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INTRODUCTION

The recent looming pandemic of Coronavirus disease 2019 (COVID-19) is caused by the novel
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which has 80% homology with
SARS-CoV-1 and 50% homology with the Middle East respiratory syndrome (MERS) viruses,
both pathogens most likely originating from bats (1). While up to 80% of COVID-19 patients
experience mild symptoms or remain asymptomatic, ∼20% of them develop pneumonia that in
nearly one third of cases presents as acute respiratory distress syndrome (ARDS) leading to severe
hypoxia and possibly death (1). The risk of ARDS and mortality are increased in the presence of
concomitant comorbidities like diabetes mellitus (DM). Herein, we propose that the Receptor for
Advanced Glycation End Products (RAGE) and its ligands may play a pivotal role in COVID-19
pneumonia and ARDS, particularly in DM patients. While this paper was in preparation others
have hypothesized a role for RAGE axis in COVID-19 pathogenesis and lung inflammation (2–4).
In this opinion article, we extend these studies, and propose that targeting RAGE signaling system
may hold potential in the clinical management of COVID-19 DM patients.

PATHOGENESIS OF COVID-19 RELATED MORTALITY

In the majority of patients, a finely tuned, and spatio-temporally coordinated response of both
local innate and systemic adaptive immunity effectively clears SARS-CoV-2-infection. However,
the cytopathic effect of the virus at the level of alveolar cells and vascular endothelium may induce
massive pyroptosis, an inflammatory form of cell death linked to caspase 1 dependent activation of
proinflammatory cytokines IL-1β and IL-18 by the NLR family pyrin domain containing 3 (NLRP3)
inflammasome (5). In a minority of patients, a dysfunctional immune response occurs, leading to
ARDS, multiorgan failure, and death, anticipated by the massive release of interleukin-17 (IL17),
IL22, IL6, tumor necrosis factor-α (TNF), and other cytokines/chemokines. This so-called cytokine
storm is associated with unbalanced immune responses including lymphocytopenia, impaired T
cell function and deregulated Th17 cells differentiation, which leads to enhanced recruitment and
activity of neutrophils and macrophages (1). In particular, IL6 tends to progressively increase in
patients with severe ARDS; these patients may benefit from the treatment with anti-IL6 antibodies,
such as Tocilizumab (6). Notably, an important component of ARDS is a lung-centric intravascular
coagulopathy, which may evolve to multiorgan dysfunction with impaired microcirculatory
function, thrombotic manifestations, and more rarely to disseminated intravascular coagulation
(7, 8). Consistently, anticoagulation therapy with low molecular weight heparins (LMWH) is
associated with decreased mortality in these patients. However, LMWHs may not be sufficient to
revert pulmonary intravascular coagulopathy (7, 8).

https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://doi.org/10.3389/fendo.2020.00526
http://crossmark.crossref.org/dialog/?doi=10.3389/fendo.2020.00526&domain=pdf&date_stamp=2020-07-14
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:ernestina.defrancesco@unict.it
mailto:antonino.belfiore@unict.it
https://doi.org/10.3389/fendo.2020.00526
https://www.frontiersin.org/articles/10.3389/fendo.2020.00526/full
http://loop.frontiersin.org/people/558986/overview
http://loop.frontiersin.org/people/113061/overview
http://loop.frontiersin.org/people/20871/overview


De Francesco et al. COVID-19 and Diabetes

On the basis of these observations, an unopposed
inflammatory response mediated by hyperactivated immune
effectors may play a key pathogenic role in ARDS of
COVID-19 patients.

When it comes to unwarranted host immune response of
COVID-19, lessons from studying bats are to be learnt. Bats
are unique natural hosts for a number of RNA viruses with
high pathogenic potential for humans, including SARS-CoV-1,
and MERS related coronavirus. Notably, bats’ ability to host
these pathogens showing minimal or no signs of disease
seems to be associated with a peculiar enhancement of innate
immunity provided by constitutive expression of IFN-α and
IFN-stimulated genes (9). Moreover, bats’ extraordinary lifespan
and viral tolerance, which seem to have evolved as protective
mechanisms against flight-induced metabolic stress, appear to
be related to a better overall execution of anti-inflammatory
responses. Indeed, after viral infection, bats dampen excessive
inflammation associated with the production of IL1β and IL18
by the NLRP3 inflammasome (10). Therefore, the enriched and
highly competent innate immunity of bats halts the spread of
pathogens and simultaneously freezes inflammatory pathways,
thereby permitting a better control of infectious diseases.

Bringing this relevant piece of information back to the
current pandemic might be useful to elaborate a therapeutic
strategy in order to cope more efficiently with the severe clinical
manifestations of COVID-19.

DIABETES MELLITUS AS RISK FACTOR
FOR COVID-19 MORTALITY

In COVID-19 patients, the development of severe ARDS is
associated with advanced age, hypertension, severe obesity, and
DM (1). In particular, a recent metanalysis indicates that DM
significantly increases the risk of Intensive Care Unit (ICU)
admission (OR: 2.79) as well as mortality (OR: 3.21) (11). The
majority of DM patients suffer from Type 2 DM (T2DM) which is
typically associated with obesity, insulin resistance, and multiple
alterations of both the innate and adaptive immune responses
(12, 13). Corroborating the role of dysregulated innate immunity
in the progression of T2DM, peripheral blood mononuclear cells
from diabetic patients have increased Th17 cytokine production,
owing to dysregulated fatty acid oxidation occurring in these
patients (14).

Moreover, T2DM patients are affected by chronic low-
grade inflammation and endothelial dysfunction characterized
by increased vessel permeability, and enhanced thrombotic
propensity (15), these inflammatory-driven conditions are
persistently supported by chronic hyperglycemia.

In this intricate scenario, RAGE, and its ligands have been
involved in weight gain, insulin resistance, poor glycemic
control, and inflammation, contributing to T2DM progression.
Moreover, this complex signaling system does play a pivotal role
in innate immunity, thereby representing one the first barriers
against pathogens. However, unrestrained RAGE signaling
supports and propagates inflammation thereby triggering
tissue damage.

RAGE AND ITS LIGANDS AS KEY
REGULATORS OF THE INNATE IMMUNITY
AND INFLAMMATION AND THEIR ROLE IN
DM

RAGE has been named for its ability to bind advanced glycation
end products (AGEs) that are found at increased levels in
patients with hyperglycemia and contribute to chronic vascular
complications of DM patients (16). In fact, AGEs-mediated
RAGE activation is a major trigger of chronic endothelial
dysfunction characterized by vascular hyper-permeability,
increased of leucocytes adhesion, extravasation, and consequent
acquisition of procoagulant status (17).

Moreover, RAGE is a transmembrane pattern recognition
receptor (PPR) and a critical component of the innate immune
system with the remarkable ability to bind numerous ligands
including exogenous pathogen-associated molecular patterns
(PAMPs), and danger-associated molecular patterns (DAMPs)
released by cells undergoing damage or death (18).

Notably, RAGE is constitutively expressed at high levels
only in the lung, at the basal membrane of type 1 alveolar
epithelial cells (19), where it may contribute to cell adhesion and
morphology that are functional to gas exchange. Its expression
in type 2 alveolar epithelial cells is more controversial. In other
cells, including endothelial cells, airway smooth muscle cells,
vascular smooth muscle cells, neurons, and immune cells, RAGE
expression is induced by inflammation and by local expression
of RAGE ligands in a feed-forward loop that perpetuates
inflammation. In the absence of ligands, RAGE may preassemble
in multimeric complexes that are a prerequisite for activation and
that are stabilized by ligand binding (20, 21). In DM patients
RAGE is upregulated and chronically activated by AGEs (16).

Besides AGEs, RAGE binds also several other ligands
(Figure 1), among which protein HMGB1 (high mobility group
box 1) and S100/calgranulin proteins have been extensively
characterized. HMGB1 and S100 share the ability to be passively
released from damaged cells and to be actively secreted by
immune cells, such as macrophages, natural killer cells, and
dendritic cells. Both classes of proteins contribute to the
inflammatory response by binding to RAGE and members of the
Toll-like Receptors (TLRs) family.

In particular, RAGE activation triggers the NF-κβ-mediated
transcription of inflammatory genes, together with the activation
of the NRP3 inflammasome. These events may ultimately
lead to pyroptosis, which determines the release of further
mediators from dying cells and the propagation of the initial
damage (10, 22).

RAGE AND LIGANDS IN PNEUMONIA AND
ARDS

Direct evidence that RAGE may play a detrimental role in
pathogen-induced pneumonia in the context of DM come by
recent studies assessing that diabetic mice challenged with
Gram-negative bacteria (GNB) show excess mortality from
pneumonia (23) that was associated with RAGE mediated
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FIGURE 1 | Schematic representation of the activation of RAGE axis in Sars-Cov-2 infected cells in DM patients. Hyperglycemia enhances the production of RAGE

ligands that prompt viral replication and increase RAGE signaling activation thus contributing to NRLP3 inflammasome priming and activation. Cytokine production

and HMGB1 passive secretion contribute to dysregulated immune cell responses like M1 macrophages polarization, NETs formation, altered Th17 lymphocytes

differentiation, thus paving the way for the cytokine storm. The preexisting endothelial dysfunction of DM patients and the ability of HMGB1 to activate platelets

contribute to the pathogenesis of lung-centric and eventually multiorgan intravascular coagulopathy. Side panel shows druggable targets of molecular and clinical

intervention. Targeting the RAGE pathway may represent a useful and feasible strategy for controlling severe ARDS and coagulopathy, particularly in DM patients.

DPP4, Dipeptidyl-peptidase 4; SGLT2, Sodium-Glucose Cotransporter 2; LMWH, Low Molecular Weights Heparins.

hyperinflammation. Accordingly, RAGE blockade improved
survival of only diabetic mice during GNB infection (23).
Moreover, accumulating evidence suggest that RAGE and its
ligands play a significant role also in viral pneumonia and
in ARDS.

HMGB1 is also upregulated by hyperglycemia and appears
to play a major role in lung inflammation especially in the
context of DM. In a mouse model of DM, HMGB1 was found to
maintain lung inflammation through the RAGE/AKT1/β-catenin
pathway (24). Moreover, HMGB1 is implicated in deregulated
differentiation of Th17 cells and, by binding to RAGE, increases
the expression of NLRP3 inflammasome components, and of
IL1β (25).

In pneumonia and ARDS, HMGB1 is emerging as a biomarker
of mortality risk, whereas in child pneumonia HMGB1 permits
to discriminate between coinfection (bacterial and viral) vs.

single infection. Adding pieces to this puzzle, circulating levels
of soluble RAGE (sRAGE, a decoy receptor) positively correlate
with ARDS severity and mortality risk, whilst sRAGE drop is
associated with disease resolution (18, 19). Therefore, monitoring
the levels of sRAGE and ligands may represent an appropriate
tool for predictive/prognostic purposes.

Notably, RAGE, HMGB1, and S100 proteins have all
been involved in coagulation disorders. In particular, HMGB1
directly stimulates platelets through TLR4, and RAGE, while
S100 proteins released from neutrophils and platelets facilitate
thrombus formation through RAGE activation (26). In turn,
vascular damage induces huge release of HMGB1 from platelets
(27). Moreover, HMGB1 and hyperglycemia prime neutrophils
for the formation of NETs (Neutrophil Extracellular Traps),
complex webs of chromatin and antimicrobial proteins released
by neutrophils in an attempt to contain infections (28).
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However, unrestrained NETs release, which may especially occur
in COVID-19 patients receiving mechanical ventilation (29),
may contribute to the propagation of inflammation and the
establishment of microvascular thrombosis (30). Reinforcing this
self-perpetuating loop, NETs themselves may act as a source of
HMGB1 (31), which enhances also vascular permeability (32).
Of note, endothelial cells (EC) are a direct target of SARS-CoV-2
infection that induces a widespread endotheliitis characterized by
acute ECs dysfunction/death and vascular leakage (33). Together,
these observations suggest that chronic EC dysfunction of DM
patients predispose to further EC damage by SARS-CoV-2
infection (34) and that RAGE is an important molecular hub in
this context.

POSSIBLE ROLE OF RAGE IN SARS-COV-2
CELL ENTRY

Finally, there are evidence that, besides binding to the main
receptor ACE2 (35), SARS-CoV-2 spike protein may bind also
to CD147 glycoprotein (36), a multiligand protein that is
upregulated by hyperglycemia and by RAGE activation (37).
CD147 is highly expressed in type II pneumocytes and in a wide
range of other cells, including immune cells, endothelial cells,
and platelets. Interestingly, CD147 is involved in hyaluronan
production, which has a key role in COVID-19 pneumonia
and elicits pro-inflammatory and pro-thrombotic actions (38).
AGEs—induced CD147 glycosylation in endothelial cells may
increase the activity of metalloproteinases (MMPs) and loosen
tight junctions. These findings raise the intriguing possibility
that RAGE activation may play a role also in viral invasion to
host cells.

THERAPEUTICAL PERSPECTIVES

These considerations raise important questions concerning the
best therapeutic management of COVID-19 DM patients. Recent
evidence indicates that a tighter glucose control is associated
with a better outcome and reduced mortality (39, 40). Further
studies are actually needed to ascertain whether plasma levels of
AGEs, sRAGE, HMGB1, and S100 proteins in DM COVID-19
patients are differentially affected by conventional vs. intensive
insulin therapy and are predictive of patients’ outcome. An
encouragement to chase this track more in depth comes from the
observation that in non-COVID-19 critically ill hyperglycemic
patients admitted at ICU, plasma levels of sRAGE are higher
in DM vs. non-DM patients, and reduced by intensive insulin
therapy only in DM patients (41). In a similar series of patients,
sRAGE levels were associated with circulatory and kidney failure
and a higher rate of mortality but were not affected by insulin
therapy (42).

Targeting RAGE axis to get a better control of
COVID-19-related inflammation has been very recently
proposed by independent investigators (2–4). We suggest that
COVID-19 DM patients could be the subset most likely to get
the highest therapeutic advantage from these strategies.

In this context, several pharmacological approaches are
immediately available for controlling aberrant RAGE activation
(Figure 1), although none of them has been purposely evaluated
in patients with COVID-19 pneumonia and ARDS, with or
without DM.

The small molecule azeliragon is an orally bioavailable
and overall well-tolerated RAGE inhibitor that prevents the
interactions with ligands. Additional FDA-approved drugs are
known to disrupt RAGE signaling (Figure 1), thus suggesting
that a drug repositioning effort could provide a fast track for
controlling at least some of the negative outcomes associated with
severe ARDS.

However, it should be noted that chloroquine, currently
used in COVID-19 therapy, inhibits HMGB1 release especially
in DM patients (43). In this last clinical setting, interfering
with the HMGB-1/RAGE axis could serve as a further tool in
combination strategies with IL-6 receptor mAbs, as HMGB-
1/RAGE interaction contributes to IL6 expression (44).

Moreover, LMWHs, such as 2-O,3-O-desulfated heparin
(ODSH), are able to inhibit interaction of RAGE with HMGB1
and S100 calgranulins (45). Enoxaparin may also elicit similar
effects on HMGB1 (46). Accordingly, in experimental models
the use of neutralizing anti-HMGB1 monoclonal antibody
confers protection against lung injury and pneumonia, including
pneumonia from influenza virus (47).

Additionally, thrombomodulin (TM) a protein expressed by
the vascular endothelium that interacts with various proteins
and inhibits coagulation and inflammation, has been shown to
bind and block HMGB1 binding to RAGE (48). Administration
of soluble recombinant TM (srTM) has shown some benefit
in a mouse model of surgical ARDS via suppression of
HMGB1 (49). In humans, administration of srTM significantly
reduced 28-day mortality in patients with sepsis-associated
coagulopathy (50).

Recently, human recombinant soluble (s)ACE2 has been
shown to inhibit the early stages of SARS-CoV-2 infections (51).
As ACE2 has a protective role in lung injury (52, 53) and it may
downregulate HMGB1 (54), the use of sACE2might be beneficial
also at later stages of COVID-19.

DISCUSSION

Several mechanisms have been implicated for the increased
risk of DM patients to develop severe COVID-19 disease
(11). For the first time, we suggest that chronically activated
RAGE/RAGE ligands axis, may be an additional and important
mechanism. The RAGE system is a critical player in innate
immunity and coagulation homeostasis, therefore, there is hope
that targeting this system could halt the cytokine storm and the
thrombotic manifestations associated with dysregulated immune
responses to SARS-CoV-2 infection, especially in DM patients.
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