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Aiming to identify more genomic loci associated with bone mineral density (BMD), we

conducted a joint association analysis of 2 genome-wide association study (GWAS)

by the integrative association method multi-trait analysis of GWAS (MTAG). The

first one is the single GWAS of estimated heel BMD (eBMD) in the UK biobank

(UKB) cohort (N = 426,824), and the second one is the GWAS meta-analysis of

total body BMD (TB-BMD) in 66,628 participants from 30 studies. Approximate

conditional association analysis was performed in the identified novel loci to identify

secondary association signal. Statistical fine-mapping was conducted to prioritize

plausible credible risk variants (CRVs). Candidate genes were prioritized based on

the analyses of cis- expression quantitative trait locus (cis-eQTL) and cis-protein QTL

(cis-pQTL) information as well as the functional category of the SNP. By integrating

the information carried in over 490,000 participants, this largest joint analysis of

BMD GWAS identified 12 novel genomic loci at the genome-wide significance level

(GWS, p = 5.0 × 10−8), nine of which were for eBMD and four were for TB-BMD,

explaining an additional 0.11 and 0.23% heritability for the two traits, respectively. These

loci include 1p33 (lead SNP rs10493130, peBMD = 3.19 × 10−8), 5q13.2 (rs4703589,

peBMD = 4.78 × 10−8), 5q31.3 (rs9324887, pTB−BMD = 1.36 × 10−9), 6p21.32

(rs6905837, peBMD = 3.32 × 10−8), 6q14.1 (rs10806234, peBMD = 2.63 × 10−8),

7q21.11 (rs10806234, pTB−BMD = 3.37 × 10−8), 8q24.12 (rs11995866, peBMD = 6.72

× 10−9), 12p13.31 (rs1639122, peBMD = 4.43 × 10−8), 12p12.1 (rs58489179, peBMD

= 4.74 × 10−8), 12q24.23 (rs75499226, peBMD = 1.44 × 10−8), 19q13.31 (rs7255083,

pTB−BMD = 2.18 × 10−8) and 22q11.23 (rs13056137, pTB−BMD = 2.54 × 10−8). All

lead SNPs in these 12 loci are nominally significant in both original studies as well

as consistent in effect direction between them, providing solid evidence of replication.

Approximate conditional analysis identified one secondary signal in 5q13.2 (rs11738874,

pconditional = 5.06 × 10−9). Statistical fine-mapping analysis prioritized 269 CRVs. A total
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of 65 candidate genes were prioritized, including those with known biological function

to bone development (such as FGF1, COL11A2 and DEPTOR). Our findings provide

novel insights into a better understanding of the genetic mechanism underlying bone

development as well as candidate genes for future functional investigation.

Keywords: bone mineral density, genome-wide association study, osteoporosis, joint analysis, MTAG

INTRODUCTION

Osteoporosis is a common aging-related disease characterized
by low bone mass and micro-architectural deterioration of
bone tissue with a consequent increase in bone fragility and
susceptibility to fracture (1). These later complications are
associated with significant individual morbidity and related
healthcare costs. Fifteen per cent of white people over 50 years
old suffer osteoporotic fracture in their remaining lifetime, and
the projected costs expended on this disease will exceed $25
billion in the United States alone by year 2025 (2). Therefore, a
better understanding of the mechanisms underlying osteoporosis
may help to develop medications for osteoporosis prevention
and treatment.

The diagnosis of osteoporosis is made from the measurement
of bone mineral density (BMD), which is a highly heritable trait
with heritability ranging from 50 to 80% (3). Previous genome-
wide associations studies (GWAS) and their meta-analyses have
identified over 500 genomic loci for BMD, accounting for up to
20% phenotypic variation (4–17). Nonetheless, compared with
the total 36% of GWAS-attributable heritability (14), there is
still a large portion of “missing” heritability to be discovered by
enlarged GWAS or more efficient analysis.

In the present study, aiming to identify more genomic loci
that are responsible for BMD variation, we conduct a joint
analysis of 2 GWAS analyses. The first one is the largest single
GWAS study of estimated heel BMD (eBMD) in 426,824 UK
biobank (UKB) participants (17), and the second one is the
GWAS meta-analysis of total body BMD (TB-BMD) in 66,628
participants (15), which is so far the second largest study for
BMD. This analysis integrates the information from an expanded
size of over 490,000 participants, and therefore has the potential
maximal statistical power of gene mapping to date. We further
prioritize plausible functional variants and candidate genes for
future experimental validation.

MATERIALS AND METHODS

We performed a joint analysis of summary statistics from
two large-scale BMD GWAS studies. No new ethnic approval
was required.

Study Samples
Two studies were incorporated into this joint association analysis.
The first one is the single GWAS of eBMD in the UKB
cohort (N = 426,824). In brief, the UKB sample is a large
prospective cohort study of ∼500,000 participants from across
the United Kingdom, aged between 40 and 69 at recruitment.

Heel BMD was estimated based on quantitative ultrasound speed
of sound (SOS) and broadband ultrasound attenuation (BUA).
Genome-wide genotypes were available for all participants at
784,256 genotyped autosome markers, and were imputed into
UK10K haplotype, 1000 Genomes project phase 3 and Haplotype
Reference Consortium (HRC) reference panels by IMPUTE2
(18). After quality controls, 426,824 qualified participants were
used in GWAS analysis (17).

The second one is the GWAS meta-analysis of TB-BMD
in 66,628 participants from 30 studies (15). In brief, TB-BMD
was measured by dual energy X-ray absorptiometry (DXA). All
participants had genome-wide genotype data and were imputed
into the 1,000 Genomes project phase 1 or the combined 1,000
Genomes project phase 3 and the UK10K reference panel.
Almost all popular imputation methods were used across studies
(Supplementary Table 1). In their analyses, association was
performed in each individual study, and the summary statistics
across the 30 studies weremeta-analyzed by a fixed-effects model.

A total of 1,553 participants from the UKB cohort were
included in the TB-BMD study, accounting for 2.3 and 0.4%
of TB-BMD and eBMD sample sizes, respectively. Association
summary statistics for both studies were publicly available at
the genetic factors for osteoporosis consortium (GEFOS) website
(http://www.gefos.org), and were downloaded for analysis.

SNP Inclusion Criteria
The SNP inclusion criteria were same as described previously
(19). In brief, in each study, non-SNP variants and ambiguous
SNPs (i.e., multiple SNPs corresponding to one single identifier)
were excluded. In addition, SNPs presenting significant meta-
analysis genetic heterogeneity (I2 > 50% or Q p-value < 0.1) in
the TB-BMD study were excluded. After quality control (QC),
8,680,009 SNPs are available in both studies. After removing
SNPs that are not concordant between the two studies (i.e., A/G
vs. T/G polymorphisms), a total of 7,369,691 SNPs in common to
both studies were used in subsequent analyses.

Joint Association Analysis
The recently developed multi-trait analysis of GWAS (MTAG)
method was used for joint association analysis, which accounts
for sample overlap and trait heterogeneity between studies (20).
In brief, MTAG estimates per SNP effect size for each trait by
incorporating information contained in other correlated traits,
and therefore has potential to improve statistical power of
association test. MTAG takes summary statistics from multiple
studies as input. The output of MTAG contains re-estimated
effect size and p-value for each SNP in each trait.

The linkage disequilibrium score regression (LDSC) method
was applied to the MTAG results to estimate the amount of
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genomic inflation due to confounding factors such as population
stratification and cryptic relatedness (21). LDSC takes GWAS
summary statistics as input and partitions overall inflated
association statistic into one part attributable to polygenic
architecture and another part due to population stratification
and cryptic relatedness. Reference LD scores for the European
population were downloaded from the software website
(https://github.com/bulik/ldsc). The relative contribution of
confounding factors was measured by attenuation ratio (AR),
which is defined as (intercept-1)/(mean chi2−1), where intercept
and mean chi2 are estimates of confounding and the overall
association inflation, respectively (21).

Genome-wide significance (GWS) level was set to be
5.0× 10−8. An independent locus was defined as one 1-MB
region, which consists of two 500 kb regions from the lead SNP
to both directions. A novel locus was declared if it was neither
reported in previous GWAS studies nor significant at the GWS
level in eBMD or TB-BMD study.

Individual variant effect size was estimated with the formula
2f (1–f )β2, where f is allele frequency and β is regression
coefficient, which was estimated by MTAG.

Approximate Conditional Analysis
To identify additional signals in regions of association,
approximate conditional association analysis was performed
in each region using the genome-wide complex trait analysis
(GCTA) tool (22). A reference sample of 100,000 unrelated
participants from the UKB cohort was generated for estimating
LD pattern. Specifically, a total of 369,968 unrelated participants
were inferred with kinship-based inference for GWAS (KING)
software (23), from whom the 100,000 participants of the
reference sample were randomly drawn.

A recursive conditional association analysis was performed. In
each iteration, an approximate conditional analysis conditioning
on the current list of lead variants was performed. A secondary
significant variant was defined at the conditional GWS level
(conditional p < 5 × 10−8). The variant with the smallest p-
value among such identified ones was added into the list of lead
variants. Iterations of the conditional analysis were run until no
significant signal can be identified.

Statistical Fine-Mapping of Credible Risk
Variants
Statistical fine-mapping of credible risk variants (CRVs) was
performed with FINEMAP (24). FINEMAP uses GWAS
summary statistics and applies a shotgun stochastic search
algorithm to efficiently exploring a set of most important causal
configurations in the associated region. It relies on a matched
reference panel for LD estimation. Again, the above reference
panel of 100,000 unrelated UKB participants was used for LD
estimation with LDstore (25). Software parameters were set
by default. The outputs of FINEMAP include the posterior
probability of each SNP being causal. For each locus, we
sorted the posterior probabilities in an descending order, and
constructed the set of CRVs by including those SNPs whose
posterior probabilities were within one order of magnitude of the
largest posterior probability.

Candidate Gene Prioritization
We prioritized candidate genes in the identified novel loci by
annotating the CRVs for their cis-expression quantitative trait
locus (cis-eQTL) and cis-protein QTL (cis-pQTL) effects, and for
their distances to genes.

Cis-eQTL effect was assessed from two datasets. The first one
is the 44 tissues from the GTEx project (v6) (26). Pre-compiled
cis-eQTL results were downloaded from the GTEx web portal
(www.gtexportal.org/). The distance between the SNP and the
transcription starting site (TSS) of the target gene was assumed to
be <500 kb. Assuming a maximal number of 5,000 independent
variants over such a 1-MB region, significant cis-eQTL was
declared at p < 1.0 × 10−5 (0.05/5,000). The second one is
the lymphoblastoid cell lines of 373 European individuals from
the 1,000 genomes project (27). Pre-compiled cis-eQTL results
were downloaded from the study website (https://www.ebi.ac.uk/
Tools/geuvadis-das/). Significant cis-eQTL was declared under
the same criteria.

Cis-pQTL information was accessed from Sun et al. (28). In
that largest proteome study to date, the authors measured plasma
protein levels of 3,301 healthy individuals using the SOMAscan
platform (SomaLogic, Inc., Boulder, Colorado, USA) comprising
4,034 distinct aptamers (SOMAmers) covering 3,623 proteins.
GWAS summary statistics for 3,284 proteins were downloaded
from the study’s website. Cis-pQTL was searched within 500 kb
distance from a target gene. Analogously to the cis-eQTL analysis,
significant cis-pQTL was declared at p < 1.0× 10−5.

SNPs were annotated by variant effect predictor (VEP) for
their functional category (29). SNP-gene distance was annotated
by prioritization of candidate causal genes at molecular QTLs
(ProGeM) software (30). Genes nearest, second nearest and third
nearest to each lead SNP were listed.

RESULTS

Main Association Results
There are 13,753,401 and 18,259,434 SNPs in the eBMD and
TB-BMD studies. After QC, 7,369,691 SNPs present in both
studies were qualified for analysis. Genetic correlation coefficient
was reported to be 0.57 (19), implying shared BMD heritability
between the two studies. In the MTAG analysis of the eBMD
study, the intercept and mean chi-square are 1.09 and 3.30,
respectively, suggesting that 96.1% of the inflation in the mean
chi-squared statistic is from polygenic architecture rather than
from population stratification. Similarly, the intercept and mean
chi-square in the MTAG analysis of the TB-BMD study are 0.78
and 1.84, respectively, suggesting that most of the inflation is
from polygenic architecture.

The original UKB eBMD study summary statistics contain
76,400 SNPs significant at the GWS level, encompassing 659
distinct loci. In the MTAG analysis, all the 659 lead SNPs are
consistent in effect direction with original ones. Among them,
556 (84.4%) remain significant at the GWS level. Though the
other 103 lead SNPs become non-significant at the GWS level,
they are all nominally significant (p < 0.05) with p-value ranging
from 5.02 × 10−8 to 8.88 × 10−5. Of the 556 GWS significant
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SNPs, p-value at 193 (34.7%) SNPs gets smaller while those at 363
SNPs gets higher.

The original GEFOS TB-BMD study summary statistics
contain 3,842 SNPs significant at the GWS level, encompassing
68 distinct loci. In the MTAG analysis, all the 68 lead SNPs
are consistent in effect direction with original ones. Among
them, 59 (86.8%) remain significant at the GWS level, while
the other nine become non-significant at the GWS level. Only
one SNP rs1037011 becomes non-significant even at the loosely
nominal significance level (p = 0.07). Interestingly, this SNP is
GWS significant in both original studies (peBMD = 3.40 × 10−9,
pTB−BMD = 1.54 × 10−12), but the effect allele T has opposite
direction (βeBMD = 0.01, βTB−BMD =−0.04). The possible reason
for the opposite directions could be strand alignment error or
true opposite genetic effects, pending further investigation. Of the
59 GWS significant SNPs, p-value at up to 53 SNPs gets smaller
while that at the remaining 6 SNPs gets higher.

To search for additional loci, we evaluated MTAG results
of all SNPs excluding those within 500 kb of a locus that was
either GWS significant in either original study or was reported
previously. This identified 225 SNPs in the eBMD study and
15 SNPs in the TB-BMD study. To increase the confidence of
association results, only SNPs of p-value < 0.05 in both original
studies were kept, resulting in 79 SNPs in the eBMD study and
again 15 SNPs in the TB-BMD, encompassing nine and four
distinct loci, respectively. Only one locus overlapped between
the two studies, resulting in a total number of 12 distinct novel
loci. All the 12 lead SNPs are consistent in effect direction in
both original studies. Manhattan plot is displayed in Figure 1

and main results are listed in Table 1. Regional plots at all the
novel loci are displayed in Supplementary Figure 1. The 12 lead
SNPs collectively explain 0.11 and 0.23% phenotypic variance for
eBMD and TB-BMD, respectively.

In Supplementary Table 2, we listed genomic distance and
LD value (r2) between the lead SNP at each of the identified
novel loci and the nearest GWS SNP at the nearest known locus.
The results show that all pairs of SNPs are in complete linkage
equilibrium, confirming the novelty of the identified loci.

Approximate Conditional Analysis
Using GCTA, we performed an approximate conditional analysis.
In the eBMD analysis, one secondary signal was identified at
rs11738874 (pMTAG = 5.38 × 10−8, pconditional = 5.06 × 10−9).
This SNP is significant in both original studies (peBMD = 7.60 ×
10−6, pTB−BMD = 7.30 × 10−3). It is in linkage equilibrium with
the lead SNP rs4703589 (LD r2 = 0.0), indicating an independent
association signal.

No secondary associations were found in the
TB-BMD analysis.

Credible Risk Variants
With FINEMAP, we performed a statistical fine-mapping
analysis. In the eBMD analysis, 214 CRVs were prioritized at
the 12 novel loci, with an average of 18 variants per locus. The
locus with most number of variants is 12q24.23, in which up
to 38 variants were prioritized. There is one locus at 19q13.31
with only one causal variant being prioritized, which is the lead
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FIGURE 1 | Manhattan plot. X-axis represents genomic position on chromosome and Y-axis represents −log10 (P-value). For ease of presentation, Y-axis is truncated

at 15. Dotted line represents genome-wide significance level (GWS, 5.0 × 10−8). All known loci, including GWS loci in either eBMD (top) or TB-BMD (bottom) study,

and previously reported loci that were retrieved from the EBI GWAS catalog, are plotted in light gray. Newly identified loci are plotted in red.

SNP rs7255083. Its posterior probability is up to 0.87, being 15-
fold larger than that of the second variant rs2356401 (posterior
probability 0.06) (Supplementary Table 3).

In the TB-BMD analysis, 64 variants are prioritized at 12 loci,
with an average of 5 variants per locus. The locus with most
number of variants is again 12q24.23, in which 7 variants are
prioritized. No locus is found to have only one causal variant
(Supplementary Table 3).

The two sets of CRVs derived from both analyses were merged
into one single set of 269 CRVs, where 9 CRVs overlap between
the two analyses.

Newly Identified Loci/Genes
We next prioritized candidate genes based on the annotations of
cis-eQTL and cis-pQTL effects and functional categories in the
above set of CRVs.

In the 44 tissues of the GTEx (v6) dataset, 116 CRVs from 10
regions are cis-associated with the expression of nearby genes at
a variety of tissues. The two regions with no evidence of cis-eQTL
effect are 6q14.1 and 7q21.11 (Supplementary Table 4).

In the lymphoblastoid cell lines, 12 variants from four regions
are associated with nearby gene expressions, where seven variants
overlapped with the GTEx variants. There are three associated
genes that are not found in the list of GTEx prioritized genes
(Supplementary Table 4).

In the pQTL dataset, multiple SNPs at 12p13.31 are cis-
associated with TAPBPL (TAP Binding Protein Like) protein
level. The most significant association is observed at rs1639122
(p = 3.31 × 10−43), which is a mis-sense mutation in a nearby
gene CHD4 (Chromodomain Helicase DNA Binding Protein 4).
Another SNP rs11609726 at this region is also associated with one
additional protein C1RL (Complement C1r Subcomponent Like,
p= 4.36× 10−8) (Supplementary Table 5).

Combining the various annotations, a total of 65 candidate
genes were prioritized at the 12 novel loci (Table 2).

DISCUSSION

By conducting a joint association study of 2 large-scale GWAS
analyses, the present study integrated the information contained
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TABLE 2 | Prioritized candidate genes at the identified novel loci.

Locus Lead SNP CHR BP Gene

1p33 rs10493130 1 48,341,005 SLC5A9(E), SKINTL(E), SPATA6(E), TRABD2B(N)

5q13.2 rs4703589 5 72,097,351 MAP1B(E), FCHO2(E,S), TNPO1(N), ZNF366(T)

5q31.3 rs9324887 5 142,047,831 FGF1(E,N), ARHGAP26(S), SPRY4(T)

6p21.32 rs6905837 6 32,626,205 CYP21A1P(E), HCG23(E), TNXA(E), PRRT1(E), PSMB9(E), TAP1(E), COL11A2(E),

RPL32P1(E), HLA-DQB1(N), HLA-DQA1(S), HLA-DRB1(T)

6q14.1 rs10806234 6 82,685,299 IBTK(N), FAM46A(S), TPBG(T)

7q21.11 rs1019203 7 84,784,053 SEMA3D(N)

8q24.12 rs11995866 8 121,058,098 DSCC1(E), DEPTOR(E,N), COL14A1(S), DSCC1(T)

12p13.31 rs1639122 12 6,711,147 TAPBPL(E,P), MRPL51(E), LRRC23(E), CHD4(E,N), C1RL(P), LPAR5(S), NOP2(T)

12p12.1 rs58489179 12 25,525,053 LRMP(E), CASC1(E), IFLTD1(N), KRAS(S)

12q24.23 rs75499226 12 120,515,773 PRKAB1(E), TMEM233(E), CCDC64(E,N), COQ5(E), POP5(E), GATC(E), RAB35(S),

GCN1L1(T)

19q13.31 rs7255083 19 44,337,803 ZNF575(E), XRCC1(E), PHLDB3(E), LYPD3(E), PINLYP(E), ZNF283(E,N), ZNF155(E),

ZNF223(E), ZNF404(E,T), ZNF45(E), LYPD5(S)

22q11.23 rs13056137 22 23,407,261 BCR(E), RAB36(E,T), GNAZ(E,S), FBXW4P1(E), RTDR1(N)

Genes were prioritized as following: gene nearest to the lead SNP (N); gene second nearest to the lead SNP (S); gene third nearest to the lead SNP (T); gene with mRNA level in

association with one or more CRVs (cis-eQTL, E); gene with protein level in association with one or more CRVs (cis-pQTL, P).

in over 490,000 participants, making it the largest BMD GWAS
analysis to date. As a result, 12 new genomic loci were identified,
demonstrating the enhanced statistical power.

Because the two integrated traits are not same, naive meta-
analysis is not applicable. Instead, we used the recently developed
method MTAG for integration analysis. MTAG is applicable to
analyzing genetically correlated traits. It uses two sources of
information to integrate association signals. The first one is that
the true effect of target SNP is correlated across traits, and the
second one is that the estimation error of the SNP’ effects is
correlated across traits (20).When twoGWAS summary statistics
datasets have overlapped individuals, for example, shared control
individuals, MTAG is indeed capable of handling this relatedness.
It accomplishes this by applying the bivariate LD score regression
to estimating the correlation in GWAS estimation error due to
sample overlap. In our analysis, 1,533 participants overlapped
between the eBMD and the TB-BMD studies, accounting for
0.36% of the total UKB participants. This tiny portion of overlap
is not expected to have a major effect on the results, let alone that
MTAG analysis took the overlap into account.

We were able to identify only one bone-related dataset, which
is the lymphoblastoid cell lines. Only 12 CRVs from this dataset
were found to exert cis-eQTL activity. The use of the 44 GTEx
tissues was not motivated by their specific relationship to BMD,
but was by a maximal coverage of available cis-eQTL SNPs.
Because while some cis-eQTL activities are tissue-specific, some
others are common across tissues. For example, Of the 12 cis-
eQTL variants identified from the lymphoblastoid cell lines,
seven overlapped with the GTEx cis-eQTL variants, implying
that a considerable portion of cis-eQTL sites were common
across tissues.

The prioritized candidate genes include those being linked
to bone biology in previous literature. At 5q31.3, for example,
the lead SNP rs9324887 is located in the intron of FGF1
(Fibroblast Growth Factor-1) gene and is associated with its

expression. FGF1 is a member of the FGF signaling pathway
that participates in the regulation of bone development (31).
Local and systemic FGF1 increases new bone formation
and bone density. It also appears to restore bone micro-
architecture and prevent bone loss associated with estrogen-
withdrawal (32). At 6p21.32, COL11A2 (Collagen Type XI
Alpha 2 Chain) is one of the prioritized genes by cis-eQTL
analysis. It is a member of the collagen family of extracellular
proteins. It is a critical positive factor in the regulation of
extra cellular matrix (ECM), which mineralizes to bone (33,
34). At 8q24.12, two genes DSCC1 (DNA Replication And
Sister Chromatid Cohesion 1) and DEPTOR (DEP Domain
Containing MTOR Interacting Protein) were prioritized. It was
only recently that DEPTOR was found to play a novel function
in osteogenic differentiation by inhibiting MEG3-mediated
activation of BMP4 signaling, suggesting its involvement in
osteoporosis (35).

In addition to those established candidate genes to bone
biology, we also prioritized multiple candidate genes with no
known function to bone metabolism. Among them, SEMA3D
(Semaphorin 3D) at 7q21.11 belongs to a member of the
semaphorin III family of secreted signaling proteins that
are involved in axon guidance during neuronal development
(36). Despite the lack of evidence for its involvement in
bone development, one of its paralogs, SEMA3A (Semaphorin
3A), is found to regulate bone remodeling indirectly by
modulating sensory nerve development instead of by acting
on osteoblasts (37). In addition, SEMA3A and SEMA3E
(Semaphorin 3E), are also reported to be associated with
hypogonadotropic hypogonadism (38, 39). Hypogonadotropic
hypogonadism is known to regulate bone density (40). These
lines of evidence imply SEMA3D may have a regulatory role on
bone development.

In conclusion, by conducting a joint analysis of two large-
scale genome-wide association study and meta-analysis, we have
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identified 12 novel loci associated with BMD. Our findings
provide candidate genes for future functional investigations and
for a better understanding of the genetic mechanism underlying
bone development.
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