) and a
shorter total reproductive duration positively associate with
incident heart failure (30). Hall et al. (30) showed that the
incidence of HFpEF was higher in postmenopausal women
who were nulliparous, further suggesting a role of endogenous
estrogens in the pathogenesis of the disease process. Importantly,
diastolic dysfunction, the harbinger of HFpEF, was recently
described as part of the “postmenopausal syndrome” (31).
When compared with premenopausal women, postmenopausal
women exhibit a higher prevalence of LV filling abnormalities.
Moreover, when older women are compared with their age-
matched male counterparts, the likelihood of manifesting
more prominent diastolic dysfunction is increased (32–34).
Findings from small clinical (35–39) and animal studies,
as reviewed by us (40) and others (31, 41), document
estrogen therapy efficacy in improving diastolic function and/or
limiting increases in LV mass and interstitial remodeling after
surgically induced or natural menopause. These data affirm
estrogen’s role in the preservation of diastolic function in the
female heart.
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FIGURE 1 | Echocardiographic hallmarks in the spectrum of diastolic dysfunction. (A) Schematic long-axis, sagittal view of the left atrium and left ventricle showing

transmitral Doppler filling (black arrow) and septal and lateral mitral annular motion (small green arrow within LV wall) during early diastole. (B) Graphic representation of

early and late transmitral Doppler-derived wave patterns in relation to the electrocardiogram (EKG). (C) Graphic representation of early and late tissue Doppler-derived

mitral annular wave patterns. (Left) Normal diastolic function. The majority (80%) of left ventricular (LV) filling occurs during the early phase of diastole, as depicted by a

relatively long black arrow extending from the mitral leaflets into the LV apex. The longer the arrow, the higher the relative velocity of early filling, or E wave, compared

with late filling (A wave). Normally, E velocity is equal to or greater than A velocity. (Middle) Impaired relaxation or stage I diastolic dysfunction. With aging, mild

hypertension or pressure overload, and/or ischemia, early filling (E wave) is impaired or reduced as depicted by a shorter extension of the black arrow into the LV apex.

Also, late filling (A wave) is increased, due to a more vigorous atrial contraction to partly compensate and augment ventricular volume. The ratio of early-to-late-filling

velocity is <1, or E < A, in this stage of diastolic dysfunction. Also, septal and lateral mitral annular velocities (e′) are reduced when compared with “normal” (green

arrow). (Right) Pseudonormal pattern or Stage II diastolic dysfunction. With progressive worsening of diastolic dysfunction, LA size, and pressure increase. Because

the LA functions as a reservoir to help maintain an appropriate atrioventricular pressure gradient during diastole, this increase in LA pressure (LAP) helps load blood

into the non-compliant LV. With progressive worsening of diastolic dysfunction, LA size, and pressure increase. While the transmitral flow velocity profile appears

normal, the mitral annular motion, or e′, remains reduced. In this situation, the mitral inflow profile is termed “pseudonormal”.

ESTROGEN RECEPTORS IN THE HEART

Estrogen mediates its actions on the heart through three
identified ERs. Estrogen receptor subtypes α (ERα) and β (ERβ)
are classical nuclear hormone receptors, which bind estrogen
and translocate to the nucleus to regulate target gene expression.
However, molecular signaling is also induced by estrogen outside
of the nucleus. While some intracellular signaling may be

initiated by truncated forms of the steroid ERs (42), a membrane-
bound ER distinct from ERα and ERβ was identified as the
orphan receptor GPR30 before being renamed GPER (43, 44).
GPER binds estradiol (E2) at a similar nanomolar affinity as ERα

and ERβ and exerts comparable actions on calcium mobilization
and phosphoinositide 3-kinase activation (45). ERα and GPER
are expressed at similar levels in cardiac tissue from male and
female rodents (46) as well as from humans (47). In contrast,

reports of ERβ expression in the heart are conflicting, with ERβ

mRNA detected in human cardiac tissue (48) but remaining
below detectable levels in rodent cardiac tissue (46, 49). Based
on observed improvement in cardiac function in response to E2
treatment in postmenopausal women (50) and in ovariectomized
(OVX) rats (21), researchers have attempted to identify the
primary receptor mediating estrogen’s cardioprotective effects.
Despite the inability to detect ERβmRNA in some rodentmodels,
administration of a novel ERβ agonist (βLGND2) attenuates
angiotensin II-induced cardiac fibrosis (51) and genetic deletion
of ERβ removes female sex-based cardioprotection in a model
of pressure overload (52). These studies indicate that ERβ may
be upregulated in the heart during disease or impact cardiac
function through infiltrating cells rather than in cardiomyocytes.
While studies using selective ERα and ERβ agonists indicate that
both receptors induce cardioprotection (53), direct comparisons
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of genetic ERα and ERβ knockout (KO)mice indicate a dominant
role for ERβ (54). However, assessing the double ER KO
mouse in addition to each receptor KO individually showed no
differences in infarct size, suggesting physiological redundancy
or compensation (55).

GPER is expressed on the plasma and intracellularmembranes
of cardiac cells, including cardiomyocytes, cardiac fibroblasts,
mast cells, and endothelial cells (56–59). To clarify the roles of
GPER in the heart, pharmacologic approaches using the selective
agonist G1 and antagonists G15 or G36 are commonly used.
In Table 1, we summarize the ability of relevant hormones,
natural estrogens, and drug molecules to bind to and activate
signaling through GPER and ERα/β. G1 is the most commonly
used tool for studying GPER. This non-steroidal, high-affinity
(Kd = 11 nM) and highly selective GPER agonist was developed
from a library of 10,000 molecules and does not activate the
classical estrogen receptors at concentrations up to 10µM (63).
G15 and G36 are antagonists of GPER with low affinity binding
to the classical estrogen receptors (64). While the exact signaling
actions and transduction pathways of cardiac GPER are not
completely understood, they are likely dependent on the cell
type, site of action and the relative levels in comparison with
the other estrogen receptors (46). The selective GPER agonist
G1 modulates fast transduction pathways in the heart that are
involved in (1) controlling intracellular calcium via actions on
cardiac channels and pumps, (2) regulating phosphoinositide 3-
kinase (PI3Ks) and extracellular signal-related kinases (ERKs),
and (3) modulating cyclic adenosine monophosphate (cAMP)
(see sections Effects of Estrogen and GPER Activation on ICa,L
and Estrogen, GPER, and SERCA2a and Its Regulatory Proteins
below). The rapid signaling events following GPER activation
also lead to inhibition of the expression of cell cycle genes, such as
cyclin B1 and CDK1, which are involved in cardiac fibroblast and
mast cell proliferation and contribute to interstitial remodeling
(see sections GPER Inhibits Interstitial Remodeling and GPER
and Cardiac Chymase/Ang II below). Moreover, GPER activation
by G1 reduces remodeling promoted by hypertrophic regulators,
including angiotensin II and endothelin-1, via inhibition of 1/2
ERK signaling and upregulation of PI3K/Akt/mTOR pathways
(see section GPER and Anti-hypertrophic Remodeling below).

Since only a limited number of studies have explored the
actions of GPER in diastolic function, future studies are needed
to deepen our understanding of its effects in the various cardiac
cell populations. Elucidation of these cell-type specific signaling
mechanisms will help to clarify the therapeutic potential of
cardiac GPER activation in preventing and/or halting the
progression of cardiac diseases that involve diastolic dysfunction.
Herein, where data exists, we include the signaling pathways
of an activated GPER that are linked to the physiologic
underpinnings of diastolic function preservation in the context
of estrogen deprivation (Figure 2). Initial work showed that
administration of the GPER agonist G1 prevents diastolic
dysfunction and LV remodeling in OVX (25) and salt-loaded (65)
mRen2.Lewis rats. To tease out more precise information about
the functional role of GPER in the heart, we generated a novel
conditional mouse model where GPER was specifically deleted
in cardiomyocytes (23). Therefore, the remainder of the review

FIGURE 2 | GPER in the functional circle of diastology of the female heart.

Diastolic function is an appropriate barometer of overall heart health as it

reflects cellular and subcellular events responsible for maintaining myocardial

relaxation, cardiomyocyte calcium homeostasis, mitochondrial bioenergetics,

antioxidant defense, left ventricular (LV) and myocyte structure, and proximal

aortic distensibility. Loss of ovarian estrogens due to aging/menopause or

surgery lead to impairments in myocardial/cardiomyocyte relaxation, increased

mitochondrial reactive oxygen species and impaired oxidant defenses and

bioenergetics, hypertrophic and/or interstitial remodeling, and aortic stiffening.

Preclinical studies show that activation of the non-canonical estrogen receptor,

GPER, by its agonist G1 or estradiol (E2 ) favorably regulates and likely

integrates components of relaxation, mitochondrial function, LV structure, LV

ejection, and aortic compliance, to preserve diastolic function in the female

heart.

will examine the evidence that links GPER to the preservation
of myocardial relaxation and LV structure in the female heart
after estrogen loss during hypertension, heart failure, and
normal aging.

GPER AND
MYOCARDIAL/CARDIOMYOCYTE
RELAXATION

Overview of Cardiac Ca2+ Machinery
Involved in Contraction and Relaxation
Maintaining cardiomyocyte calcium concentration [Ca2+]i
within a tightly controlled range is critical for normal systolic
and diastolic function. In adult cardiomyocytes, the L-type Ca2+

channel is the main pathway for Ca2+ influx. The Na/Ca2+

exchanger is quantitatively the most important pathway for Ca2+

efflux out of the cardiomyocyte. The sarcoplasmic/endoplasmic
reticulum Ca2+ ATPase (SERCA) pumps and the sarcoplasmic
reticulum (SR) Ca2+ release channels (ryanodine receptors)
are pivotal in determining [Ca2+]i and subsequent contraction
and relaxation.
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TABLE 1 | Ligands of GPER and ERs (60).

DPN PPT 17β-Estradiol Genistein

BPA

Nonylphenol

DDT

Tamoxifen

Raloxifene

ICI182,780 G-1 G15 G36 Quercetin (61, 62)

ERα/β ++ ++ ++ ++ + – n.d n.d. +

GPER n.d. +? ++ ++ ++ ++ ++ −− ++

DPN, diaryl propionitrile; PPT, propylpyrazoletriol; BPA, bisphenol A; DDT, dichlorodiphenyltrichloroethane. Plus (+) symbol denotes weak agonist; Double plus (++) symbol denotes

strong agonist; Minus (–) symbol denotes weak antagonist; Double minus (– –) symbol denotes strong antagonist; n.d., no reported data. Question mark (?) denotes interpret with care

until confirmed by additional approaches.

At the initiation of myocardial contraction, depolarization
of the cardiomyocyte leads to activation of the inward
Ca2+ current conducted via L-type Ca2+ channels Cav1.2
(ICa,L). This is the main trigger for Ca2+ release from the
sarcoplasmic reticulum, termed Ca2+-induced Ca2+ release
(CICR). CICR involves ryanodine receptors (RyR), of which
RyR2 is the predominant myocardial isoform. ICa,L and
CICR together increase the concentration of intracellular
Ca2+ that binds to troponin C on myofilaments to initiate
myocardial contraction.

Myocardial relaxation begins when ATP hydrolyzes and actin-
myosin cross-bridges unlink. Removal of cytoplasmic Ca2+ and
subsequent dissociation of Ca2+ from troponin is required
for myocardial relaxation. This involves multiple components,
including Ca2+ reuptake into the sarcoplasmic reticulum via
SERCA2a (responsible for 70% cytoplasmic Ca2+ removal
in humans) and activation of the sarcolemmal Na+/Ca2+

exchanger (NCX, 28%) and, to a lesser extent, plasma membrane
Ca2+-ATPase (PMCA, 2%) (66). ICa,L also contributes to the
filling status of the SR and myocardial relaxation. Other
important processes allowing myocardial relaxation and diastolic
ventricular filling include deactivation of the thin myofilaments,
modulated by troponin and tropomyosin, and cross-bridge
cycling, as recently reviewed (67).

We will briefly discuss the effects of estrogen on components
of myocardial Ca2+ signaling, with a focus on mechanisms that
regulate myocardial relaxation and the known role of GPER. A
summary of the proteins/messengers examined in this context is
provided in Table 2.

Effects of Estrogen and GPER Activation
on ICa,L
While being a key contributor to systolic Ca2+ increase, ICa,L is
also a main source for refilling SR Ca2+ in smooth muscle (78),
and directly regulates diastolic Ca2+ level in ventricular myocytes
(79). Thus, it significantly affects myocardial relaxation. Overall,
there is abundant evidence that estrogen inhibits ICa,L via Cav1.2
in cardiomyocytes.

The involvement of GPER in controlling myocardial
contraction by mediating the inhibitory effects of E2 on ICa,L
can now be deduced from observations made even before GPER
was recognized as an ER. The negative inotropic effect of E2 was
reported in the early 1990s. Indeed, E2 causes a decrease in cell
shortening associated with reduced action potential duration;

in patch-clamp and fluorescent measurements, E2 decreases the
peak inward Ca2+ current and delays recovery of ICa,L from
inactivation (70). The phytoestrogen resveratrol was later shown
to inhibit the amplitude of electrically stimulated Ca2+ transients
and cell shortening in ventricular cardiomyocytes (73). In line
with earlier observations (70, 73), E2 (0.1–1 nM) reduces heart
rate and pressure and cAMP production in the isolated perfused
heart treated with isoproterenol; these effects are not inhibited
by tamoxifen, an ERα/ERβ antagonist, and at the time were
attributed to activation of an unknown membrane receptor (75).
We now know that 4-OHT, a metabolite of tamoxifen, is a GPER
agonist (45, 80). Later studies confirmed the inhibitory effect
of E2 on ICa,L and further showed that genetic deletion of ERα

or ERβ does not affect this inhibition (71). In the same studies,

raloxifene, an antagonist of ERα/ERβ and agonist of GPER

with a functional effective dose of 100 nM (44, 80), decreased

ICa,L in cardiomyocytes from wild-type, ERα KO, and ERβ

KO animals. Howlett’s group also observed that electrically
stimulated Ca2+ transients are larger in ventricular myocytes
from OVX mice compared with sham female mice (74). We
now know that a likely explanation for these observations was
that they were mediated by GPER. Initial evidence supporting a
role of GPER came from Tran’s group, and indicated that GPER
activation using G1 (0.001–1µM) suppresses the isoproterenol-
stimulated increases in LV contraction, Ca2+ signals, and ICa,L in
intact hearts and in ventricular cardiomyocytes freshly isolated
from male mice; these effects are associated with inhibition
of protein kinase A (PKA)-dependent phosphorylation of
Cav1.2 (69). Taken together, the reported effects of E2 and
GPER activation on cardiomyocyte ICa,L and Ca2+ transients
have been consistently inhibitory and suggest that E2 and
GPER prevent excessive cardiac contraction in response to
acute stimuli.

In stressed cardiomyocytes, the picture appears to be different.
The cardiac [Ca2+]i regulatory systems are influenced by
the activity of the sympathetic nervous system (SNS) via
beta-adrenergic receptor (β-AR)-mediated, cAMP-dependent
mechanisms. Estrogen alters gene expression of β-ARs and
calcium-handling proteins (81). Preliminary data from Cheng’s
lab demonstrated that chronic in vivo G1 treatment restores
normal myocyte basal and β-adrenergic receptor (β-AR)-
mediated contraction, relaxation, and Ca2+ signals, leading
to regression of LV dysfunction in a male mouse model
of isoproterenol-induced HFpEF (68). These observations are
consistent with reduced receptor sensitivity that is typically seen
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TABLE 2 | Effect of E2 and GPER on proteins/messengers involved in Ca2+-dependent cardiac function.

Ca2+ signaling protein

involved

Assay Model/

Intervention/

Treatment

Tissue/cells examined Effects of intervention

L-type Ca2+ channels (Cav1.2) Agonist-induced Ca2+ signal G1 (68)

G1 (69)

G36 (69)

ISO-induced HFpEF myocytes

(68)

Male LV myocytes (69)

Male LV myocytes (69)

Restored ISO-induced Ca2+

transient amplitude (68)

↓ ISO-induced Ca2+ signals (69)

↑ ISO-induced Ca2+ signals (69)

Electrically stimulated Ca2+

transient

E2 (70–72)

RVT (73)

E2, raloxifene (71)

E2/OVX (72)

OVX (74)

Ventricular myocytes (70, 71, 73)

ERα−/−, ERβ−/− myocytes (71)

LV apical myocytes (72)

Ventricular myocytes (74)

↓ amplitude (70, 71, 73), delay

recovery from inactivation (70)

↓ cell shortening (71)

↓ amplitude (71)

↑ amplitude (72)

↓ amplitude (74)

ISO-induced cAMP

Basal cAMP

E2 (75)

OVX (72)

OVX/E2 or G1 (72)

Perfused heart (75)

LV apex (72)

LV apex (72)

↓ cAMP (75)

↓ cAMP (72)

Restored to sham level (72)

Cav1.2 mRNA

immunoblotting

OVX (72)

E2/OVX (72)

LV apical myocytes (72)

LV apical myocytes (72)

↓ mRNA (72) Restored to sham

level (72)

RyR2 Immunoblotting G1/ OVX-HTN (25) LV tissue (25) No change (25)

Caffeine-induced SR Ca2+

release

OVX (74) Ventricular myocytes (74) ↑ SR Ca2+ release (74)

45Ca2+ flux OVX (76)

E2/OVX (76)

PKA (-)/ OVX (76)

LV myocytes (76)

LV myocytes (76)

LV myocytes (76)

↑45Ca2+ flux (76)

Restored to sham level (76)

Restored to sham level (76)

SR Ca2+-ATPase (SERCA) Agonist-induced SR Ca2+

accumulation

G1 (24) Saponin-skinned myocytes (24) ↑ Ca2+ accumulation (24)

SR Ca2+ uptake OVX (77)

E2/OVX (77)

Progesterone/OVX (77)

LV tissue (77)

LV tissue (77)

LV tissue (77)

↓ uptake (77)

Restored uptake (77)

Restored uptake (77)

Immunoblotting OVX (76)

E2/OVX (76)

G1/OVX old-aged (24)

LV myocytes (76)

LV myocytes (76)

LV tissue (24)

No change (76)

No change (76)

↑ expression (24)

Phospholamban (PLB) PLB mRNA

PLB immunoblot

G1/OVX-HTN (25)

OVX/MCT-PAH (20)

OVX/G1/MCT-PAH (20)

LV tissue (25)

RV tissue (20)

RV tissue (20)

No change (25)

↓pPLB/PLB expression (20)

Restored normal expression (20)

Ser16 PLB phosphorylation OVX (77) LV tissue (77) No change

Thr17 PLB phosphorylation OVX (77)

E2/OVX (77)

Progesterone/OVX (77)

LV tissue (77)

LV tissue (77)

LV tissue (77)

↓ Thr17 phosphorylation (77)

Restored Thr17 phosphorylation (77)

Restored Thr17 phosphorylation (77)

Na+/Ca2+ exchanger (NCX) Na+-dependent Ca2+ uptake OVX (76)

E2/OVX (76)

PKA(–)/OVX (76)

LV myocytes (76)

LV myocytes (76)

LV myocytes (76)

↑ Na+-dependent Ca2+ uptake (76)

Restored to sham level (76)

Restored to sham level (76)

E2, estrogen; ER, estrogen receptor; HTN, hypertension; HFpEF, heart failure with preserved ejection fraction; ISO, isoproterenol; LV, left ventricular; MCT-PAH, monocrotaline-induced

pulmonary arterial hypertension; OVX, ovariectomized; pPLB, phosphorylated phospholamban; PKA, protein kinase A; RV, right ventricular; RVT, right ventricular free wall thickness;

RyR, ryanodine receptor; SR, sarcoplasmic reticulum.

in heart failure. The ability of G1 to restore these parameters
suggest that chronic GPER activation re-sensitizes cardiac β-
AR regulation in this HFpEF model (68). These data also
mirror those reported in a study of the apical myocardium,
in which expression of the Cav1.2α subunit and ICa,L were
lower in apical myocytes from male or OVX mice compared
with sham female mice, and E2 treatment of myocytes from
OVX animals corrected these differences (72). The reduction
in the amplitude of electrically stimulated Ca2+ transients in
myocytes isolated from OVX female mice were restored by

G1, to an extent similar to that achieved with E2 treatment.
Moreover, blockade of GPER with G15 reversed the benefit
of E2 while other ER antagonists had no effect. This data
suggests that the protective effects of E2 on ICa,L are mediated
in part through GPER in this model. Adrenergic stress-induced
declines in contraction amplitude and calcium transients in
OVX myocytes were also eliminated via E2/GPER as were
decreases in cAMP concentration. Overall, existing data suggest
that E2 and GPER activation reduce electrically stimulated or
agonist-induced Ca2+ signals and contraction in the normal
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myocardium yet prevent the inhibition of these functions in
stressed myocardium.

Estrogen, GPER, and SERCA2a and Its
Regulatory Proteins
SERCA2a is the main mechanism by which SR Ca2+ is
refilled during diastole; it also is responsible for removing
70% of cytoplasmic Ca2+ in human cardiomyocytes (66).
Several factors control SERCA2a activity. Phospholamban (PLB)
is a trans-SR membrane protein that directly interacts with
SERCA2a and reduces its activity by lowering its Ca2+

affinity (82). PLB phosphorylation at Ser16 and Thr17 in its
cytoplasmic domain disinhibits SERCA2a. Phosphorylation of
PLB at Ser16 is mediated by protein kinase A, while Thr17
is phosphorylated by Ca2+/CaM-dependent protein kinase
II (CaMKII) (83, 84). By stimulating PLB phosphorylation,
β-AR activation promotes SERCA activity, which increases
the rate of Ca2+ sequestration in diastole and facilitates
myocardial relaxation (83, 85). Sarcolipin (SLN) is another
trans-SR membrane protein that regulates SERCA activity;
genetic knockout of SLN enhances SR Ca2+ uptake and cardiac
contractility (86). Similar to PLB, SLN reduces the Ca2+ affinity
of SERCA2a, though the underlyingmechanisms are still a source
of debate.

GPER improves LV lusitropy in models of hypertension
and aging (24, 25, 65). GPER may increase intracellular
Ca2+ homeostasis and improve diastolic function by increasing
either the expression and/or activity of SR Ca2+ regulatory
proteins. Past reports showed that estrogen increases the
expression of SERCA2a, while its expression is decreased in
OVX animal models. We found no evidence for changes
in SERCA2, PLB, calmodulin, or RYR2 gene or protein
expression in cardiac tissues with chronic G1 treatment
(50 µg/kg/day) of OVX mRen2.Lewis rats with systemic
hypertension, despite improvements in myocardial relaxation
(25). However, chronic activation of GPER with G1 (400
µg/kg/day) attenuates the adverse effects of monocrotaline
(MCT)-induced pulmonary arterial hypertension (PAH) on
SERCA2a and the ratio of phosphorylated PLB to total PLB
in an OVX model (20). G1-mediated improvements in Ca2+

regulatory proteins are accompanied by a reversal in PAH-
induced LV diastolic dysfunction, pulmonary artery flow, and
right ventricular (RV) dysfunction when compared with vehicle-
treated counterparts (20). In a normotensive aging model (26-
month-old OVX-Brown Norway Fischer 344 rats), 8 weeks of
G1 treatment reverses the adverse effects of age and E2 loss on
myocardial relaxation, in part via increases in SERCA2 protein
expression (24). In addition to changes in SERCA and PLB
expression/phosphorylation profiles, the improvement in cardiac
function with G1 treatment in these models could also be due in
part to improvements in endothelial nitric oxide synthase (eNOS)
activity and vascular tone. The effects of G1 on the vascular
endothelium likely involve stimulation of Ca2+/calmodulin
signaling network activities (87), including GPER activation per
se (87, 88), upregulation of the Ca2+-dependent interaction
between eNOS and calmodulin (87), improvement in the eNOS

phosphorylation profile (87, 89), and optimization of vascular
Ca2+ signaling via combined effects on influx (90) and efflux
pathways (91).

To determine whether specific changes in SR Ca2+ uptake by
GPER activation are associated with improvements inmyocardial
relaxation, we performed ex vivo studies in saponin-skinned
muscle fascicles from 8-month-old female Wistar rats (24). SR
Ca2+ content was evaluated by caffeine-induced tension under
various loading conditions. Compared with vehicle, treatment
with G1 increases SR Ca2+ accumulation in a concentration-
and loading time-dependent manner suggesting that chronic
GPER activation may increase cardiac Ca2+ mobilization not
only by increasing the number of SERCA2 pumps, but by also
augmenting SERCA activity (24). These data are consistent with
a report on an OVX rat model; in that study, 10 weeks after OVX,
SR Ca2+ uptake is reduced, with decreased SERCA activity and
expression level, and Thr17 phosphorylation of PLB is reduced
but Ser16 phosphorylation was unchanged. Interestingly,
supplementation with either E2 or progesterone prevents the
OVX-related reductions in cardiac SERCA expression and
activity and Thr17 PLB phosphorylation (77). However, Yang
et al. (92) reported that cardiomyocytes from OVX guinea
pigs have 22% larger SR Ca2+ stores and higher frequency
of Ca2+ sparks and waves than sham animals; addition of E2
prevents these changes. Similarly, Howlett’s group showed that
the caffeine-induced SR Ca2+ release signal, an indirect indicator
of SR Ca2+ content, is larger in cardiomyocytes from OVX than
from sham C57BL/6 mice (74). While these results appear to
be contradictory, it is important to note that, in addition to
differences in model species, treatment conditions, and dosing,
the loss of progesterone with OVX may also play a significant
role in the observed effects in each study, as suggested by data
from Bupha-Intr and Wattanapermpool (77). Overall, studies
using the specific GPER agonist G1 support a role for GPER in
influencing SR Ca2+ uptake in the heart to improve diastolic
function. Further studies using GPER KO models, especially
cardiac-specific GPER−/− cardiomyocytes, will provide
further insights.

Estrogen and the Na+/Ca2+ Exchanger
The NCX is responsible for removal of ∼28% of cytoplasmic
Ca2+ in human cardiomyocytes and as such is an important
determinant of diastolic function. However, the effects of
estrogen on cardiac NCX are unclear. Estrogen has been reported
to increase, have no effect, or decrease NCX expression. In one
study, NCX expression was increased by E2 and was decreased
in untreated OVX rats (93). In other studies, no change was
observed in the expression of NCX expression by estrogen
treatment or OVX (25, 94). Kravtsov et al. (76) determined
NCX activity in the heart from OVX rats. In their study,
NCX activity, measured as Na+-dependent 45Ca2+ uptake, was
increased by OVX, and E2 replenishment abolished this increase
(76). Mechanistically, the effect of E2 loss and restoration was
associated with changes in PKA-mediated activation of NCX and
not on changes in the expression level of NCX. However, no study
to date has specifically examined if GPER activation mediates the
effects of E2 on NCX activity in cardiac tissue.
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GPER, BIOENERGETICS, AND
MITOCHONDRIAL ROS

Diastolic function is an energy-requiring process in that ATP
is necessary for the sequestration of cytoplasmic Ca2+ back
into the SR during diastole. As the heart possesses the
highest content of mitochondria of any tissue (95), even
slight alterations in mitochondrial cellular energy production
contribute to impairment of myocardial relaxation. Indeed,
an increasing body of literature suggests that abnormalities
in cardiomyocyte mitochondrial function and structure are
important factors in the pathogenesis of HFpEF (96, 97).
Specifically, elevated and pathologic reactive oxygen species
(ROS) production has been implicated in mitochondrial
damage, resulting in a mismatch between ATP production
and energy demand, while also activating signaling pathways
that further contribute to LV remodeling, all of which lead to
diastolic dysfunction.

The role of mitochondrial dysfunction in ROS accumulation
and/or alterations inmitochondrial bioenergetics in the estrogen-
deficient heart is still emerging, as are the mitochondria-related
effects of E2 that are mediated through GPER (98). In a recent
general population study (Flemish Study on Environment,
Genes, and Health Outcomes), individuals with normal and
abnormal diastolic function were found to have different
levels of circulating metabolites indicative of energy substrate
utilization and protection again oxidative stress (99). In another
cohort from that study (100), mitochondrial DNA (mtDNA), a
circulating marker of mitochondrial dysfunction, was positively
associated with female sex, while mtDNA levels were reduced
in women receiving estrogen/progesterone treatment. With
regard to cardiac pathology, one preclinical study using
OVX CTnT-Q92 transgenic mice as a model of human
hypertrophic cardiomyopathy showed that E2 replacement
reduces oxidative damage and improved decrements in
mitochondrial bioenergetics and diastolic function (101).
Potential mechanisms underlying the estrogen-mediated
protection from mitochondrial-derived oxidative injury include
decreasing ROS accumulation by increasing respiratory
chain efficiency; reducing apoptotic leakage of cytochrome
C; upregulating mitochondrial antioxidant enzymes such as
manganese superoxide dismutase (MnSOD), catalase, and
glutathione peroxidase; and decreasing NADPH oxidases
(NOX4) (102–105). Pharmacologic interventions in isolated
cardiomyocytes and in ischemia-reperfusion-challenged hearts
indicate that GPER activation by G1 reduces oxidative stress
by limiting cytochrome C release and inhibiting mitochondrial
pore opening, respectively (106–108). Our data from the novel
cardiomyocyte-specific GPER KO female mouse developed in
the Groban laboratory extend these findings with more direct
evidence of the potential importance of cardiac GPER in the
maintenance of mitochondrial processes that counteract ROS
accumulation in the female heart (23). In brief, treatment of
female GPER KO mice with the mitochondrial antioxidant
MitoQ attenuates the adverse effects of cardiomyocyte GPER
deletion on myocardial relaxation, filling pressures, interstitial
remodeling, and oxidative damage (109). MitoQ also limits
the genomic responses to increased oxidative stress and

decreases oxidant defense related to cardiomyocyte-specific
GPER deficiency (109). Taken together, GPER appears to have a
regulatory role in aspects of mitochondrial function that balance
ROS formation and antioxidant defense, which in turn has the
potential to impact intracellular calcium homeostasis (110),
thereby contributing to the maintenance of diastolic function
after estrogen loss.

As diastolic dysfunction accounts for half of what drives
HFpEF symptoms and adverse clinical events, it is also important
to consider the impact of systemic inflammation, coronary
microcirculatory disturbances, skeletal muscle weakness,
pulmonary disease, and renal dysfunction (111). Indeed,
the most current paradigm of HFpEF goes well beyond
diastolic dysfunction. For instance, systemic inflammation,
oxidative stress, and/or endothelial dysfunction contribute
to capillary rarefraction and mitochondrial dysfunction
in skeletal muscle and myocardium of HFpEF patients
(112–114), impairing oxygen delivery and utilization, and
adversely affecting exercise tolerance (115, 116). While it is
not entirely clear what role estrogen deficiency and/or GPER
deactivation might have on these extracardiac parameters
linked to HFpEF (117), future preclinical studies focusing on
this paradigm may reveal therapeutic strategies that can be
personalized to prevent the development of this disorder in
postmenopausal women.

GPER AND LV STRUCTURE

In addition to the cellular mechanics of myocardial relaxation
and subcellular mitochondrial energy-producing processes
required, the structure of the myocardium at both cardiac
muscle cell and LV chamber levels determines LV ventricular
distensibility and stiffness. At the cellular level, isolated
cardiomyocytes from preclinical models of diastolic heart
failure exhibit increases in diameter without changes in
length, which correspond to increases in LV wall thickness
with normal or near-normal end diastolic volumes (118),
a pattern indicative of concentric LV remodeling. In vitro
cardiomyocyte functional data from patients with HFpEF
further indicate increased stiffness and decreased distensibility,
with resting tensions two times that of normal cardiomyocytes
(119, 120). Translating this to the tissue level, a relatively stiff,
non-distensible ventricle requires higher pressures to achieve
filling of a given volume. Conventional and tissue Doppler
echocardiographic techniques estimate filling pressure (see
section What is Diastolic Dysfunction? above and Figure 1). The
effects of GPER activation on components of LV remodeling,
and potential mechanisms in the context of the renin angiotensin
system and local inflammatory/immune processes, are presented
in Table 3.

GPER and Anti-hypertrophic Remodeling
Preclinical studies reveal that GPER activation by E2 or
G1 prevents hypertrophic remodeling, independent of its
effects on blood pressure. We have shown that high salt
or estrogen deprivation in hypertensive mRen2.Lewis rats
increases LV mass, wall thickness, and myocyte size and
is attenuated by chronic G1 treatment (25, 65). Moreover,
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TABLE 3 | Anti-remodeling effects of GPER activation in cardiac tissue and cells.

Species or cells Models/Strains G1 treatment Effects of intervention

Rat mRen2.Lewis rats/OVX (25) s.c., 50 µg/kg/day,

for 2 weeks

Limited OVX-induced ↑ LV filling pressure, LV

mass, wall thickness, interstitial collagen

deposition, and cardiac ANF and BNP mRNA levels

mRen2.Lewis rats/high salt diet (65) s.c., 40 nmol/kg/hr, for 2 weeks Improved myocardial relaxation and reduced

cardiac myocyte hypertrophy and wall thickness

F344BN old-aged rats/OVX (24) s.c. 100 µg/kg/day, for 8 weeks Reversed adverse effects of age and estrogen loss

on myocardial relaxation and interstitial collagen

deposition

Wistar rats/OVX + monocrotaline-induced

pulmonary hypertension (20)

s.c., 400 µg/kg/day, for 14 days after the

onset of disease

Limited adverse effects of pulmonary hypertension

on RV interstitial fibrosis, RV free wall thickening,

and LV diastolic function

Wistar rats/myocardial infarction (121) 50 µg/kg per day, gastric gavage, for 4

weeks

Attenuated LV hypertrophy, assessed by

cardiomyocyte size, to an extent similar to E2

Wistar rats/OVX and diabetes mellitus (122) i.p. injection,

50 µg/kg, every 4 days for 4 weeks

Improved cardiac weight, atherogenic and

cardiovascular risk indices; meanwhile GPER

antagonism with G15 exacerbated cardiac weight

and atherogenic indices

SD rats/OVX + ISO-induced heart failure

(123)

s.c.,120 µg/kg·d, for 14 days Decreased cardiac BNP, reduced cardiac fibrosis,

and enhanced contraction

Mouse C57BL/6 mice/OVX & myocardial infarction

(124)

i.p. injection,

35 µg/kg/d, for 4 weeks

Reduced myocardial fibrosis and infarct area

Ramp3+/+ and Ramp3−/− (125) s.c., 0.1 mg/kg/day, for 40 days Reduced perivascular fibrosis and cardiomyocyte

area in RenTgMK/Ramp3+/+ male mice

Neonatal rat cardiomyocytes ET-1 (100 nmol/l) for 48 h (126) 10 nmol/l for 48 h Abolished hypertrophic actions of ET-1, which was

reversed by G15; siRNA silencing of GPER

inhibited antihypertrophic effect of E2

100 nM of Ang II for 24 h (127) 1,000 nM for 24 h Attenuated Ang II-induced cardiomyocyte

hypertrophy and

downregulated mRNA levels of ANF and BNP

H9c2 cardiomyocytes Ang II (10−7M) for 24 h (25) 10−7 M for 24 h Inhibited Ang II-induced hypertrophy, evidenced by

reductions in cell size, protein content per cell, and

ANF mRNA levels; G15 inhibited protective effects

of G1 or E2

Adult rat cardiac fibroblasts Growth medium with 10% FBS (57) 0.01–10µM for 24 h Inhibited proliferation of rat cardiac fibroblasts

ANF, atrial natriuretic factor; Ang II, angiotensin II; BNP, brain natriuretic peptide; E2, estradiol; ET-1, endothelin-1; FBS, fetal bovine serum; i.p., intraperitoneal; ISO, isoproterenol; LV,

left ventricular; OVX, ovariectomized; RV, right ventricular; s.c., subcutaneous; µg, micrograms; SD, Sprague Dawley.

ventricular hypertrophy assessed by cardiomyocyte size
after infarction by coronary ligation in OVX Wistar rats is
attenuated to a similar extent by G1 and E2 (121). Lee et al.
(121) further showed that GPER and ERα activation converge
to elicit post-ischemic antihypertrophic remodeling via a
PI3K/Akt/eNOS-dependent pathway. In cultured primary
neonatal cardiomyocytes (127) and H9c2 cells (25), GPER
activation by G1 attenuates angiotensin II (Ang II)- and
endothelin-1 (ET-1)-induced hypertrophy, respectively, as
demonstrated by reductions in atrial natriuretic factor (ANF)
and brain natriuretic peptide (BNP) mRNA expression
levels, cell size, and protein content. The protective effects
of GPER involved inhibition of ERK1/2 signaling and an
upregulation of the PI3K/Akt/mTOR pathway (127). The
latter is known to effect autophagy, which is important
in the preservation of cell homeostasis. In another study
using neonatal cardiomyocytes, ET-1–induced hypertrophy
was prevented by E2/GPER via inhibition of ERK1/2
signaling (126).

GPER Inhibits Interstitial Remodeling
Alterations in the extracellular matrix, specifically increases
in collagen, with corresponding increments in the width and
continuity of fibrillar components (128), further contribute to
diastolic dysfunction through increases in chamber stiffness.
Interstitial and perivascular collagen deposition are enhanced
in physiopathologic situations that commonly manifest diastolic
dysfunction such as aging, hypertension, pressure overload
hypertrophy, and estrogen loss. E2 or GPER activation with G1
prevents increases in OVX-related effects on profibrotic gene
expression, fibroblast proliferation, and collagen deposition in
rodent and non-human primate models of normative cardiac
aging, hypertension, and pulmonary hypertension (19–21, 24).
However, it is worth mentioning that increased cardiac collagen
after estrogen loss may not be universal, nor is its effect on
increasing passive chamber stiffness (129). Whether length of
time of estrogen deprivation, animal species and strain, and
the type physiologic stress account for these discrepancies is
not entirely clear. Nonetheless, in vitro studies demonstrate the
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capacity of E2 to regulate the proliferation of cardiac fibroblasts
and their collagen production (130), effects that are deemed
to be partly mediated by GPER. We recently confirmed GPER
expression in cardiac fibroblasts of male Sprague Dawley rats
and further demonstrated the efficacy of G1 on inhibiting cardiac
fibroblast proliferation in a dose-dependent manner (57). These
findings were confirmed in vivo in OVX-mRen2.Lewis females,
in which 2 weeks of G1 treatment limits estrogen deficiency-
induced increases in LV cardiac fibroblast number, proliferation,
and gene expression levels of the cell cycle proteins, CDK1, and
Cyclin B1 (57).

GPER and Cardiac Chymase/Ang II
Activation of the renin angiotensin system (RAS) is one
mechanism for LV hypertrophic and interstitial remodeling that
contributes to LV stiffness and diastolic dysfunction. Indeed,
Ang II is involved in tissue remodeling and the induction of
fibrosis (131). While RAS blockade is a widely used approach
to treat heart failure, including HFpEF (132–134), the clinical
benefits gained from RAS blockers in halting or reversing disease
progression has fallen short of expectations (135–138). These
drugs may have limited ability to suppress Ang II synthesis
at the intracellular spaces where Ang II is formed and exerts
its trophic and profibrotic actions (139, 140). Findings from
the Ferrario lab (140–144) and others (145–148) suggest that
chymase, not angiotensin-converting enzyme (ACE), is the major
Ang II-forming enzyme in both human and rat hearts, and
produces Ang II from the substrate angiotensin I (Ang I) or
angiotensin-(1–12) [Ang-(1–12)].

With respect to estrogen status (intact vs. OVX) and LV
diastolic dysfunction, we demonstrated a positive relationship
between cardiac chymase-forming Ang II and echo-derived
filling pressures in normotensive Wistar Kyoto female rats
(149) and hypertensive mRen.Lewis rats (150). OVX-related
increases in chymase and Ang II expression were further
associated with increases in cardiac fibrosis. Because mast cells
are a major source of chymase (151, 152) and generate Ang
II from Ang I or Ang-(1–12) (153), we also determined the
impact of mast cell inhibition by the mast stabilizer cromolyn
sulfate on OVX-induced diastolic dysfunction (154). In brief,
8 weeks of cromolyn sulfate administered subcutaneously to
OVX-BNF344 rats attenuates the adverse effects of estrogen
loss on diastolic function, interstitial collagen deposition, and
collagen type 1A mRNA levels. Even though cardiac chymase
activity in OVX rats is not overtly reduced by cromolyn (P
< 0.06), cardiac Ang II content is reduced when compared
with OVX vehicle, suggesting a role for mast cell derived-
factors and chymase/Ang II in the progression of cardiac aging
and diastolic dysfunction after estrogen loss (154). Indeed, E2
treatments favorably regulate cardiac mast cell number and
prevent the adverse effects of OVX on cardiac remodeling
and LV function in an Ang II-dependent rodent model of
hypertension and LV diastolic dysfunction (150) and in models
of surgically induced pressure overload (155) and volume
overload (156, 157).

Although the mechanisms by which estrogen regulates
cardiac mast cell number are not entirely clear, it appears

to be mediated in part through GPER. Findings from us
suggest that GPER is expressed in RBL-2H3 mast cells (58)
and that GPER activation by its agonist G1 inhibits serum-
induced proliferation of these cells through interaction with
the cell cycle protein CDK1. GPER blockade by G15, but
not by ERα or ERβ antagonists, completely prevents E2-
induced inhibition of mast cell proliferation (58). This effect
was confirmed in vivo in OVX-mRen2.Lewis rats; 2 weeks of
G1 treatment decreases cardiac mast cell number and chymase
expression/Ang II levels, and limits gene and protein expression
of cell cycle proteins (58). Taken together, these data suggest
that the inhibitory effects of GPER on extracellular matrix
remodeling may in part involve cardiac mast cell chymase/Ang
II modulation.

GPER and Cardiac Inflammation
Another indirect way by which GPER activation could
prevent OVX-induced remodeling and diastolic dysfunction
is through modulation of local inflammatory defense
mechanisms (111, 158).

Using cardiomyocyte-specific GPER KO mice (23), we found
an intriguing relationship between loss of cardiac GPER and
the NLRP3 inflammasome, which includes NLRP3, caspase-1,
interleukin-1β (IL-1β), and IL-18. The NRLP3 inflammasome
is formed and activated by various stimuli, including oxidative
stress, and participates in the pathogenesis of hypertension,
diabetes, atherosclerosis, myocardial infarction, heart failure,
and other cardiovascular diseases (159). Characterization of
innate immunity gene transcripts in hearts from 6-month-
old cardiomyocyte-specific GPER KO mice and their GPER-
intact wild-type littermates revealed that expression of NLRP3
and IL-18 are increased nearly three-fold (22). The importance
of NLRP3 upregulation in GPER KO-induced heart failure
was further confirmed in an in vivo study showing that,
compared with vehicle-treated KO mice, 8 weeks of treatment
with a NLRP3 inhibitor, MCC950 (10 mg/kg, i.p., 3 times
per week), significantly limits hypertrophic remodeling and
improves LV systolic and diastolic function (22). Consistent
with a potential role of GPER in inflammasome deactivation,
gene expression levels of key inflammatory genes, and cytokines
related to inflammasome biology, including IL-18, IL-33,
NLRP3, and caspase-1, were reduced in hearts of OVX-
mRen2.Lewis rats treated with G1 compared with vehicle
(unpublished data).

Whether G1/GPER-mediated anti-inflammatory responses
are related to its effects on mast cells, as discussed previously,
is not known. Mast cells are potent innate immune cells
that accumulate in chronically inflamed tissues. The IL-1
family of cytokines, and particularly IL-33, activate mast cells
and prime them to respond to inflammatory signals (160).
If estrogen loss leads to a low-grade, chronic inflammatory
state (161) in the female heart, the role of mast cells
may evolve and continue to “feed the fire” via ongoing
mediator release, such as chymase, thereby contributing
to LV stiffness through hypertrophic cardiomyocyte and
interstitial remodeling.
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GPER, LV EJECTION, AND PROXIMAL
AORTIC DISTENSIBILITY

LV ejection with respect to proximal aortic distensibility is
another factor that contributes to diastolic function in the female
heart. During systole, the long axis of the left ventricle normally
shortens by pulling the aortic annulus toward the relatively
fixed LV apex (162, 163). Displacement of the aortic annulus
and sinotubular junction without concomitant movement of
the aortic arch during systole promotes longitudinal stretch
of the proximal aorta (162, 164, 165). While the aortic
stretch that occurs during systole imposes a systolic load
on the heart, it actually enhances early diastolic filling by
serving as a reservoir for elastic energy (165). With loss of
aortic distensibility due to advancing age, and presumably
estrogen deficiency (163), or HFpEF (166) the displacement
of the aortic annulus is reduced, as is the longitudinal long
axis force or shortening of the left ventricle, leading to
less stored elastic energy and impaired LV filling (167).
Interestingly, postmenopausal women are more susceptible
to the adverse effects of greater proximal aortic stiffness and
pulsatile load on diastolic function and ventricular-arterial
interaction than men of the same age (168–170). Moreover,
the relationship between aortic impedance and diastolic
dysfunction and ventricular-arterial coupling in women might
be independent of LV remodeling (168), suggesting an additional
contribution of aortic impedance to diastolic dysfunction
in women.

Although the exact role of estrogen/GPER in aortic–
ventricular interactions with respect to diastolic function is not
known, recent preclinical studies suggest that GPER activation
limits aortic stiffening and remodeling. GPER is expressed
in both endothelial and smooth muscle cells of the aorta
(59, 171) and GPER activation induces vasodilation similar
to that seen with E2 (89, 172). In contrast to resistance
arteries, GPER-induced vasorelaxation in the aorta is less
robust (173) and the contribution of endothelial vs. smooth
muscle signaling is more variable (59, 171). Interestingly, aortic
GPER expression is downregulated in diabetes (174) but is
functionally enhanced during pregnancy (171). In contrast to
the extensive work assessing aortic reactivity, less is known
about the impact of GPER on passive structural properties
of conduit arteries. In the mRen2 rat model of hypertension,
pharmacological activation of GPER in salt-loaded females
significantly decreases aortic wall thickness without impacting
blood pressure (175). GPER is also protective during carotid
injury, where adenovirus-induced restoration of GPER protein
expression is associated with a reduction in wall thickness in both
male and female rats (176). While Ang II-induced hypertension
is not impacted by GPER deletion, pulse pressure, and aortic
wall thickness are significantly greater in female cardiomyocyte-
specific GPER KO vs. wild-type mice (177). Therefore,
while the role of GPER in proximal aortic distensibility has
not yet been directly measured, published studies suggest
that it most likely is another important factor impacting
diastolic function.

TRANSLATIONAL PERSPECTIVE

The sex-differential in the prevalence and incidence of human
HFpEF is stark. Among women age >/=65 years, nearly
90% of new cases of heart failure are HFpEF. In the
small number of men who develop HFpEF, the underlying
characteristics differ markedly from that seen in women
with predominantly ischemic heart disease, mildly dilated
LV, and borderline/mild levels of systolic dysfunction. Thus,
classic HFpEF is nearly exclusively a disorder of older, post-
menopausal women. Despite this overwhelming magnitude of
this profound biologic signal, its fundamental basis has not
been systematically examined. Doing so could produce major
insights into the initiation and progression of human HFpEF.
Thus, the emerging data reviewed above has the potential
to promote key advances in the understanding of human
HFpEF and novel approaches to interrupting the pathways
that lead to one of its precursors, diastolic dysfunction. This
is greatly needed given the disappointing results of the recent
PARAGON trial (178), and the other 7 large randomized trials
of HFpEF that failed to achieve their pre-determined primary
endpoint (179).

CONCLUSION

Improvements in preventive medicine and health habits by
positively lengthening the human life-span have brought to
the forefront the impact of the menopause decline in women’s
cardioprotection. Estrogen-mediated cardiac health in women,
using diastolic function as its monitor, is influenced by non-
genomic mechanisms through GPER in the heart, in part by
counteracting age and/or estrogen loss-dependent abnormalities
in myocardial relaxation, cardiomyocyte Ca2+ homeostasis,
mitochondrial function, and anti-hypertrophic/interstitial
processes (Figure 2).
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