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Editorial on the Research Topic

Steroids and the Brain

Steroids contain the perhydrocyclopentanophenanthrene ring in their chemical nuclei. In
vertebrates, steroids are synthesized in gonads, adrenal, and other endocrine glands and secreted
into general circulation as hormones. Steroids and their receptors play significant roles in broad
functions of the brain, such as regulation of socio-sexual behavior, aggression, neurogenesis,
learning and memory, stress, cognition, mood and emotion. However, the brain is not only a target
of steroids action but may also be the site of de novo synthesis from cholesterol or their precursors
entering the brain. Malfunctions of steroid synthesis and signaling are related to a variety of human
disorders such as gender dysphoria, anxiety, depression, autism spectrum disorder, and aging
related diseases notably Alzheimer’s, among others. Therefore, this Research Topic aimed to collect
knowledge in all aspects of steroid function in the brain from an evolutionary to physiological and
pathological standpoints, which may bring new insights into steroid actions. The subtopics include
neurosteroids, sex steroids and sexual dimorphism, learning, memory, various neuropsychiatric
disorders, stress and steroids, and endocrine disrupting chemicals.

NEUROSTEROIDS

Neurosteroids are metabolic steroids synthesized from cholesterol in the central and the peripheral
nervous systems (1, 2). The first article, a perspective of Steroids and Brain, is written by Baulieu
who was the first to discover local synthesis of steroids in the brain (3). This perspective specifically
reports onMAP4343, a synthetic pregnenolone-derivative. Additionally discussed is FKBP52, a key
protein component of hetero-oligomeric steroid receptors, which interacts with Tau protein, thus
playing important roles in Alzheimer’s disease and other dementias.

The second article by Diotel et al. reviews neurosteroidogenesis and signaling of estrogen,
progestogen, and androgen in the brain of fish, birds, and mammals and discusses the roles
of sex steroids in neurogenesis, neuroprotection, and sexual behavior (4). This review further
probes how steroids and lipoproteins are transported between the periphery and the brain. The
authors emphasize the beneficial effects of steroids and lipoproteins against ischemic stroke, also
highlighting their potential anti-inflammatory, antioxidant, and neuroprotective properties.

The third article by Da Fonte et al. is an original research article that reports on secretoneurin
A (SNa) and regulation of goldfish radial glial cells (RGCs). The neuropeptide SNa is derived from
proteolytic processing of the secretogranin-2 in magnocellular cells within the RGC rich preoptic
nucleus. Radial glial cells are the main macroglia and have established roles in neuroesgtogen
synthesis as the only site for aromatase B expression in the teleost brain, a characteristic linked
to neurogenesis (5). Their previous study indicated that SNa inhibits the expression of aromatase
B that converts estrogens from androgen in RGCs (6). The new results based on transcriptomic
analysis suggest additional roles for SNa in the control of cell proliferation and neurogenesis.
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The next original research article by Ulhaq and Kishida
investigated the role of aromatase B (7) in the development of
serotonergic neurons. Aromatase B is highly expressed during
early development of the zebrafish brain. Early development
of serotonergic neurons is also considered to play important
roles in neurogenesis. In this article, they tested the effect of
estradiol administration and morpholino mediated aromatase
B knockdown in zebrafish embryos and larvae. Their results
suggest that neuroestrogen synthesis sustains early development
of serotonergic neurons.

Brain-derived steroids also act locally to affect socio-
sexual behaviors (8) and locomotor movements associated
with migration (9). Wingfield et al. discuss how and why
neurosteroid production evolved and why peripherally produced
steroids do not always fulfill central roles. Their investigations
on free-living animals suggest that neurosteroids may have
evolved to regulate specific behavior throughout the year
independently of different life history stages. They highlight
two examples. The first is the control of territorial aggression
of songbirds in autumn by sex steroid production from
circulating precursors such as dehydroepiandrosterone
(DHEA) or de novo in the brain. The second example
is the production of 7α-hydroxypregnenolone within
the brain that appears to affect locomotor behavior in
several contexts.

SEX STEROIDS AND SEXUAL

DIMORPHISM

Sex steroids coordinate the development and maintenance
of the central nervous system. In the first article of this
subtopic, Larson discusses the relationship between sex steroids
and neuroinflammation, and the impact on neuropsychiatric
and neurodegenerative disorders (10). She highlights the
complex interactions between sex steroids, neuroinflammation,
and regeneration of the central nervous system through
adult neurogenesis.

Sex steroids also play key roles in the regulation of
social recognition, reproductive behavior and parental
care, which are highly sexually dimorphic. However,
contribution of sex steroids in modulating adult neurogenesis
in the forebrain ventricular-subventricular zone that
continuously generates new neurons throughout life is
underestimated (11). Ponti et al. review the literature
describing sexual dimorphism and sexual differences across the
physiological phases.

Steroids play important roles in sexually dimorphic brain
development during perinatal and pubertal periods. It was
previously demonstrated that estrogen receptor α and
aromatase genes are essential to sexual differentiation of
the anteroventral periventricular nucleus (AVPV) and the
principal nucleus of the bed nucleus of the stria terminalis
(BNSTp) in mammals (12, 13). Androgen receptor gene
is also essential to sexual differentiation of the BNSTp.
Kanaya et al. studied if these genes are sexually differentially
expressed in the AVPV and BNSTp during puberty. Their

results suggest that testicular testosterone may affect the
formation of male BNSTp during puberty via androgen
receptor and estrogen receptor α after conversion to estradiol
by aromatase.

Cao et al. review sex differences in glutamatergic synaptic
inputs and intrinsic excitability of rat medium spiny neurons,
the output neurons of the striatum (14). They also review
evidence for estradiol-mediated sexual differentiation in the
nucleus accumbens core (15). The striatal brain regions including
the caudate-putamen, nucleus accumbens core and shell are
interesting because they express membrane-associated but
not nuclear estrogen receptors. The authors conclude that
striatal brain regions exhibit heterogeneity in sex differences in
electrophysiological properties.

Although estrogens play important roles in sexual
dimorphism of the brain, whether and how estrogens regulate
the cerebral cortex are not fully understood. Denley et al.
review evidence that estrogens regulate the molecular machinery
required for fine-tuning the processes central to the cortex
(16). The authors also discuss how estrogens regulate the
function of the key molecules and signaling pathways involved
in corticogenesis and highlight whether these processes are
sexually dimorphic.

Funabashi et al. hypothesize that transsexual humans
produce different gonadotropin levels in response to sex
steroids stimulation, because the bed nucleus of the stria
terminalis was suggested to be involved in gender identity
and this brain area is involved in gonadotropin secretion
(17). The authors examined if estrogen combined with
progesterone leads a change in gonadotropin secretion in
female-to-male, male-to-female transsexual, and control subjects.
Their results suggest that the brain area related to gender
identity may also be involved in gonadotropin secretion
in humans.

The next original research article by Sano et al. investigated
the role of estrogen receptor β in the dorsal raphe nucleus
on female sexual behavior in mice. Previously, the authors
showed that estrogen receptor β may have an inhibitory role
in lordosis behavior of female mice (18). This study focused
on the dorsal raphe nucleus that expresses estrogen receptor
β in higher density than estrogen receptor α (19). Specific
knock down of estrogen receptor β in the dorsal raphe nucleus
showed the inhibitory role of estrogen receptor β in this
nucleus on sexual behavior on the day after estrous in cycling
female mice.

The last article of this subtopic discusses retinal disorders
by Nuzzi et al. Epidemiological studies and research articles
indicate a correlation between many retinopathies and sex due
to potential effects of sex steroids against the development
of certain disorders (20). For example, macular holes are
more common in women than men, particularly in post-
menopausal women. The course of retinitis pigmentosa
appears to be ameliorated by progestin therapy. Diabetic
retinopathy appears to be more common among men
than women. The authors conclude that sex steroids may
be useful for the treatment of eye diseases, particularly
retinal disorders.
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LEARNING, MEMORY, AND VARIOUS

NEUROPSYCHIATRIC EFFECTS

Original research by Jakob et al. concerns the interactions of
estrogen and the genotype of dopamine transporter (DAT1)
in reinforcement learning in humans (21). The authors
assessed how the natural rise of 17β-estradiol (E2) in the
late follicular phase and the 40 base-pair variable number
tandem repeat polymorphism of DAT1 affects reinforcement
learning capacity. Their data suggest an interaction of DAT1
genotype and the transient hormonal state. They found
that carriers of the 9-repeat allele experienced a significant
decrease from early to late follicular phase in the ability to
avoid punishment.

Ratner et al. extend their discovery of positive and negative
neurosteroid allosteric modulators of GABA type-A, NMDA,
and non-NMDA type glutamate receptors (22, 23) toward a
state-of-the art view of how modulation of neural circuitry may
affect memory and memory deficits. They conclude that the
effects of neurosteroids on neural networks across the life span
of males and females point to an underlying pharmacological
connectome that may modulate memory across diverse altered
states of mind.

The article by Hojo and Kawato reviews the local production
of sex steroids in the hippocampus, a center for learning and
memory in adult rodents. Hippocampal principal neurons have
a complete system for sex steroids biosynthesis in males. Another
recent study from the same group clarified that the levels of
hippocampal steroids fluctuate across the estrous cycle in adult
female rats (24). They also introduce a direct evidence of the
role of hippocampal neurosteroids in hippocampal function
including neurogenesis, long-term potentiation, and memory
consolidation (25).

Hippocampal sex steroids including 5α-dihydrotestosterone
(DHT), testosterone (T), and E2 rapidly modulate dendritic
spines, which is essential for synaptic plasticity and memory
(26). Soma et al. investigated the possible involvement of Src
tyrosine kinase in the rapid changes of dendritic spines in
response to DHT, T, and E2 using hippocampal slices of adult
male rats. DHT, T, and E2 increased the total density of spines,
and differentially modified the morphology of spines. However,
a Src tyrosine kinase inhibitor completely blocked the increases
in spine numbers induced by these steroids, indicating that Src
kinase is essentially involved in non-genomic modulation of
spine density and morphology induced by sex steroids.

Domonkos et al. reviewed the effects of T on anxiety during
development in rodents (27). It was found that females are
less anxious than males from puberty to middle age. Early
organizational effects of T may influence anxiety-like behavior of
females and males. However, it may be modified by activational
effects of T and its metabolites. They conclude that the effects
of sex steroids leading to anxiogenesis or anxiolysis depend on
factors that affect hormonal status, such as age (28).

Aggression is an essential social behavior that increases
survival and reproductive fitness. Munley et al. discuss the
neuroendocrine mechanism of aggression in Siberian hamsters

which display robust neural, physiological, and behavioral
changes across seasons. The authors showed considerable
evidence that DHEA, an adrenal hormone precursor, is
important in maintaining aggression during the non-breeding
season both in male and female hamsters (29). They conclude
that adrenal DHEA likely serves as an essential precursor for
neural androgen synthesis during non-breeding season (30).

Previously, it was found that E2 replacement in
ovariectomized female rats reduced seizure related damage
in the sensitive hilar region of hippocampal dentate gyrus (31).
Iacobas et al. determine the protective effects of E2 against
kainic acid-induced status epilepticus associated transcriptome
alterations in the dentate gyrus of ovariectomized female rats.
Their results suggest that the estrogen signaling pathway acts
like a buffer against status epilepticus induced alteration of
neurotransmission, which possibly contributes to E2 mediated
maintenance of brain function after status epilepticus in post-
menopausal women.

Tobiansky et al. highlight how androgens alter behavioral
flexibility, decisionmaking, and risk taking in their review article.
After reviewing the neuroanatomy of the mesocorticolimbic
system, they present evidence that androgen and other steroid
receptors are present in the mesocorticolimbic system (32).
They then describe evidence for local androgen synthesis in
mesocorticolimbic regions (33). This review also describes
how androgens modulate the neurochemistry and structure of
the mesocorticolimbic system, especially the dopaminergic
system. Finally, they discuss how androgens influence
executive functions.

It has been observed that pervasive age-related dysfunction in
hypothalamic-pituitary-gonadal axis is associated with cognitive
impairments in aging and age-related neurodegenerative diseases
such as Alzheimer’s disease. Although estrogen modulates
cognition, the effect of estrogen replacement therapy on
cognition and disease diminishes with advancing age. Bhatta et al.
highlight the important role for luteinizing hormone in brain
function (34, 35).

STRESS AND STEROIDS

Pinna explains that the endocannabinoid system
and the biosynthesis of neuroactive steroids are
involved in the neuropathology of post-traumatic
stress disorder (PTSD) and major depressive disorders.
The author suggests that establishing a biomarker
axis for PTSD is useful to define the disorder (36).
Allopregnanolone biosynthesis is downregulated in
PTSD patients and stimulation of neurosteroidogenesis
may be a useful strategy to treat PTSD. The author
claims that peroxisome-proliferator activated receptor-
α can be a target of the endocannabinoid system to
enhance neurosteroidogenesis.

The article by Frost et al. is an original research on the
effect of childhood emotional abuse on the associations of
corticomotor white matter structure and stress neuromodulators
in women with and without depression. Although experience
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of adversity alters the activity of the sympathetic nervous
system and the hypothalamic-pituitary-adrenal axis, the
underlying neural pathways are not understood well (37).
The authors investigated 74 women who exhibit depression
severity and/or childhood emotional abuse. They used
diffusion tensor imaging to examine if the structure of
white matter predicts differences in the interaction of the
sympathetic nervous system and the hypothalamic-pituitary-
adrenal axis as a function of early adversity. Their findings
suggest that corticomotor projections may be a key to
altered neural circuitry in adults with history of childhood
emotional abuse.

van Campen et al. studied if stress and corticosteroids
aggravate morphological changes in the dentate gyrus of the
hippocampus after early-life febrile seizures in mice. It is
suggested that stress is a seizure precipitant in patients with
epilepsy (38). The authors investigated the consequences of
ear corticosteroid exposure for epileptogenesis in mice. They
investigated structural and functional plasticity in the dentate
gyrus, such as changes in neurogenesis, morphology, mossy
fiber sprouting, glutamatergic postsynaptic currents, and long-
term potentiation. The results show that corticosterone exposure
during early epileptogenesis elicited by experimental febrile
seizures aggravates morphological but not functional changes in
dentate gyrus.

Metabolism of glucocorticoids occurs in the brain by
the actions of 11β-hydroxysteroid dehydrogenases (11β-
HSD1, 11β-HSD2) (39). Rensel et al. measured 11β-HSD1,
11β-HSD2, glucocorticoid, and mineralocorticoid receptor
(GR, MR) expressions in the songbird brain. 11β-HSD2,
GR, and MR mRNAs were expressed throughout the
adult brain. 11β-HSD2 expression covaried with GR and
MR mRNAs in several brain regions. Although 11β-
HSD1 mRNA was undetectable in the adult brain, the
brain of developing bird expressed low levels of 11β-
HSD1 mRNA. These results suggest that 11β-HSD2
protects the adult songbird brain by rapid metabolism
of glucocorticoids.

ENDOCRINE DISRUPTING CHEMICALS

Bisphenol A (BPA) is a xenoestrogen, which is widely
used in plastic products and considered an environmental
endocrine disruptor. It is thought that BPA affects normal brain
development by interfering with neuronal differentiation because
steroids play significant roles in brain development. Fujiwara
et al. investigated the effects of BPA and bisphenol F [BPF, (40)],
an alternative chemical of BPA, on neural differentiation using
a human fetus-derived neural progenitor cell-line. Their results
showed that BPA but not BPF decreased β III-tubulin mRNA and
β III-tubulin, suggesting that BPA potentially disrupts human
brain development.

The last article by Ubuka et al. searched for BPA responsive
genes in the rat brain to understand modifications to
neurodevelopmental processes and behavior in later life.
They used transgenic rats carrying enhanced green fluorescent
protein tagged to gonadotropin-inhibitory hormone (GnIH)
promotor (41). GnIH is a hypothalamic neuropeptide that
has inhibitory effects on gonadotropin secretion and behavior
(42, 43). They found upregulation of transmembrane protease
serine 2 (Tmprss2) and downregulation of Forkhead box A1.
Tmprss2 immunoreactivity was observed in 26.5% of GnIH
neurons in the hypothalamus of 3-day-old male rat. Their results
suggest that BPA disturbs the neurodevelopmental process
and behavior by modifying Tmprss2 and Foxa1 expressions in
the brain.
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