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Several studies suggest that the assembly of mitochondrial respiratory complexes into

structures known as supercomplexes (SCs) may increase the efficiency of the electron

transport chain, reducing the rate of production of reactive oxygen species. Therefore, the

study of the (dis)assembly of SCs may be relevant for the understanding of mitochondrial

dysfunction reported in brain aging and major neurodegenerative disorders such as

Alzheimer’s disease (AD) and Parkinson’s disease (PD). Here we briefly reviewed the

biogenesis and structural properties of SCs, the impact of mtDNA mutations and

mitochondrial dynamics on SCs assembly, the role of lipids on stabilization of SCs and

the methodological limitations for the study of SCs. More specifically, we summarized

what is known about mitochondrial dysfunction and SCs organization and activity in

aging, AD and PD. We focused on the critical variables to take into account when

postmortem tissues are used to study the (dis)assembly of SCs. Since few works

have been performed to study SCs in AD and PD, the impact of SCs dysfunction on

the alteration of brain energetics in these diseases remains poorly understood. The

convergence of future progress in the study of SCs structure at high resolution and

the refinement of animal models of AD and PD, as well as the use of iPSC-based and

somatic cell-derived neurons, will be critical in understanding the biological relevance of

the structural remodeling of SCs.

Keywords: supercomplexes organization, respirasome structure, neurodegeneration, Alzheimer’s disease,

Parkinson’s disease, mitochondrial dysfunction, brain bioenergetics

INTRODUCTION

Mitochondria are dynamic organelles that reorganize under stress or variations in the availability
of nutrients or oxygen. It was proposed that an equilibrated distribution between individual
mitochondrial respiratory complexes (MRC) and supercomplexes (SCs) is relevant to achieve the
optimal performance of the electron transfer chain. However, the procedures by which the assembly
of SCs can be adapted to the requirements of the cells are still poorly understood. In this mini review
we address the organization of SCs in cell cultures and brain tissue from human or animal models
of aging, AD and PD to evaluate the possible relevance of the (dis)assembly of SCs in the energetic
failures characteristics of these neurodegenerative disorders associated with amyloid deposition.
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BIOGENESIS AND STRUCTURAL
PROPERTIES OF SCs

The respiratory chain in mammals consists of four respiratory
complexes (I–IV) encoded by nuclear and mitochondrial DNA
(mtDNA) inserted and assembled in the inner mitochondrial
membrane (IMM) and two intermediary substrates (coenzyme
Q and cytochrome c). According to their enzymatic activities
complex I (CI) is known as NADH:ubiquinone oxidoreductase,
complex II (CII) as succinate:quinone oxidoreductase; complex
III (CIII) as ubiquinol-cytochrome c oxidoreductase and
complex IV (CIV) as cytochrome c oxidase (COX). During
the last 30 years, the structural organization of the respiratory
complexes was intended to be understood in terms of two utmost
paradigms: the “fluid” and the “solid” models. The “fluid” model
postulates that all redox components are unconstrained diffusible
particles with the electron carriers alternating in themiddle of the
gigantic complexes I–IV (1, 2). This interpretation suggests that
mitochondrial electron transfer is a diffusion-based stochastic
collision process and that diffusion has an essential and regulating
effect on electron transfer (3). The “fluid” model was accepted
until 2001 when it was shown that it was possible to purify, by
means of Blue-Native polyacrylamide gel electrophoresis (BN-
PAGE), stable associations of respiratory complexes (4) and
therefore the “solid” model was proposed. In the “solid” model,
respiratory complexes establish interactions to form higher-order
supramolecular structures called supercomplexes (SCs) formed
by two units of CIII and a variable number of CIV in the presence
or not of one module of CI, (I1III2IV1−2; III2IV1−2), or even
into megacomplex where two units of CI, CIII, and CIV get
together (I2III2IV2). Based on BN-PAGE, CII was not detected
in SCs (5). However, CII could bind to SCs by weak protein-
protein interactions that may dissociate due to dilution during
mitochondrial isolation. Recent cryo-EM and cross-linked mass
spectrometry studies suggested that CII can be involved in
respirasomes (6, 7). By contrast, experiments performed in cell
cultures demonstrated that silencing a CII subunit (SDHC) has
no effect on the respirasome assembly, although it can play
a regulatory role in respirasome formation (8). In the solid
model, SCs I1III2IVn that act as single functional entities are
known as “respirasomes” which are capable of catalyzing whole
reaction pathways by the presence of Q and cyt c associated
with these devices. An integrative vision of both models was
recently proposed, noted as the “plasticity” model (9). This model
consolidates transient assemblies and free lateral diffusion of
redox units. Both SCs and the free individual components can
perform their actions, with SCs being more efficient in energy
production with a lower ROS formation rate. However, this
paradigm was suggested based on distinctions in the steady-state
amounts of respiratory chain complexes analyzed by BN-PAGE
technique, and consequently, the proposed “plasticity” between
the individual complexes and the respirasomes in vivo has not
yet been proven. A schematic diagram of the three models is
depicted in Figures 1A,B. Additionally, the association of single
complexes to form the respirasomes can be explained by two
mechanisms. The first proposes that CI gets fully-assembled prior
to its binding to SCs, while the second favors the sequential

binding of CIII2 and CIV to an almost complete CI scaffold
(10). Taking into account that “free CI” is underrepresented
in mammalian tissues under mild purification conditions, it
was proposed that SCs provide a scaffold for the full-assembly
and stability of CI (11). 3D maps show extensive and stable
interactions between specific CI and CIII2 (12–14) and as CI and
CIII2 subunits contain disulfide bonds it was proposed that redox
status may modulate CI-CIII2 interactions. A close association
between specific CIV and CI subunit (12, 13), and between CIV
and CIII2 subunits, was also determined (13). Models of SCs
from ovine/bovine/porcine mitochondria suggest that “species-
specific” protein sequences are critical for the arrangement of SCs
subunits. Moreover, it was demonstrated that different cell types
from human and mouse strains show similar SCs composition.
However, the composition of the minimal SCs (In + IIIn) was
variable in different cell types (15). Since some of the units of
single complexes are encoded in mtDNA, the impact of mtDNA
mutations on SCs assembly was analyzed in human cybrids
containing mutations in CIV and CIII subunits. Based on these
studies it was proposed that CIII may be the structural core of SCs
while CI, because of its instability, cannot exist as an individual
entity (16). The role of SCs assembly proteins COX7A2L and
respiratory complex factor (Rcf) was also explored (17, 18). It
was postulated that COX7A2L may be a regulatory checkpoint
for the biogenesis of CIII2 and CIII-containing SCs (19) while
Rcf1 and Rcf2 are CIV-binding proteins that may also interact
with CIII2 (20). In contrast, MCJ/DnaJC15 (a co-chaperone
localized at the IMM) has been proposed as a negative regulator
of SCs formation/stability (21). Even if MCJ is non-essential
for mitochondrial function under physiological conditions, MCJ
failure impacts on the pathophysiology arising specific metabolic
alterations (21).

ROLE OF LIPIDS ON STABILIZATION OF
SCs

Compared to other sub-cellular membranes, the IMM is highly
enriched in phosphatidylethanolamine (PE) and cardiolipin
(CL), being the latter an evolutionarily conserved dimeric
phospholipid that is precisely located in mitochondria. Data
of mammalian samples indicate asymmetric phospholipid
location in the IMM leaflets, with particular enrichment of
phosphatidylinositol (PI) and CL in the matrix-facing leaflet
of the IMM (22). In vitro and in vivo studies highlight the
role of PE and CL in the assembly and activity of MRC with
the special role of CL in the SCs stabilization and PE in the
SCs destabilization (23). In agreement with these remarks, the
atomic structure of the respirasomes showed gaps between CI,
CIII2, and CIV that were immersed by CL to fix properly
the respirasomes (24, 25). The functional importance of CL in
SCs stabilization is reinforced by studies on cells from patients
with a hereditary disease known as Barth syndrome (BTHS)
(an X-linked recessive disorder due to the lack of tafazzin,
the transacylase that catalyzes the maturation of CL into its
polyunsaturated forms). Mitochondria from BTHS lymphoblasts
show reduced abundance and instability of SCs which in turn
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FIGURE 1 | Schematic diagram of the models proposed to explain the organization of the mitochondria respiratory complexes in the inner mitochondrial membrane

(IMM) and the impact of the SCs disassembly in aging, Alzheimer and Parkinson disorders. (A) Fluid model (left); Solid model (right). (B) Plasticity model in which

respirasomes exist in dynamic equilibrium with randomly organized, enzymatically active, and isolated complexes. In (A) and (B) only individual complexes (CI, CIII,

and CIV) that conform respirasomes were depicted and do not show the actual stoichiometry; coenzyme Q (Q) is represented as a black-filled circle in the IMM and

cytochrome c (C) as a non-membrane associated white triangle that transfer electrons from CIII to CIV (dotted arrows). Doble head dotted arrows indicate lateral

diffusion of Q between membrane embedded complexes in the Fluid and Plasticity models, while in the Solid model, SCs trap the soluble electron carrier and restrict

its diffusion. Solid black arrows show the proton pumping activity of each individual complex and the ATP generation by complex V (CV). OMM, outer mitochondrial

membrane. (C) In a physiological condition (upper panel) mitochondria show assembled SCs located in intact cristae (depicted as a black line inside the red box in the

scheme of mitochondria). SCs integrity is mediated by assembly factors between individual units from each complex (described as pink lines) and by high levels of

cardiolipin (represented as a blue structure in the IMM) and by low levels of phosphatidylethanolamine (represented as a gray structure in the IMM). Assembled

respirasomes limit ROS generation while improving the efficiency of ATP synthesis. In aging, Alzheimer and Parkinson (lower panel) the dysfunctional mitochondria

show dissessembled SCs located in swelled mitochondria cristae (depicted as a dotted black line inside the red box in the scheme of mitochondria). Respirasomes

disorganization may be due to impaired assembly factors expression (described as un-connected pink lines) and to low levels of cardiolipin and high levels of

phosphatidylethanolamine. Disassembled respirasomes promote ROS generation and decrease ATP levels.

results in a higher rate of CL degradation (26, 27). CL and PE
are synthesized in mitochondria from the precursors Cytidine
Diphosphate (CDP)- diacylglycerol and CDP-ethanolamine,
respectively, both located in the endoplasmic reticulum (ER).
The importation of precursors into themitochondria requires the
juxtaposition of ER-mitochondria membranes. This collocation,
known as “lipid-Mitochondria-ER Contacts” (“lipid-MERC”), is
needed to be properly assembled and functionally operational
to guarantee the correct transport between organelles (28). The
gap width needed for lipid transfer is anticipated to be as thin
as ≤10 nm (29) and it has been proposed that disturbances in
the interphase length of apposition and the gap width between
these organelles may impair lipid exchange (30). Recently, we
experimentally addressed this issue in primary neuronal cultures
from McGill-R-Thy1-APP transgenic (Tg) rats, a model of
the early stage of Alzheimer-like amyloid pathology (31). We
found, using in vivo FRET and transmission electron microscopy
(TEM), significant decrements in the average length of the

apposition of “lipid-MERC” (gap width≤10 nm) as compared to
control cells, suggesting “relaxed” contacts between organelles. In
accordance with FRET and TEM results, untargeted lipidomics of
isolated mitochondria from neurons exhibited in Tg a significant
deviation. The total number of lipids detected was 106 and 12
were significantly different in Tg as compared to control rats.
Among them, a 60% decrement in mitochondrial CL and PE was
observed (32). These results allow us to speculate that at early
stages of AD pathology, there could be a disassembly of the SCs of
neuronal mitochondria due to alteration in CL and PE synthesis,
which in turn may promote neuronal bioenergetics dysfunction,
a characteristic feature of this neurological disorder (33–36).

FUNCTIONAL ROLES OF SCs

The biological significance of respirasomes in oxidative
phosphorylation (OXPHOS) has not yet been established. It
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was proposed that: (1) CIII and CIV association with CI may
favor the assembly and stability of CI (37–40). Different studies
have shown that the integrity of CIII2 and CIV is crucial for
the stability of mammalian CI. Even though, CI dysfunction is
infrequent in most of the patients with CIII2 or CIV enzymatic
deficiencies, which is consistent with the possibility that major
structural alterations of CIII2 and CIV are necessary to induce
CI dysfunction (41, 42); (2) The assembly of SCs may reduce
the rate of ROS generation (43, 44). CI and CIII2 are the
major redox centers in which oxygen is reduced to superoxide
and, therefore, their assembly into SCs may minimize ROS
production. Studies using bovine heart mitochondria have
shown that the disassembly enhanced the release of superoxide
from CI, and a direct correlation between free CI and ROS
generation was found in neurons and astrocytes (45); (3) SCs
may optimize the catalytic activity of the individual complexes
(46, 47). In this regard, it was shown that the activity of CI in
SCs I+III2 isolated from bovine heart mitochondria was half
of the activity of CI in SCs I+III2+IV1, indicating that the full
respirasome was the most active unit. It has been proposed that
the assembly of CI with CIII2 favors electron transfer through
Q by channeling between the two complexes without following
a pool behavior. This proposal has been challenged by studies
showing that NADH and succinate oxidation include different Q
redox steady states, but communicate and converge on a single
non-partitioned Q pool (48, 49); (4) SCs can boost the efficiency
of electron transfer through substrate channeling (5, 50, 51).
However, the lack of a confining structure between CI and CIII
(49) is inconsistent with such a mechanism. A recent study
showed, by using inverted sealed vesicles from bovine heart
IMM, that the SCs do not sequester or channel the Q pool which
is freely exchanged within and outside the SCs sets to react with
any enzyme in the membrane (52). Although these experiments
were performed in a non-physiological solution lacking the
mitochondrial environment and interaction pathways, more
physiologically relevant studies carried out in Drosophila (53)
and mice (54) also agree with these results; (5) SCs may prevent
aggregation of their protein subunits. The IMM is characterized
by a high protein:lipid ratio and, therefore, the correct assembly
of SCs may be crucial in minimizing the possibility of nucleation
and non-functional aggregation of their components (48).

METHODOLOGICAL LIMITATIONS FOR
THE STUDY OF SCs

During the last 20 years, various techniques have been
implemented for the study of SCs. The first evidence for the
existence of SCs was supported by BN-PAGE experiments (5)
and more recently, data obtained using cryo-EM provided more
crucial information about the structural composition of SCs at
near-atomic resolution (12, 55, 56). However, these techniques
have several limitations to elucidate the interactions between
individual complexes and the mechanisms by which SCs are
assembled. Major drawbacks are based on the following issues:
(1) the procedure of mitochondria isolation and purification
may impact on the SCs integrity (57). It appears that

detergent solubilization of SCs may affect their native structure.
Variations in the type of detergent used and in the ratio of
detergent/mitochondrial protein have a significant effect on the
characterization of SCs at the quantitative and qualitative levels;
(2) the absence of lipids (especially CL) in the isolation buffer for
solubilization of mitochondrial proteins is an additional factor
that can promote dissociation of poorly linked complexes; (3)
interpretation of the bands resolved by BN-PAGE is not an
easy task due to overlapping of signals. Moreover, determination
of molecular mass of SCs may be difficult using BN-PAGE
due to conformational and surface changes. For the resolution
of subunits of protein complexes, the most useful technique
is to combine BN-PAGE with a second gel dimension (2D)-
BN/sodium dodecyl sulfate (SDS)-PAGE (58). It is of note that
SCs in BN-PAGE are highly prone to diffusion during the
equilibration step before loading onto the second dimension,
generating possible distortions in the densitometry analysis of
the spots. In addition to BN-PAGE, the CN-PAGE or “clear
native gels” (in the absence of the dye Coomassie Blue) are
frequently used to assess ATP synthase in-gel activity. CN-PAGE
allows better enzymatic preservation and limits the dissociation
of labile proteins in high molecular weight SCs and ATP synthase
assemblies (59).

Studies that solubilize SCs without detergents by cross-linking
and mass spectrometry (MS) have shown the existence of many
in situ interactions in proteins throughout electron transfer
complexes, ATP synthase, and the mitochondrial contact site
and cristae organizing system (60). Recently, it was shown that
all respiratory complexes (including CII and CV that were not
found by means of cryo-EM) are in close spatial proximity.
This provides direct evidence for SCs assembly in the intact
mitochondria (7). The heterogeneity in the preparations and
particles selected for cryo-EM in different studies may introduce
a bias that deserves further clarification (12, 49, 55, 56, 61).

In addition, novel approaches to detect SCs in eukaryotic
cells in vivo are being developed. In this regard, by using
proximity-dependent labeling followed by MS it is possible to
identify potentially interacting proteins and their subcellular
spatial localization, overcoming the technical difficulties that are
associated with transient protein–protein interactions detection
(62–64). Moreover, fluorescence lifetime imaging microscopy
(FLIM), that employs fluorescent sensor proteins to assess the
assembly of SCs and to monitor SCs plasticity in live cells, is
currently implemented (65). Recently, Förster Resonance Energy
Transfer (FRET) using CIII subunit k fused to Clover as a donor
and CoxVIIIa-mRuby2 as an acceptor showed colocalization of
CIII and CIV and SCs formation in live cells (66).

MITOCHONDRIAL DYSFUNCTION AND
SCs ORGANIZATION AND ACTIVITY IN
AGING, ALZHEIMER’S DISEASE (AD) AND
PARKINSON’S DISEASE (PD)

AD and PD are the most frequent neurodegenerative disorders
of elderly people with a huge impact on morbidity and
mortality. The clinical features of PD are primarily motor
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TABLE 1 | Overview of the literature on the individual complexes and supercomplex abundance and activity in aging and neurodegeneration.

Study

[References]

Model

tissue

Individual complexes Supercomplex/respirasomes (I-III2-IVn)

Abundance

(WB)

Activity

(Spectrophotometry)

Abundance

(BN-PAGE)

Activity

(In gel activity)

Lopez-Fabuel

et al. (84)

Wistar rats, CBA and

C57BL/6 mice

Primary culture of

Astrocytes

and Neurons

ND Astrocytes vs. Neurons

↑CI (Wistar and CBA)

=CI (C57BL/6)

=CIV (Wistar, CBA

and C57BL/6)

Astrocytes

↑CI free compared to

SCs-associated CI (Wistar rats)

↓CI in SCs I-III2-IV compared to CI in

SC I-III (Wistar rats).

Neurons

=CI free compared to

SCs-associated CI (Wistar rats)

Astrocytes vs. Neurons

= SCs II-III (CBA and

C57BL/6)

↓ SC II-III (Wistar)

Frenzel et al. (83) Aged Wistar rats

Brain cortex

↓CIII2
↓CIV

ND ↓ SC III2-IV1

↓ SC I- III2
↓ SC I- III2- IV1

↓ SC I- III2- IV2

↓ SC I- III2- IV3

ND

Kuter et al. (87) 6-OHDA rat model of

PD

Stratium

4 days and 4 weeks

after lesion

↓CI

=CIV

=CI

=CIV

↓ CI in SC I-III2- IVn

= CIV in SC I-III2-IV n

= CI in SC I-III2- IVn

↓ CIV in SC I-III2-IVn

(only 4 weeks

after lesion)

Heo et al. (89) DJ-1 null dopaminergic

neurons

↓CI ↓CI ↓ SC I- III2
↓ SC I- III2- IV1

ND

Kenney et al.

(93)

Post mortem human

samples

Frontal cortex from AD

and healthy controls

↓CII

↓CIII

↓CV

ND = SCs (Mol. Mass > 1.2 mDa) ND

Lopez-Fabuel

et al. (90)

Fibroblasts of patients

carrying pathogenic

PINK1 mutations

Primary culture of

Neurons of Pink1-/-

mice

Neurons and forebrain

of

DJ1-/- mice

↓CI

↓CI

ND

↓CI

(only forebrain

mice DJ1-/-)

↓CI free compared to

SCs-associated CI

= CIII free compared to

SCs-associated CIII

↓↓CIV free compared to

SCs-associated CIII

↓CI free compared to

SCs-associated CI

= CIII free compared to

SCs-associated CIII

↓↓CIV free compared to

SCs-associated CIII

ND

↓CI free compared to

SCs-associated CI

(only forebrain

mice DJ1-/-)

AD, Alzheimer disease; PD, Parkinson disease; ↓, decrease; ↑, increase; =, no difference; ND, not determined; WB, Western blotting; mDa, mega Daltons.

deficits, while patients with AD show cognitive impairment.
Both conditions are known as proteinopathies, characterized
by brain amyloid deposition (abnormal accumulation of
misfolded proteins) in specific brain areas and neuronal
death. At the histopathological level, the postmortem brain
shows similarities and differences in each case. Brains from
AD and PD subjects display amyloid deposits (amyloid β

and phosphorylated Tau in AD, and α-synuclein in PD),
mitochondrial dysfunction and oxidative stress. There is a large
amount of experimental evidence indicating that mitochondrial
dysfunction is implicated in the pathophysiology of both
disorders (67). In this regard, it was proposed that neuronal
bioenergetics impairment is a consequence of similar processes
in both sporadic disorders. The most relevant alterations
include elevated oxidative stress (that can damage mitochondrial
respiratory complex expression and/or activity); perturbations in
mitochondrial dynamics; alterations in mitochondrial transport

within axons; mitophagy; accumulation of somatic mtDNA
mutations; impaired quality control mechanisms leading to
the accumulation of defective mitochondria; defective calcium
(Ca2+) homeostasis and signaling. It was postulated that all
of these processes may result in neuronal death (68). In post-
mortem substantia nigra from PD patients it was found a
decrease in CI activity, reduction of ATP levels, increments of
ROS and impaired mitochondrial membrane potential leading
to Ca2+-mediated damage (69), while in the caudate nucleus
increased variability in mitochondrial morphology was also
observed (70). However, a direct link between CI deficiency
caused by mtDNA changes and parkinsonism has not been
proven (71). Similarly, post-mortem AD brains show decreased
levels of ATP (72) and decreased activity of CIV (73–75).
Experimental evidence suggests that mtDNA deletions, which
accumulate with age, may be responsible for CIV deficiency
observed in AD (76). In addition, reduced levels of CI (77,
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78) and CIII (79) were described in agreement with a recent
report showing decreased expression of subunits from all
respiratory complexes in the entorhinal cortex (80). The process
of mitochondrial fusion/fission was also reported to be impaired
in AD. Drp1, involved in mitochondrial fission, was found to
be reduced in hippocampal post-mortem samples as well as the
major proteins responsible for mitochondrial fusion (mitofusins
and OPA1) (81, 82). However, until today the mechanisms
underlying the correlation between the mitochondria dynamics
and SCs assembly have not been defined. Studies carried out
in AD and PD models show that alterations in mitochondrial
dynamics may lead to an increased production of ROS and SCs
disassembly, which in turn may further promote ROS generation
and mitochondrial dysfunction. This cause/consequence cycle
continuously feeds back, and it is possible that the accumulation
of misfolded proteins plays a substantial role in triggering such
a process. Experimental evidence supports that both, aging
and oxidative stress may influence SCs structure and function.
However, a systematic approach to address mitochondrial SCs
in the brain of subjects affected with these neurodegenerative
disorders or in the brain of animal models of AD and/or PD
is scarce. The impact of aging on SCs assembly was addressed
by analyzing mitochondria isolated from the cortex of young
(5-months-old) and aged (30-months-old) Wistar rats (83). It
was observed, using two 2D-BN/SDS-PAGE, decrements of SCs
I1III2 (58% reduction); I1III2IV2 (40.7% reduction) and I1III2IV1

(30.8% reduction), suggesting that aging alters SCs abundance
in the cortex, a brain area associated with cognitive functions
and particularly affected in AD brains. In vitro studies of
primary cultures of neurons and astrocytes from rats (Wistar
strain) and mice (CBA and C57BL/6 strains) (84) using BN-
PAGE followed by in-gel CI activity assay showed that Wistar
rats and CBA mice exhibit higher CI activity in astrocytes
than in neurons. This can be attributed to the capacity to
form SCs containing CIV. In addition, in primary cultures of
astrocytes from Wistar rats CI abundance in I-III-containing
SCs was higher than in I-III2-IV-containing SCs, suggesting that
complex IV may determine CI specific activity. Authors suggest
that this mechanism could be relevant for neurodegenerative
disorders in which lower CI activity has been reported (85).
BN-PAGE and the in-gel activity performed in mitochondrial
samples isolated from the striatum of 6-hydroxydopamine
(6-OHDA) rat model of PD (86), showed that along with
the degeneration process, the amount and performance of
CI decreased in nearly all forms of SCs. Moreover, CIV
activity in SCs (I1III2IV3−1 and I1IV2−1) progressively decreased
during the degeneration process. Furthermore, SCs function
has been correlated with mitochondrial membrane plasticity
in 6-OHDA-induced dopaminergic neuron degeneration (87).
PINK1 (a mitochondrial kinase) and DJ-1 (a redox-sensitive
chaperone) loss-of-function mutations are associated with
early-onset parkinsonism, and both proteins are involved in
maintaining normal mitochondrial dynamics and/or oxidative
stress responses (88). Experiments using mitochondria isolated
from genetically modified Drosophila showed that impairment
on mitochondrial fission mediated by the knock-out of PINK1
causes a decrease in the enzymatic activity and defective

assembly of CI and CIV, a significant reduction in mitochondrial
respiration, and a reduction in ATP synthesis (20). Furthermore,
in mitochondria purified from fibroblasts of patients that carry
pathogenic PINK1 mutations, it was observed a decrement
in free CI, and in free CI vs. SCs-assembled CI. Free CIII
was mildly affected, whereas a decrement of the free CIII
vs. SCs-assembled CIII was observed. In the same direction,
mitochondria from DJ-1 null dopaminergic neurons showed a
decrease in CI formation and activity together with a significant
reduction in the abundance of SCs (89). Interestingly, CIV was
significantly lower in PD human fibroblasts. These results were
also observed in primary cultures of neurons from Pink1-/-
mice and in the forebrain of mice lacking DJ1 (Dj1-/-) (90).
These observations suggest that OXPHOS complex assembly
and function may be modulated by oxidative stress and
mitochondrial dynamics, probably involving the fission/fusion
machinery (91, 92). Altogether, these findings support that
mitochondrial dysfunction in PD may require, among other
pathways, the structural remodeling of SCs. Recently, it was
shown in postmortem samples of the frontal cortex of AD
subjects a significant decrease in the levels of CII, CIII, and CV
subunits as compared to controls, while a strong tendency was
found for decrements on CIV levels and no differences were
detected in CI (93). It is of note that the differences observed
by Western blotting were not a consequence of alterations
in mitochondrial mass between groups. Moreover, BN-PAGE
combined with immunoblotting for subunits of CI and CIII
showed that the abundance of respirasomes did not differ
between AD and control samples. An overview of the literature
on SCs organization and activity in studies using aging, AD and
PD models is detailed in Table 1 and a schematic representation
of the (dis)assembly of SCs in aging, AD, and PD is shown in
Figure 1C. Due to the fact that a few works have been performed
to study SCs in AD and PD it became difficult to extract
conclusions. More studies are needed, particularly in animal
models of age-related neurodegenerative disorders, to clarify to
what extent bioenergetics dysfunction at the brain level can be
attributed to functional impairment of SCs.

CONCLUDING REMARKS

Research on the impact of normal aging and brain amyloid-
associated neurological diseases such as AD and PD upon SCs
is at a relatively early stage, and therefore many questions remain
to be addressed. It is important to take into account that when
postmortem frozen tissues are used to study the (dis)assembly
of SCs there are at least four critical variables to be considered:
(1) the postmortem delay; (2) the freeze-thaw processes that may
fracture mitochondria; (3) the stage of disease at which brain
samples are analyzed. In advanced stages changes observed in the
(dis)assembly of SCs may correspond to the “surviving” neurons
and glia while at early stages a more representative picture of
neuronal SCs may be obtained; (4) the brain area analyzed.
It is very likely that there are differences in SCs assembly in
different brain regions because different brain areas are affected
in each disorder (hippocampus and cortex are the most affected
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in AD while striatum is the most affected in PD). Since studies
on SCs assembly in different brain areas within each one of
these pathologies have not been carried out, this topic remains
inconclusive. The convergence of future progress in the study of
SCs structure at high resolution and the refinement of animal
models of AD and PD as well as the use of iPSC-based and
somatic cell-derived neurons will be critical in understanding the
biological relevance of the structural remodeling of SCs.
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