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Introduction: Using a discovery/validation approach we investigated associations

between a panel of genes selected from a transcriptomic study and the estimated

glomerular filtration rate (eGFR) decline across time in a cohort of type 1 diabetes

(T1D) patients.

Experimental: Urinary sediment transcriptomic was performed to select highly

modulated genes in T1D patients with rapid eGFR decline (decliners) vs. patients with

stable eGFR (non-decliners). The selected genes were validated in samples from a T1D

cohort (n = 54, mean diabetes duration of 21 years, 61% women) followed longitudinally

for a median of 12 years in a Diabetes Outpatient Clinic.

Results: In the discovery phase, the transcriptomic study revealed 158 genes

significantly different between decliners and non-decliners. Ten genes increasingly up

or down-regulated according to renal function worsening were selected for validation by

qRT-PCR; the genes CYP4F22, and PMP22 were confirmed as differentially expressed

comparing decliners vs. non-decliners after adjustment for potential confounders.

CYP4F22, LYPD3, PMP22, MAP1LC3C, HS3ST2, GPNMB, CDH6, and PKD2L1

significantly modified the slope of eGFR in T1D patients across time.

Conclusions: Eight genes identified as differentially expressed in the urinary sediment

of T1D patients presenting different eGFR decline rates significantly increased the

accuracy of predicted renal function across time in the studied cohort. These genes

may be a promising way of unveiling novel mechanisms associated with diabetic kidney

disease progression.
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INTRODUCTION

Diabetic kidney disease (DKD) is amajor cause of end-stage renal
disease (ESRD) worldwide. The prevalence of ESRD in patients
with diabetes (DM) is up to 10 times higher than those without
DM (1). The search for both prognostic and surrogate endpoint
biomarkers for DKD has received more attention in the recent
years. However, at present no novel biomarkers are routinely
used in the clinic or in trials (2).

Recently, the use of urine in the study of DKD has
been increasing with the use of quantitative polymerase
chain reaction (PCR) or ELISA (3). In the last decade, next
generation sequencing (NGS) methods made it possible to
generate inexpensive, reproducible, and high throughput nucleic
acid sequence data providing new opportunities for unbiased
discovery of novel pathophysiologic pathways of disease, as well
as for the identification of novel disease biomarkers (4).

Besides being an organ-specific sample, urine is an easily
obtainable material, without the need of invasive procedures.
We previously described the expression of markers of proximal
tubule epithelial cells and podocytes in the human urine sediment
while attempting to correlate clinical markers of kidney disease
with expression of target genes in this biological material (5). The
same approach was taken by other research groups (3) showing
the use of urine as a translatable strategy to study markers of
kidney injury without the need of invasive interventions.

In an attempt to identify new pathways associated with DKD
progression, we performed a transcriptomic analysis using total
RNA isolated from urine sediment cells collected from patients
with type 1 DM (T1D), presenting or not rapid renal function
decline. Candidate genes identified in the transcriptomic study
were validated in a cohort of T1D patients followed from 2006 to
2018. Eight of the 10 validated genes significantly increased the
accuracy of predicted renal function across time in the studied
cohort. These genes may be a promising way of unveiling novel
mechanisms associated with DKD progression.

MATERIALS AND METHODS

Participants
This study was conducted in compliance with the Institutional
Ethics Committee and the Declaration of Helsinki of 1975,
revised in 1983, with informed consent being given to all
participants and it was approved by the Ethics Committee of
the University of São Paulo Medical School (Cappesq, approval
#1,536,656). Fifty-four T1D patients were recruited from 2012
to 2016 at the Diabetes Outpatient Clinic, Hospital das Clinicas
da Faculdade de Medicina da Universidade de São Paulo, Brazil.
T1D was diagnosed in patients presenting hyperglycaemia,
positive autoantibodies [glutamic acid decarboxylase [GAD],
islet cell antibodies or tyrosine phosphatase-like insulinoma
antigen 2 [IA-2]], undetectable C-peptide or ketoacidosis and
insulin requirement within 3 months after diagnosis. All
patients were receiving intensive insulin therapy. At the time of
recruitment, urine samples were collected as previously described
(5, 6) and later used for gene expression analyses. Briefly, urine
specimens were collected in sterile RNAse-free flasks. All samples
were submitted to urinalysis test and the samples testing positive

for leucocyturia (>10,000 leucocytes per cubic millimeter of
urine) were discarded. Total RNA was isolated using Trizol
reagent (ThermoFisher Scientific, Carlsbad, CA) and RNeasy
Minikit (Qiagen, Germantown, MD) followed by reverse-
transcription to cDNA using High Capacity cDNA Reverse
Transcription Kit (ThermoFisher Scientific, Carlsbad, CA).

Clinical and demographic data were collected starting from
the date each patient was admitted to the Diabetes Clinic
and ending in 2018 or until reaching end-stage renal disease
(median follow-up of 12 years; mean±SD follow-up of 11 ± 2.9
years). Data collection included sex, age, T1D duration, use of
angiotensin converting enzyme inhibitors (ACEi) or angiotensin
receptor blocker (ARB), and glycated hemoglobin (HbA1c)
values. To evaluate renal function across time, we collected
all measurements for serum creatinine taken during the entire
follow-up period (at least one per year of follow-up, median of
3 measurements per year). Serum creatinine was measured by
the Jaffé reaction, standardized to IDMS traceable creatinine and
used to calculate the estimated glomerular filtration rate (eGFR)
using the Chronic Kidney Disease Epidemiology Collaboration
(CKD-EPI) equation (7).

Library Preparation and RNA Sequencing
Four T1D patients with an eGFR decline ≥3.5 mL/min/1.73
m2 per year of follow-up (decliners) eGFR, four T1D patients
with an eGFR decline <3.5 mL/min/1.73 m2 per year of
follow-up (non-decliners), and two non-diabetic controls were
selected for the transcriptomic study. Messenger RNA was
checked for quality (RIN value >7.0) and quantity using Agilent
2200 TapeStation (Agilent Technologies) employing the High
Sensitivity D1000 ScreenTape assay. RNA-seq libraries were
prepared using Illumina TruSeq Stranded Total RNA Library
Prep Kit with Ribo-Zero Gold R© (San Diego, CA) from 100 ng
of purified total RNA according to the manufacturer’s protocol.
Paired-end reads were generated in the Illumina HiSeq 2000
platform. The dataset is available with National Center for
Biotechnology Information’s Gene ExpressionOmnibus database
under the accession number GSE140627.

Bioinformatic Analysis
Reads were aligned to the hg38 version of the human
reference genome (downloaded from ftp://ftp.ensembl.org/pub/
release-94/fasta/homo_sapiens/dna/ using STAR (8). Metrics
such as number of reads, duplicate levels, total number
of expressed genes and ribosomal RNA contamination were
generated with RNASeqC (9). Count data was generated with
featureCounts (10). Non-expressed genes were flagged and
removed from downstream analysis using DAFS (11). Data
normalization and logCPM transformation was performed using
the voom function from the R/Bioconductor tool limma (11).
Differential gene expression analysis was performed using limma.
Pairwise comparisons between control samples and diabetic
samples (decliners and non-decliners) were performed. Gene set
enrichment analysis was performed withWebGestalt (12).

qRT-PCR Validation
Urinary sediment total RNAs from 54 T1D patients were used to
validate the results of the transcriptomic study. Messenger RNA
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was checked for quality (RIN value >5.0 for the samples used in
the validation phase). Starting from the lowest value of p, the top
10 genes that were increasingly up or down-regulated according
to renal function worsening were selected for validation by qRT-
PCR. Gene expression analyses were performed with 10 ng of
cDNA/sample, in duplicates, with the use of Taqman assays in a
StepOne plus Real-Time PCR System (ThermoFisher Scientific,
Carlsbad, CA). The relative mRNA abundance was calculated
using the 2–11Ct method (13) and E74-Like Factor 1 (ELF1)
was used as reference gene (5). Taqman assays are listed in
Supplemental Table 1.

Statistical Analyses
Statistical analyses were performed by JMP Pro version 13.0 (SAS
Institute, Cary, NC). Before the analyses, normalized mRNA
expression values were log10 transformed. Non-parametric
Wilcoxon/Kruskal Wallis test followed by Tukey-Kramer’s
multiple comparison test were used to identify the differences
among decliners, non-decliners and controls in the cross-
sectional analyses; analyses between T1D patients classified
as decliners and non-decliners were adjusted by sex, diabetes
duration, body mass index (BMI), use of ACEi or ARB, Hba1c,
urinary albumin excretion, and creatinine (to account for the
stage of DKD at the beginning of the follow-up) at the time of
the urine collection.

Linear mixed-effects models (random-effects models) were
used to test the association between each of the genes and
the longitudinal change in eGFR during the follow-up period.
Sex, diabetes duration, BMI, use of ACEi or ARB, HbA1c,
urinary albumin excretion (all at the time of the urine collection)
and follow-up time and its interaction with the normalized
expression of each gene were used as fixed effects. Additionally,
as measurements of the same patients were taken repeatedly
through time, we used patient’s identification as a random
effect, which enabled to account for: differences on the initial
eGFR values, within-individual changes of eGFR overtime
and correlation among repeated measurements on the same
patient. Each gene was evaluated separately. Patients with an
initial eGFR <15 mL/min/1.73 m2 were excluded from the
linear mixed-effects analyses. A P < 0.05 was considered
statistically significant.

RESULTS

Pathways Modulated in Patients With
Rapid Renal Function Decline
Clinical characteristics and renal function evolution of the
patients selected for the transcriptomic study are presented in
the Supplemental Table 2 and in the Supplemental Figure 1,
respectively. Quality control data for the RNA sequencing
protocol is shown in the Supplemental Table 3; three samples
showing low reads were excluded and the seven remaining
samples showed between 16 and 25 million reads.

A total of 158 genes were differentially expressed between
decliners vs. non-decliners; 73 up-regulated and 85 down-
regulated (log fold-change >1.5 and <-1.5, respectively; P <

0.05) (Supplemental Table 4). Hierarchical clustering performed

for the differentially expressed genes resulted in the dendrogram
shown in Figure 1. The classification of the transcripts up or
down-regulated in decliners vs. non-decliners according to Gene
ontology (GO) categories is shown in Figure 2. Figure 3 elicits
the RNA sequencing expression levels of the 10 genes selected
for validation by qRT-PCR: Cytochrome P450 family 4 subfamily
F member 22 (CYP4F22), Solute carrier family 6 member
3 (SLC6A3), Polycystin 2 like 1, transient receptor potential
cation channel (PKD2L1), Microtubule associated protein 1 light
chain 3 gamma (MAP1LC3C), Peripheral myelin protein 22
(PMP22), Cadherin 6 (CDH6), Heparan sulfate-glucosamine 3-
sulfotransferase 2 (HS3ST2), Protocadherin gamma subfamily B,
2 (PCDHGB2), LY6/PLAUR domain containing 3 (LYPD3), and
Glycoprotein nmb (GPNMB).

Validation of Genes Associated With Rapid
Renal Function Decline
In order to validate the findings from the transcriptomic study,
we used qRT-PCR and mRNA samples from 54 T1D patients
classified as decliners and non-decliners as described above.
Patients were mostly female (66% women), 34 [28–41.5] years
old (median [interquartile interval]), 22 [16–29] years of diabetes
duration, age at diagnosis of 13 [7–17] years old, with an HbA1c
of 8.1% [7.2–9] and 65.7% had eGFR ≥60 mL/min/1.73 m2 at
the time of urine collection. There were no differences between
decliners and non-decliners regarding age at diagnosis, HbA1c
and use of ACEi, ARB or statins. Non-decliners had longer DM
duration (25 ± 10 vs. 20 ± 7 years, respectively) than decliners
at the time of urine collection. We also included 12 healthy non-
diabetes controls [61% women, 32 [24.2–53.2] years old] with no
history of DM or renal disease.

SLC6A3 and PCDHGB2 displayed late amplification curves
in several samples and were excluded from further analyses.
Cross-sectional analyses revealed significant modulation of the
genes CYP4F22, LYPD3, PMP22, and MAP1LC3C between
controls and T1D patients classified as decliners and non-
decliners (Supplemental Figure 2). When only T1D patients
were considered, up-regulation of the genes MAP1LC3C (P
< 0.001), CDH6 (P = 0.02), GPNMB (P = 0.009), HS3ST2
(P = 0.01), PMP22 (P < 0.001), and PKD2L1 (P = 0.04),
and down-regulation of the genes CYP4F22 (P < 0.001) and
LYPD3 (P = 0.01) were observed in decliners in comparison
to non-decliners (Supplemental Figure 3). After adjustment
for potential confounders, only CYP4F22 and PMP22 were
significantly modulated between decliners and non-decliners
(Figure 4).

Eight Out of the Ten Validated Genes
Significantly Modified the Slope of eGFR
We next sought to investigate if the genes selected for validation
could improve the estimation of the longitudinal changes in
eGFR during the follow-up period performing a linear mixed-
effects model for each gene. Eight genes significantly modified
the slope of eGFR in T1D patients across time: CYP4F22, LYPD3,
PMP22, MAP1LC3C, HS3ST2, GPNMB, CDH6, and PKD2L1
(Table 1).
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FIGURE 1 | A total of 158 genes were differentially expressed between decliners vs. non-decliners. Expression profile of differentially expressed genes in type 1

diabetes patients (decliners and non-decliners) and in healthy non-diabetes controls analyzed by hierarchical clustering (2- way clustering, Ward method). Row: single

gene; column: urinary sediment sample. Color legends showing normalized gene expression levels for each patient.

DISCUSSION

In an attempt to identify new pathways associated with
kidney function decline in the setting of DKD, we performed
transcriptomic analyses of urinary sediment cells obtained from
T1D patients presenting different eGFR decline rates. We
validated the findings from the transcriptomics study in a cohort
of patients followed longitudinally and eight out of the 10
validated genes significantly modified the slope of eGFR across
time, adding prognostic value beyond established risk factors.

Most of the identified genes have never been associated with
changes in kidney function, becoming interesting potential new
targets for the study of DKD. Pathways related to most of them,
however, have already been associated with kidney diseases,
including DKD.

HS3ST2 encodes an isoform of heparan sulfate 3-O
sulfotransferase, an enzyme involved in heparan sulfate
(HS) biosynthesis. Not only abnormal metabolism of HS has
been reported in DKD (14), but also variants in a gene encoding
another HS-O sulfotransferase (HS6ST1) were associated with
albuminuria in type 2 diabetes patients (15).

The PMP22 gene, also known as GAS3 (growth-arrest-
specific protein 3), encodes a glycoprotein whose mutations
cause neuropathy-related diseases and whose functions remain
incompletely known (16). Besides being a constituent of
peripheral nerve myelin, PMP22 is also involved in cell-
cell junctions; in wounded kidney epithelial cells (MDCK
cells), the overexpression of PMP22 decreased proliferation and
migration and altered permeability of cell monolayers (17).
It is worth mentioning that myelin protein 0 (MPZ or P0),

Frontiers in Endocrinology | www.frontiersin.org 4 April 2020 | Volume 11 | Article 238

https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles


Monteiro et al. Transcriptomics and Prediction of Renal Function Decline

FIGURE 2 | Gene Ontology (GO) of the modulated transcripts in patients with rapid renal function decline. Gene Ontology categories of the modulated transcripts

from type 1 diabetes patients classified as decliners vs. non-decliners.

the major component of myelin, is expressed in human and
rodent podocytes and plays an important role in glomerular
permeability, since increased urinary albumin excretion was
shown in mice deficient for this protein (18).

CYP4F22 encodes a member of the cytochrome P450
superfamily (19); cytochrome P450 4F isoforms metabolize
arachidonic acid to generate 20-hydroxyeicosatetraenoic acid
(20-HETE) (20). This reaction is thought to be catalyzed by
CYP4F2 in the kidneys, where 20-HETE acts as a natriuretic
and vasoactive eicosanoid and participates in the control of renal
function and systemic blood pressure (21, 22). Altered renal 20-
HETE content was related to hypertension in animal models and
in humans (23–25). However, little is known about the regional
distribution of renal CYP4Fs (24), which includes CYP4F22. This
isoform had been identified as one of the autosomal recessive
congenital ichthyosis-causative genes (26). NonethelessCYP4F22
and CYP4F2 are described as paralogs and genetic variants in the
CYP4F2 were associated with hypertension (23). We observed
decreased expression of CYP4F22 mRNA in the decliner group;
downregulation of CYP4A11 mRNA, another CYP4 isoform
involved in 20-HETE generation, was already described in a
gene expression profile of renal biopsies from patients with
hypertensive nephropathy (27).

MAP1LC3C encodes a key structural protein of the
autophagosome considered a marker of autophagy, as are the
other members of the LC3 family MAP1LC3A and MAP1LC3B
(28). Impaired autophagy in glomerular and tubular cells has
been recognized in the pathogenesis of DKD, contributing to the

accumulation of cellular damage (29). A decreased expression
of MAP1LC3A mRNA was described in the urinary sediment
from patients with DKD (30), an opposite finding to what we
observed in the present study forMAP1LC3C. However, it is not
clear whether the three LC3 proteins have the same biological
function in autophagy or in other pathways (28). The potential
participation of MAP1LC3C in DKD is corroborated by the
finding of a variant in this gene conferring susceptibility to
eGFR decline over time in a genome–wide association study
in European American participants of the Chronic Renal
Insufficiency Cohort Study (31).

We were not able to find studies reporting the participation
of LYPD3 (LY6/PLAUR Domain Containing 3, also known
as C4.4A), a urokinase-type plasminogen activator receptor
(uPAR) homolog, in kidney diseases. In an immortalized non-
tumorigenic human epidermal cell line (HaCaT), decreased
expression of LYPD3 was detected after induction of epithelial–
mesenchymal transition by TGFβ (32), a process already
associated with tubulointerstitial fibrosis in diabetic nephropathy
(33).We found no studies reporting the participation of PKD2L1,
a member of the polycystin protein family involved in cell-
cell/matrix interactions, in DKD.

GPNMB is a transmembrane glycoprotein expressed on
renal tubular cells and on cells of the monocyte–macrophage
lineage (34). This protein was already described as a biomarker
of progressive renal injury; its increased expression was
found in the kidney of rats with streptozotocin-induced
diabetes and in kidney and urine of patients with progressive
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FIGURE 3 | Top 10 genes progressively modulated selected for validation.

RNA sequencing expression levels of the top 10 genes increasingly up- or

down-regulated according to renal function worsening selected for validation

by qRT-PCR. Bars representing median value and interquartile range. T1D,

type 1 diabetes.

kidney disease, including DKD (35). Following renal ischemic
damage, GPNMB expression increases in macrophages and in
surviving epithelial cells and it is required for phagocytosis,

FIGURE 4 | Validation of two genes associated with rapid renal function

decline. Cross-sectional validation of genes differentially expressed in human

urinary sediment cells from type 1 diabetes (T1D) patients classified as

non-decliners or decliners (eGFR < or ≥3.5 mL/min/1.73 m2 per year of

follow-up, respectively). Analyses adjusted by sex, diabetes duration, body

mass index, use of angiotensin converting enzyme inhibitors or angiotensin

receptor blocker, HbA1c, urinary albumin excretion, and creatinine at the time

of the urine collection. Bars representing median value and interquartile range.

*P < 0.05.

TABLE 1 | Linear mixed model estimates ± standard error (SE) for the expression

of genes which significantly modify the slope of estimated glomerular filtration rate

in Type 1 diabetes patients across time.

Gene symbol Estimate SE P value

CYP4F22 0.0053 0.0005 <0.0001

LYPD3 0.0080 0.001 <0.0001

PMP22 −0.0159 0.0009 <0.0001

MAP1LC3C −0.0137 0.001 <0.0001

HS3ST2 −0.0120 0.0009 <0.0001

GPNMB −0.0094 0.0008 <0.0001

CDH6 −0.0076 0.0006 <0.0001

PKD2L1 −0.0073 0.0009 <0.0001

recruitment of members of the LC3 family, and, eventually,
autophagy and tissue repair (36). Urinary concentrations
of GPNMB failed to confer prognostic value for renal
function decline beyond established risk factors in patients
with type 2 diabetes, despite correlating with the severity of
albuminuria (34). However, in the present study, GPNMB
mRNA expression in the urinary sediment modified the
slope of eGFR in T1D patients across time, maybe reflecting
a compensatory mechanism of tissue repairing as kidney
disease progresses.

CDH6 or kidney cadherin belongs to the cadherin superfamily
of cell surface glycoproteins essential to tissue development
and to cell-cell adhesion (37). In a transcriptional analysis
of human kidney organoids derived from pluripotent stem
cells, CDH6 mRNA was identified as highly expressed in
immature glomerular epithelial cells and reactivated in injured
podocytes in chronic kidney diseases, including DKD. Renal
expression of this gene was also associated with proteinuria and
with loss of renal function in cohort of patients with kidney
disease (38).

To our knowledge, this is the first study evaluating the
urinary sediment transcriptome in the setting of DKD.
Strengths of our study include the longitudinal study
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design and the use of multiple values of eGFR across time,
providing an accurate analysis of kidney function evolution
for each patient. The main limitations are associated to
the low number of patients in the discovery and validation
phases. In the transcriptomic study we initially included
10 samples but analyzed only seven due to insufficient
coverage to secure diversity of transcripts. Differential gene
expression is presented by nominal P values instead of
adjusted P values as a result of the low sample number.
In the validation phase, the difficulties of obtaining good
quality mRNA from urinary sediment resulted in a relatively
small number of patients and the lack of replication in an
independent cohort.

In summary, genes selected from a transcriptomic
analysis of the urinary sediment increased the accuracy
of predicted renal function across time in the studied
cohort of T1D patients. Some of the genes identified as
differentially expressed between two groups presenting
distinct eGFR decline rates corroborated the involvement
of pathways previously associated to DKD, such as abnormal
metabolism of HS and of 20-HETE, autophagy, as well as
the participation of compensatory tissue repair as kidney
disease progresses.
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