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The multiple endocrine functions of bone other than those related to mineral metabolism,

such as regulation of insulin sensitivity, glucose homeostasis, and energy metabolism,

have recently been discovered. In vitro and murine studies investigated the impact of

several molecules derived from osteoblasts and osteocytes on glucose metabolism. In

addition, the effect of glucose on bone cells suggested amutual cross-talk between bone

and glucose homeostasis. In humans, these mechanisms are the pivotal determinant

of the skeletal fragility associated with both type 1 and type 2 diabetes. Metabolic

abnormalities associated with diabetes, such as increase in adipose tissue, reduction

of lean mass, effects of hyperglycemia per se, production of the advanced glycation

end products, diabetes-associated chronic kidney disease, and perturbation of the

calcium-PTH-vitamin D metabolism, are the main mechanisms involved. Finally, there

have been multiple reports of antidiabetic drugs affecting the skeleton, with differences

among basic and clinical research data, as well as of anti-osteoporosis medication

influencing glucose metabolism. This review focuses on the aspects linking glucose and

bone metabolism by offering insight into the most recent evidence in humans.
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INTRODUCTION

Diabetes and osteoporosis are common chronic diseases with serious clinical complications.
Pathophysiology of the two disorders and related complications is multifactorial, and several
mechanisms are now fully recognized. In this context, research studies have actively investigated the
interaction between bone and glucose metabolism. Experimental data have shown the significant
detrimental effect that the perturbation of glucose metabolism has on the skeleton. Clinical
studies confirmed these findings and contributed to the definition of the diabetes-associated bone
disease. Moreover, studies on the endocrine function of the skeleton allowed the identification of
mechanisms through which bone can modulate glucose homeostasis.

The paper reviews the most recent evidence on the mutual cross-talk between bone and glucose
metabolism in humans.

HOW GLUCOSE METABOLISM INFLUENCES BONE

Type 2 diabetes mellitus (T2DM) is characterized by normal-high bone mineral density (BMD)
and increased fracture risk (1, 2). Several bone-derived factors may be altered during perturbation
of the glucose metabolism and are reported in Table 1. The main mechanisms involved in the
pathogenesis of diabetes-associated skeletal disease are summarized in the following paragraphs.

https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://doi.org/10.3389/fendo.2020.00122
http://crossmark.crossref.org/dialog/?doi=10.3389/fendo.2020.00122&domain=pdf&date_stamp=2020-03-24
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:cristiana.cipriani@gmail.com
https://doi.org/10.3389/fendo.2020.00122
https://www.frontiersin.org/articles/10.3389/fendo.2020.00122/full
http://loop.frontiersin.org/people/820445/overview
http://loop.frontiersin.org/people/886771/overview
http://loop.frontiersin.org/people/843858/overview
http://loop.frontiersin.org/people/471173/overview


Cipriani et al. Bone and Glucose Metabolism

TABLE 1 | Osteokines in human diseases where glucose metabolism is alterated.

Osteokines Obesity Type 2 diabetes

mellitus

Osteocalcin ↓ ↓

Osteoprotegerin = ↑

Sclerostin ↑ ↑

or =

Lipocalin 2 = ↓

Periostin ↑ ↑

BMP 9 ↓

(in mice)

↓

↑ Positively associated.

↓ Negatively associated.

= Neutral effect.

BMP, bone morphogenetic protein.

Hyperglycemia and Adipokines
Hyperglycemia by itself has toxic effects on the differentiation of
bone marrow mesenchymal cells (MSC) into adipocytes (3). In
fact, high glucose levels stimulate the non-canonicalWnt/protein
kinase C pathway (4) and upregulates the peroxisome
proliferator-activated receptor gamma (PPARγ), resulting
in increased adipogenesis and bone loss (5). Poor glycemic
control in diabetes patients could therefore suppress some of
the master genes, as Runx2, involved in osteoblastogenesis (6).
Moreover, the increased adipogenesis in the bone marrow has
a strong negative effect on bone health (7). Human studies
in overweight postmenopausal women with T2DM have
demonstrated the inverse association between bone marrow
adipose tissue and BMD (5).

Loss of lean mass and increase in adipose tissue are other
key mechanisms involved in diabetes-associated bone disease.
Adipose tissue, and particularly visceral fat, produces several
adipokines with different effects on bone metabolism (8–10).
In experimental and human studies, adiponectin, visfatin, and
omentin-1 had negative effects on bone, while leptin exerted
positive actions (8–10). Additionally, the role of a specific
adipo-myokine, irisin, has been recently described (11, 12). It
is thought that irisin plays a positive effect on hyperglycemia
by stimulating glucose uptake in muscle cells (13). As far as
bone metabolism, irisin may promote osteogenic differentiation,
increase in cortical bone mass and strength, and reduction in the
number of osteoclasts (14). Irisin resistance has been postulated
in diabetes, with a consequent theoretical loss of all these positive
effects on bone mass and strength (12, 15).

Several studies have reported the association between
metabolic syndrome and fragility fractures (16). Conditions that
characterize the metabolic syndrome indeed induce perturbation
in adipokines and cytokines secretion (9). These mechanisms,
in association with the altered insulin signaling, might have an
influence on bone metabolism, as documented by the reduction
of bone formation markers (9). Components of the metabolic
syndrome other than hyperglycemia and increased adipose tissue
have been associated with poor skeletal health, as well. Increases
in serum triglycerides levels have been negatively associated
with BMD, particularly at the femoral neck, in postmenopausal

women, and with increase in bone marrow fat in young men
and women (17, 18). Finally, data have shown that arterial
hypertension is associated with low BMD, mostly in relation to
increases in urinary calcium excretion (19, 20).

Advanced Glycation End-Products
Hyperglycemia may act through non-enzymatic pathways and
induce the formation of advanced glycation end-products
(AGEs). AGEs have a detrimental effect on the skeleton, affecting
the extracellular matrix and the vessels. Additionally, in vitro
data demonstrated that high glucose levels and AGEs increase
osteocytes expression of sclerostin, a negative regulator of bone
formation (21). Pre-clinical observations were confirmed by
clinical studies showing that sclerostin levels are higher in pre-
diabetes subjects than in controls, and correlate with insulin
resistance (22).

AGEs have a negative effect on bone quality, an aspect
that is undetectable by dual X-ray absorptiometry. The
increase in fracture risk in T2DM is indeed observed in
the setting of normal BMD. Possible explanations for such
a “paradox of BMD” are the high frequency of obesity in
these patients, and the well-known positive association between
high BMI and high BMD (23). Additionally, the role of
insulin resistance, and consequent high insulin levels, has
been postulated, even though some studies failed to find a
positive association with BMD independently of BMI (24). On
the contrary, altered bone quality has been demonstrated in
patients with T2DM, as demonstrated by studies using the
high-resolution peripheral quantitative computed tomography
(HR-pQCT) (25). In particular, lower cortical volumetric
BMD, thickness and cross-sectional area, and higher cortical
porosity were observed, defining the concept of “relative deficit”
at the cortical level as characteristic of the diabetic bone
disease (25).

As hyperglycemia, AGEs, andmicroangiopathy are thought to
exert negative effects on bone health, future research will define
whether and how these mechanisms may be implicated in the
deterioration of the cortical bone (25).

Systemic Mechanisms
There are several systemic mechanisms, whose stimulation is
driven by altered glucose metabolism that may eventually affect
bone metabolism.

Chronic kidney disease (CKD) is a common complication
in diabetic patients. The intricacy between CKD and bone
configures a specific metabolic disorder, the CKD-Mineral Bone
Disorder (CKD-MBD), that plays an important role in the
skeletal fragility associated with diabetes (26).

Disarrangement in the calcium-vitamin D-PTH axis
contributes to bone loss in patients with diabetes. Poor glycemic
control correlates with excessive urinary calcium loss, with
subsequent stimulation of chronic PTH secretion and deleterious
effects on the skeleton (27). Improvement in glucose control is
associated with normalization of urinary calcium excretion (28)
and may avoid stimulation of PTH secretion, with positive effects
on BMD (29).
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TABLE 2 | Effects of osteokines on glucose metabolism in humans.

Osteokines Insulin Fasting

glucose

HbA1c Index of insulin

resistance

Osteocalcin ↑

β cells stimulation

↓ ↓ ↓

Osteoprotegerin ↓

(in vitro)

↑ ↑ ↑

Sclerostin ↓ ↓ ↓ ↓

Lipocalin 2 ↑ ↑ ↑ ↑ or =

Periostin ↑

β cells stimulation

↑ ↑ ↑

BMPs ↑

β cells stimulation

(BMP7)

↓

(BMP 9)

↓

(BMP 9)

↓

(BMP 9)

↑ Positively associated.

↓ Negatively associated.

= Neutral effect.

HbA1c, glycated hemoglobin; BMPs, bone morphogenic proteins.

BONE MODULATION OF GLUCOSE
METABOLISM

Osteokines are bone-derived factors that may modulate glucose
homeostasis, as demonstrated in murine models. In particular,
osteocalcin (OC), bone morphogenetic protein (BMP), and
sclerostin (SOST) actively participate in energy metabolism,
appetite, and browning of adipose tissue (30). Few experimental
studies showed the possible involvement of the receptor activator
of nuclear factor-kappaB ligand (RANKL), osteoprotegerin
(OPG), lipocalin-2 (LCN2), and periostin in these pathways
(30, 31). However, a small number of studies have been
conducted to assess how these mechanisms could interplay
in the modulation of glucose metabolism by the skeleton in
patients with osteoporosis and/or diabetes. The major evidence
is summarized in Table 2.

Osteocalcin
Osteocalcin is the most abundant osteoblast-specific, non-
collagenous protein, and a key determinant of bone formation.
The latest review on OC reported its role in glucose metabolism
and adaptation to exercise, neuronal development, and male
fertility (32) (Table 2). While this is true in mice, less evidence
is available in humans. Observational studies reported that OC
positively correlates with insulin sensitivity in T2DM patients
and that high OC levels were associated with reduced risk
of developing T2DM; other studies reported lower OC levels
in diabetes and no association with the risk of T2DM (33,
34). Circulating OC comprises both the undercarboxylated (u)
(the form that in mice influences glucose metabolism) and the
carboxylated form. In clinical studies, the total level of OC is
usually reported. Hence, such conflicting results may be ascribed
to measurement bias in humans. In this context, interesting data
were reported by Linossier et al. who assessed the effect of the
acute increase in bone resorption on glucose metabolism in 12
healthy men exposed to microgravity (35). Authors observed that

the onset of insulin-resistance was in response to increased bone
resorption and concomitant to the increase of uOC (35).

Osteoprotegerin
Osteoprotegerin is a negative regulator of bone resorption
through decreasing osteoclasts development. In vitro, OPG
treatment of pancreatic ß cell lines decreased insulin release
following glucose stimulation, thus preventing exhaustion of
ß cells function (36, 37). Studies in postmenopausal women
with normal and impaired fasting glucose levels showed that
OPG levels are positively associated with insulin resistance index
(38, 39). Additionally, OPG levels are higher in pre-diabetic and
diabetic adults compared to those with normal glucose tolerance
(40). Finally, Daniele et al. showed that OPG levels inversely
correlate with the rate of insulin-mediated total body glucose
disposal, while positively correlating with fasting endogenous
glucose production and hepatic insulin resistance indexes (22).

RANKL
The RANKL is a well-known primary mediator of osteoclasts
differentiation, but also regulates glucose metabolism. The
inhibition of the RANKL signaling has been suggested to improve
hepatic insulin sensitivity and to have a role in ß cells replication
in mouse models (41). In patients with osteoporosis, inhibition
of RANKL improves muscle strength and insulin sensitivity (42).

FGF23
FGF23, the key regulator of phosphate metabolism, has also
been recently associated with fat metabolism (43). Data in
1,179 middle aged subjects showed that FGF23 levels were
positively and independently associated with visceral obesity
(44). Conversely, significant negative correlations between
FGF23 levels and both fasting insulin and C-peptide levels
were described in obese children and adolescents with hepatic
steatosis (45).

Sclerostin
Slerostin is a well-known inhibitor of osteoblast differentiation
acting through the Wnt signaling pathway. This pathway is
also active in organs involved in glucose homeostasis, such as
pancreas, adipose tissue, liver, and skeletal muscle (46). Clinical
data showed negative correlations between sclerostin, insulin,

and homeostasis model assessment of insulin resistance (HOMA-
IR) in 55 children and adolescents with simple obesity (47).
In a small cohort of girls with type 1 diabetes (T1DM), a
negative association between serum sclerostin levels and glycated
hemoglobin (HbA1c) was found (48). As far as adult patients,
studies have shown that those with T1DM had either higher
or comparable values of sclerostin compared to controls, while
an increase in sclerostin levels is described in patients with
T2DM (49–51). Finally, results from the Canadian Multicentre
Osteoporosis Study (CaMos) showed that sclerostin levels are
associated with fasting insulin levels and HOMA-IR, but not with
the risk of incident T2DM (52).

Lipocalin-2
Lipocalin-2 has a prominent role in the pathological response
of bone tissue to low mechanical forces in murine models

Frontiers in Endocrinology | www.frontiersin.org 3 March 2020 | Volume 11 | Article 122

https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles


Cipriani et al. Bone and Glucose Metabolism

(53). Recently, data in mice have shown that LCN2 crosses
the blood-brain barrier and binds to specific neurons of the
hypothalamus to control appetite (54). In humans, ROC curve
analyses demonstrated that LCN-2 levels could discriminate
between normal subjects and those with impaired glucose
tolerance (IGT), as well as T2DM and IGT among obese women
(55). In particular, significant positive correlation between LCN2
levels and fasting glucose and 2-h postprandial blood glucose,
serum insulin, HbA1c, HOMA-IR was detected (55–57).

Periostin
Periostin is a matricellular protein derived from osteoblast and
osteocytes. In mice, periostin is able to potentiate pancreatic β-
cell regeneration, and is involved in the inhibition of sclerostin
following skeletal mechanical loading (58, 59). In humans, high
plasma periostin levels were observed in a study assessing 161
obese Chinese patients with T2DM (60). Periostin was strongly
associated with triglyceride metabolism, chronic inflammation,
and insulin resistance (60). In a cross-sectional study of 8,850
subjects aged 40 or older, periostin positively correlated with liver
function, triglycerides levels, waist circumference, HOMA-IR,
and fasting plasma insulin in overweight and obese subjects (61).

Bone Morphogenetic Proteins
Bone morphogenetic proteins control both osteoblasts and
osteoclasts’ function. These molecules are released from the bone
matrix into circulation during bone resorption, thus may have
effects on organs apart from the skeleton (30). Receptors of
the BMPs were indeed found in multiple organs, such as the
liver (62). Hence, regulation of bone turnover by BMPs may be
coupled with their effect on organs related to glucosemetabolism.
Interestingly, in vitro data have reported the conversion of
primary human pancreatic exocrine tissue into functional islet
endocrine cells after exposure to BMP-7 (63).

In humans, circulating BMP-9 levels were found to be
significantly higher in healthy subjects than in newly diagnosed
T2DM patients and negatively correlated with HbA1c, fasting
glucose, and HOMA-IR (64).

ANTI-DIABETIC DRUGS THAT INTERFERE
WITH BONE METABOLISM

Anti-diabetic drugs may have detrimental, positive, and neutral
effects on bone metabolism. In this context, experimental studies
are often not corroborated by clinical data.

Metformin and Sulfonylureas
Metformin and sulfonylureas have no clinical significant effect
on bone in humans. In pre-clinical studies, metformin activates
differentiation of the mesenchymal stem cells toward the
osteoblastic lineage while inhibiting adipogenesis and osteoclast
differentiation (65–67). Clinical studies have shown inconsistent
results on the effect of metformin on fracture risk. Some
observational and retrospective studies and recent meta-analyses
reported reduction in fracture occurrence in diabetic patients
treated with metformin, while others did not observe any
significant effect (68–72). Whether these results could be related

to the overall low fracture risk of metformin users (72) or
whether the use of metformin may have clinically significant
protective effects on the skeleton needs to be addressed by future
randomized prospective studies.

Pre-clinical data have shown the potential of sulfonylureas,
particularly glimepiride, in stimulating bone formation (73,
74). Data in ovariectomized rats have shown that glimepiride
could inhibit skeletal changes associated with menopause while
stimulating bone formation (75). Clinical data have essentially
reported a neutral effect of sulfonylureas on BMD and/or
fractures (76–78). There are no clinical trials designed to assess
fractures and/or falls as the primary endpoint in sulfonylureas
users, in which the main fracture risk is hypoglycemia,
particularly in older and frail individuals (78–80).

Insulin
Similarly to what is discussed for sulfonylureas, clinical effects
of insulin on bone are mostly driven by the occurrence of
hypoglycemia and consequent fracturing (81). The anabolic
effects of insulin seen in experimental studies do not indeed
translate into positive effects on bone health in humans (81).
A recent population-based study of 58,853 newly diagnosed
diabetic patients reported a 38% excess risk of major osteoporotic
fractures in those treated with insulin (82).

Thiazolidinediones
Thiazolidinediones have been associated with reduction in BMD
and increased incidence of fractures (83, 84). Rosiglitazone
was associated with 6–20% increase in bone resorption and 4–
13% reduction in bone formation markers in postmenopausal
women, and with clinically significant bone loss (69, 83, 85–
87). Similar data are available for pioglitazone (88, 89). Meta-
analyses of studies have demonstrated that treatment with
thiazolidinediones is associated with increased fracture risk
in postmenopausal women, with a possible association to
duration of therapy (73, 83). Main mechanisms include loss of
the inhibitory effect of PPAR-γ on osteoclasts differentiation,
increased production of sclerostin and DKK1 in osteocytes, and
infiltration of adipocytes in the bone marrow (65).

Incretins
The presence of the GLP-1 receptor on the pre-osteoblasts and
osteocytes surface was associated with the anabolic actions of
liraglutide and exenatide in murine models (90–92). In humans,
exenatide and liraglutide treatment were found to prevent bone
loss associated with weight reduction, and a 16% increase in
P1NP serum levels was observed in liraglutide-treated patients
(93, 94). Results on the effect of GLP-1 agonists on fracture
are inconclusive (65, 95), even though a recent meta-analysis
suggests that treatment with liraglutide and lisixenatide were
associated with decreased fracture events (96).

DPP4-Inhibitor
Suppression of bone resorption has been reported in association
with DPP4-inhibitor sitagliptin in murine models, and only one
study reported similar results in postmenopausal women (97, 98).
While clinical studies showed a possible decrease in fracture risk
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in DPP4-inhibitors users, recent meta-analyses showed that this
class of drug does not influence fracture risk when compared to
placebo or other anti-diabetic agents (99–102).

Sodium-Glucose Cotransporter-2
Inhibitors
Possibly harmful effects on the skeleton from sodium-glucose
cotransporter-2 inhibitors have been observed in the first clinical
trials, but not confirmed by the subsequent data. Mechanisms
such as weight loss, and increased urinary calcium excretion
and PTH levels have been postulated (65). Data from the
CANVAS study has reported a 4% incidence of fractures that
was significantly higher vs. placebo (103). There was instead
no difference in the incidence of fracture in the CANVAS-R
study in the canaglifozin vs. placebo group, nor in the most
recent CREDENCE trial (104, 105). Finally, the analysis of
data from the CANVAS and the CANVAS-R trials comprising
10,142 participants concluded that data from the CANVAS
trial could be related to chance or presumably to the presence
of falls, whose prevalence was not specifically recorded in all
studies (106).

As far as other agents of this class, pooled analysis of data in
over 12,000 patients from placebo-controlled and head-to-head
trials vs. glimepiride excluded the association of empaglifozin
with fractures (77).

ANTI-OSTEOPOROSIS DRUGS THAT
INTERFERE WITH GLUCOSE
METABOLISM

Drugs currently used for treatment of osteoporosis modify
bone turnover markers, which in turn could modify
glucose metabolism. Reduction in bone turnover markers
is observed during bisphosphonates and denosumab treatment
(antiresorptive agents), while enhanced bone turnover is
observed during PTH 1-34 and PTH 1-84 administration
(anabolic agents).

Bisphosphonates
Registrative studies of alendronate, zoledronic acid, and
denosumab did not report any significant effects of these drugs
on incident diabetes or fasting glucose in postmenopausal
women (107). Conversely, a retrospective population-based
study conducted in Taiwan showed that the use of alendronate
decreases the incidence of diabetes in subjects younger than
65 without dyslipidemia and hypertension (108). Reduction in
the risk of diabetes was observed in another population-based
retrospective study conducted in UK in individuals aged 60
and older with no baseline diabetes and more than 1 year of
bisphosphonates exposure (109).

A recent randomized controlled trial (RCT) showed a
significant decrease of 8.2 mg/dL in fasting glucose levels and of
0.2% in HbA1c levels in postmenopausal women with osteopenia
and pre-diabetes treated with alendronate (110).

Denosumab
A post-hoc analysis of the FREEDOM trial showed no effect of
denosumab on fasting glucose levels in postmenopausal women
with diabetes and pre-diabetes. A modest decrease in fasting
serum glucose (−6.8 mg/dL) was observed only in women with
diabetes not using antidiabetic medications (111). A prospective
study by Passeri et al. reported that a single dose of 60mg
of denosumab was not associated with changes in the glucose
or insulin response to OGTT in non-diabetic postmenopausal
women with osteoporosis (112). Authors observed a modest
significant reduction in hepatic insulin resistance index only at
4 weeks (112). Similar results were observed in a subsequent
study assessing the glucometabolic parameters and lipid profile
in 48 non-diabetic osteoporotic postmenopausal women at 24
weeks after a single 60mg denosumab dose (113). No significant
changes were observed, with the exception of a significant
reduction in insulin and HOMA-IR at 4 weeks (113).

Anabolic Agents
Anastasilakis et al. have shown that the intermittent
administration of PTH 1-34 is followed by a subtle transient
increase in calcium and PTH levels with no effect on glucose
homeostasis (114).

As far as PTH 1-84 is concerned, a randomized, controlled,
open-label trial involving 46 postmenopausal non-diabetic
women with osteoporosis has shown that the hormone increases
both OC and uOC, and decreases fasting plasma glucose (115).
Interestingly, the effects of PTH 1-84 on OC and on uOC
represented the mediator of more than the half (62%) at 12
months and almost half (48%) at 6 months, respectively, of the
total effect of these hormones on fasting glucose (115).

Vitamin D and Calcium
Data from clinical studies showed that calcium and vitamin
D supplementation might exert beneficial effect on glucose
metabolism. However, different results have been observed
among studies (116, 117). The most recent meta-analysis
including 12 studies with 4,395 participants in the intervention
arm and 4,551 in the control group demonstrated that calcium
and vitamin D supplementation significantly reduce fasting
glucose, HOMA-IR, and insulin levels (116).

CONCLUSIONS

Bone and glucose metabolism are strongly interrelated.
Experimental studies have assessed the mechanisms of the
mutual cross-talk between bone and glucose homeostasis, and
allowed for a definition of diabetes-associated bone disease, for
which a more proactive clinical evaluation and treatment is now
recommended (118). Moreover, data on the endocrine actions of
bone on glucose and energy metabolism have opened new and
interesting insight into the possible risk of diabetes and obesity
in patients with metabolic bone disease.

Future studies, particularly RCTs, will define the effect of anti-
osteoporosis medications on glucose homeostasis, as well as how
anti-diabetic agents could impact bone health.
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