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Obesity has become a global health issue, but effective therapies remain very limited.

Adaptive thermogenesis promotes weight loss by dissipating energy in the form of heat,

thereby representing a promising target to counteract obesity. Notably, the regulation

of thermogenesis is tightly orchestrated by complex neuronal networks, especially

those in the hypothalamus. Recent evidence highlights the importance of adenosine

monophosphate-activated protein kinase (AMPK) within the ventromedial nucleus of the

hypothalamus (VMH) in modulating thermogenesis. Various molecules, such as GLP-1,

leptin, estradiol, and thyroid hormones, have been reported to act on the VMH to

inhibit AMPK, which subsequently increases thermogenesis through the activation of

the sympathetic nervous system (SNS). In this review, we summarize the critical role of

AMPK within the VMH in the control of energy balance, focusing on its contribution to

thermogenesis and the associated mechanisms.
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INTRODUCTION

Obesity and its related metabolic disorders, including type 2 diabetes, cardiovascular diseases and
cancer, are major health threats which cause thousands of deaths per year in the contemporary
society (1). Given the current obesity epidemic, there is a pressing need for novel therapeutic
interventions to help people manage their body weight more efficiently (1). Owing to their ability
to trigger thermogenesis and enhance energy utilization, brown and beige adipose tissues have
recently been identified as a promising target for obesity (2–4). More importantly, accumulating
evidence suggests that brown adipocytes are also present in adult humans and are associated with
improved metabolic profiles (5, 6). In this sense, therapies aimed at amplifying the thermogenic
capabilities of brown and beige adipocytes are of great translational significance.

At the whole-body level, the hypothalamus plays a crucial role in controlling thermogenesis
in brown and beige adipose tissues (7). Several hypothalamic nuclei, including the ventromedial
(VMH), arcuate (ARH), dorsomedial (DMH), and paraventricular (PVH) nuclei, as well as the
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preoptic (POA) and lateral hypothalamic (LHA) areas, have
been demonstrated to participate in the regulation of adaptive
thermogenesis (8). In particular, the VMH exerts a well-
established action on brown adipose tissue (BAT) thermogenesis
through its close link with the brainstem areas, including the
rostral raphe pallidus (rRPa) and inferior olive (IO), which are
involved in modulating BAT function through the SNS (9–11).
Electrical stimulation of the VMH increases thermogenesis
and BAT temperature, whereas lesions in the VMH inhibit
thermogenesis and energy expenditure (12, 13).

As a highly conserved serine/threonine kinase, AMPK
integrates peripheral and central metabolic signals to regulate
energy homeostasis (14). In addition to its well-established
effects on feeding, glucose control and insulin sensitivity, AMPK
within the VMH regulates thermogenesis by manipulating the
sympathetic firing to BAT and WAT (white adipose tissue)
(15–17). For example, deletion of AMPK in the VMH ameliorates
diet-induced obesity via exaggerating thermogenesis in BAT
and WAT (18). This review intends to provide an insight on
several hormonal signals acting on the VMH to control adaptive
thermogenesis, with a particular focus on their influences on
AMPK and downstream reactions.

THERMOGENIC CAPACITY OF BROWN
AND BEIGE ADIPOCYTES: UNDER
CONTROL OF THE HYPOTHALAMUS

Brown adipocytes, characterized by a great number of
mitochondria and multilocular lipid droplets, are regarded
as the major contributor to adaptive thermogenesis (4, 19). BAT
has abundant expression of uncoupling protein 1 (UCP1), which
dissipates the electrochemical proton gradient through a proton
leak in the inner mitochondrial membrane, resulting in the
uncoupling of oxidative phosphorylation from ATP synthesis to
heat production (20). Sympathetic nerve releases norepinephrine
(NE) to activate BAT via the widely distributed β3-adrenergic
receptors (β3-ARs) in brown adipocytes, triggering lipolysis and
thermogenesis (7, 21). Above all, functional brown adipocytes
are found in discrete depots in adult humans and can be
induced by sympathetic stimulus, such as cold (5, 6, 22). From
this perspective, stimulation of BAT could have therapeutic
potentials for long-term management of body weight in obese
individuals (23).

In recent years, a novel type of adipocytes has been identified,
termed beige adipocytes, which express the thermogenic genes
characteristic of those typically associated with brown adipocytes
(24). Beige adipocytes could be developed from white adipocytes
through various stimulus, including cold, β3-AR agonists, and
numerous circulating hormones, such as leptin and fibroblast
growth factor 21 (25–27). The process through which white
adipocytes turned into beige adipocytes is known as browning
(28). Distinct from white adipocytes, which have a large
lipid droplet for the storage of excess fat and few UCP1
and mitochondria, beige adipocytes own many similarities
with brown adipocytes in both structure and function (29).
Particularly, the amount of UCP1 and mitochondria is much

more abundant in beige adipocytes than that in white adipocytes
(29). In addition, beige adipocytes are densely innervated by
sympathetic fibers and can be activated by the SNS (30).
Furthermore, beige adipocytes share similar properties as brown
adipocytes with respect to UCP1-mediated thermogenesis (31).
Remarkably, clinical studies have revealed that chronic cold
exposure promotes the recruitment of beige adipocytes in
humans, which is associated with improved insulin sensitivity,
glucose and lipid homeostasis (32–34). In particular, the
increased glucose uptake ability and endocrine factors secreted
by brown and beige fat are considered to play important
roles in ameliorating the metabolic abnormalities in obese
individuals (35).

Among numerous brain regions, the hypothalamus receives
and integrates hormonal and neuronal signals that relay
metabolic status of the body, hence plays a major role in
controlling adaptive thermogenesis (36). The SNS mediates
the crosstalk between the hypothalamus and adipose tissues
(37). Anatomically, the POA, VMH, DMH, ARH, PVH, and
LHA have direct or indirect connections with the sympathetic
preganglionic neurons in the spinal cord (38). Stimulation of the
aforementioned hypothalamic nuclei increases the sympathetic
tone to BAT, and tonic inhibition of neurons in many of these
areas reduces BAT activity (38). Specifically, the ARH contains
proopiomelanocortin (POMC) and agouti-related-peptide
(AgRP) expressing neurons, which are key components of the
melanocortin system that accounts for the regulation of food
intake and adaptive thermogenesis (39). POMC and AgRP
neurons orchestrate feeding behavior and thermogenesis mainly
by releasing several key neuropeptides or neurotransmitters,
like α-melanocyte-stimulating hormone (α-MSH), AgRP,
neuropeptide Y (NPY), and γ-aminobutyric acid (γ-GABA)
(39, 40). These molecules act on their broadly distributed
receptors in the central nervous system (CNS) to affect appetite
and SNS-mediated thermogenesis (39, 41, 42). In parallel,
the participation of the VMH in thermoregulation has been
confirmed by emerging evidence. Ablation of steroidogenic
factor-1 (SF-1), a transcription factor expressed exclusively in
the VMH within the brain, impairs BAT thermogenesis without
altering food intake (43). More remarkably, accumulating
data point out that several key homeostatic signals act on the
VMH to inhibit AMPK activity, which in turn stimulates BAT
thermogenesis and WAT browning through the SNS (44).

HORMONAL REGULATION OF
THERMOGENESIS THROUGH THE VMH:
HIGHLIGHTING THE CANONICAL ROLE OF
AMPK

The capacity of brown and beige adipocytes to increase adaptive
thermogenesis is predominately governed by the hypothalamus
through the regulation of the sympathetic outflows (8). Among
various hypothalamic nuclei, the VMH plays a fundamental part
in modulating BAT function given the fact that VMH neurons
are anatomically linked to the rRPa and IO, which perform well-
established actions on BAT thermogenesis through the SNS (10,
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11, 45). Intra-VMH administration of glutamate or NE increases
the activity of neurons in the rRPa and IO, leading to elevated
BAT temperature. However, the increase in BAT temperature
is abrogated by prior treatment with sympathetic ganglionic
blockers or β-AR antagonists, confirming the functional
significance of the SNS in mediating VMH stimulation-induced
BAT thermogenesis (46–48). Additionally, mice lacking SF-
1 or estrogen receptor α (ERα) in the VMH develop an
obese phenotype characterized by significantly decreased UCP1
expression in BAT (43, 49). Peripheral signals, such as thyroid
hormones (THs), glucagon-like peptide-1 (GLP-1), estradiol
(E2), bone morphogenetic proteins (BMP8B), and leptin, act on
the VMH to promote BAT thermogenesis and WAT browning
(16, 17). Notably, the involvement of endoplasmic reticulum
(ER) stress within the VMH in thermoregulation has been
uncovered by increasing evidence. Pharmacological and genetic
manipulations that exaggerate ER stress in the VMH impair BAT
thermogenesis and accelerate the development obesity (50, 51).
On the contrary, alleviating ER stress in the VMH is sufficient to
improve BAT function and ameliorate diet-induced obesity (51–
53). Taken together, these results indicate that the VMH plays an
essential role in the regulation of adaptive thermogenesis.

AMPK, an intracellular energy sensor, is composed of a
catalytic subunit, α (α1, α2), and two regulatory subunits, β

(β1, β2) and γ (γ1, γ2, γ3) (54, 55). The catalytic activity
of AMPK is triggered by the phosphorylation of Thr172 on
the α subunit, a process initiated by ATP deprivation and
inhibited by nutrient supplementation (56). AMPK can also be
activated by several upstream kinases, such as liver kinase B1
(LKB1) and calmodulin-dependent kinase kinases (CaMKKs)
(57–59). AMPK activation in the hypothalamus augments food
intake and diminishes energy expenditure, whereas its inhibition
suppresses appetite and increases energy utilization (7, 60,
61). Nevertheless, it is noteworthy that AMPK within the
VMH mediates the thermogenic effects of numerous peripheral
signals in a feeding independent manner (12, 62, 63). Many
hormones, such as THs, GLP-1, E2, BMP8B, and leptin, amplify
the sympathetic tone to BAT and WAT by inhibiting AMPK
activity in the VMH, resulting in enhanced thermogenesis and
energy dissipation independent on food intake (16, 52, 64–
66). In stark contrast, constitutive activation of AMPK within
the VMH reverses the thermogenic effects of these molecules
without altering feeding behavior, verifying the important role
of AMPK within the VMH in orchestrating BAT thermogenesis
and WAT browning (62, 67). In the following sections of this
review, we will discuss several key circulating hormones that act
on the VMH to modulate AMPK activity, which subsequently
contributes to the control of thermogenesis in BAT andWAT via
the SNS.

Thyroid Hormones (THs)
THs, including triiodothyronine (T3) and thyroxine (T4),
regulate a vast range of physiological activities, including
growth, development, metabolism, and energy balance (68).
The involvement of THs in energy balance has been clearly
demonstrated by the phenomenon that the impairment in
thyroid function is often accompanied by alterations in

food intake and body weight. Hyperthyroidism is linked to
hyperphagia and weight loss, whereas hypothyroidism causes
appetite suppressing and weight gain (69). THs were originally
thought to exert their effects on energy homeostasis by directly
acting on peripheral tissues, such as the brown and white adipose
tissues, muscle, heart, and liver (70). However, recent data
indicate that THs modulate food intake, energy expenditure and
body weight by acting, to a large extent, at the central level
(70, 71). In support of this view, the α1, α2, β1, and β2 THs
receptor (TR) isoforms were found to be widely distributed in
the CNS, with the highest expression levels inmetabolically active
regions, such as the VMH, ARH, and PVH (72).

The significance of the CNS in mediating the effects of
THs on energy balance was firstly confirmed by brain specific
TRα1 mutant mice, which had elevated T3 concentrations in
the hypothalamus and displayed higher food intake, metabolic
rate and BAT thermogenic capability (73). In consistent with
this, central injection of T3 increases energy expenditure by
stimulating BAT thermogenesis and WAT browning (17, 52, 74).
UCP1 plays an essential role in mediating T3-induced increase in
energy expenditure, and deletion of UCP1 completely abolishes
the thermogenic action of central T3 (15). Notably, inactivation
of TR in the VMH of hyperthyroid rats blunts weight loss and
decreases the expression of thermogenic markers in BAT without
concomitant influences on food intake (74), suggesting that the
VMH is a key region mediating the thermogenic effect of THs
on BAT. Recently, the critical role of AMPK within the VMH
in modulating T3-induced alterations in thermogenesis has been
revealed by several studies. First, constitutive activation of AMPK
within the VMH abrogates T3-induced weight loss and UCP1
expression in BAT and WAT (52). Second, pharmacological or
genetic inactivation of AMPK in the VMH fully recapitulates the
thermogenic actions of central T3 on BAT and WAT, and such
effects could be abolished by application of the β3-AR antagonists
(74). Third, ablation of AMPKα1 in SF-1 neurons mimics the
actions of T3 in the VMH by enhancing BAT thermogenesis
and WAT browning, which in turn protects mice from diet-
induced obesity (18, 52). Remarkably, manipulation of AMPK
in the VMH selectively impacts the thermogenic aspect of T3
without affecting food intake (18, 52). In brief, these data indicate
that THs act centrally to promote BAT thermogenesis and WAT
browning via suppressing AMPK activity in the VMH.

Interestingly, current work has demonstrated that ER stress
in the VMH plays a role in THs-induced thermogenesis.
Hyperthyroid rats exhibit lower hypothalamic ceramide and ER
stress levels, which can be reversed by the activation of AMPK
in the VMH (52). In contrast, increasing ceramide levels as
well as pharmacologically or genetically inducing ER stress in
the VMH blunts the effect of central THs on thermogenesis in
BAT and WAT (52). This is in line with previous studies which
found that alleviation of ER stress by overexpressing the glucose-
regulated protein 78 (GRP78), a major ER chaperone protein,
in the VMH is sufficient to ameliorate obesity by facilitating
BAT thermogenesis and WAT browning (51). These findings
support the notion that THs inhibits AMPK activity in the VMH,
resulting in reduced ER stress levels, which in turn promotes BAT
thermogenesis and WAT browning.
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However, some critical limitations of these studies need to
be taken into consideration. For example, given its diffusion
property, it is likely that adenovirus-mediated manipulation
of AMPK or TR or GRP78 is not restricted to the VMH.
The involvement of other nuclei in thermoregulation requires
more careful evaluation. VMH-specific drug delivery has the
same issue. Furthermore, although deleting AMPKα1 in SF-
1 neurons reflects functions of the AMPKα1 isoform in the
majority of VMH neurons, the role of AMPKα1 deficiency-
induced compensatory changes, such as elevated AMPKα2 levels,
warrants further investigation.

Except for adipose tissues, THs act centrally to modulate
lipid metabolism in the liver. Intra-VMH injection of T3
promotes hepatic lipid accumulation via c-JunN-terminal kinase
1 (cJNK1)-mediated activation of the vagus nerve innervation to
liver, which is under control of AMPK but not ER stress (52).
Whether AMPK within the VMH mediates the effects of THs on
other organs remains to be determined.

Glucagon-Like Peptide-1 (GLP-1)
GLP-1 is primarily synthesized and secreted by the intestinal
L-cells to increase glucose-induced insulin release and decrease
glucagon secretion in response to a nutrient load (75). However,
GLP-1 secretion is impaired in patients with T2D and obesity
(76, 77). GLP-1 agonists are clinically used drugs for T2D, with
additional benefits of weight loss and a low risk of hypoglycemia
(78, 79). GLP-1 receptors (GLP-1Rs) are expressed in a broad
range of neuronal populations, including in many hypothalamic
nuclei crucial for the regulation of energy balance (80, 81). In
addition, GLP-1 positive cells were found to be distributed in
numerous human brain regions (82). Moreover, circulating GLP-
1 and its analogs could be transported to the brain and activate
neurons in various areas of the CNS (83). Interestingly, GLP-1 is
also produced by a small population of preproglucagon neurons
located in the brainstem nucleus of the solitary tract (NTS), which
project to the hypothalamus to regulate appetite (84, 85).

Liraglutide, a long-acting GLP-1 analog, improves glucose
homeostasis and reduces body weight in obese diabetic patients
(79). Apart from its participation in glycemic control, liraglutide
acts centrally to lower food intake and increase energy
expenditure (16, 86). Central injection of liraglutide promotes
weight loss via suppressing appetite and increasing energy
dissipation, the latter is associated with enhanced lipolysis
in WAT and thermogenesis in BAT (87, 88). Particularly,
administrating liraglutide into the ARH, PVH or LH decreases
food intake and body weight, but does not alter UCP1 expression
in BAT andWAT. In opposite, intra-VMH injection of liraglutide
has no significant influence on food intake but elevates UCP1
levels in BAT and WAT, resulting in obvious weight loss
(16). Thus, central liraglutide participates in the regulation of
food intake and energy expenditure by engaging in different
hypothalamic nuclei (16, 89). Furthermore, β3-AR antagonists
block central liraglutide-induced elevation of UCP1 in BAT
and WAT, indicating that the SNS mediates the actions of
liraglutide on BAT thermogenesis and WAT browning (16, 89).
More importantly, central delivery of liraglutide decreases AMPK
activity in the VMH (16). Pharmacological or genetic activation

of AMPK in the VMH abolishes the actions of liraglutide
on thermogenesis without corresponding alterations in feeding
(16), verifying the importance of AMPK within the VMH
in mediating liraglutide-induced thermogenesis. Nevertheless,
potential engagement of AMPK in adjacent regions of VMH
in thermoregulation should be assessed, given the inherent
shortcomings of the studies that were analyzed earlier. The
thermogenic effects of liraglutide rely on GLP-1Rs, mice lacking
the GLP-1Rs in the CNS fail to show any obvious change in
BAT temperature or thermogenic markers after the application
of liraglutide (89). However, these mutant mice display a
normal thermogenic response to cold exposure (89), indicating
that endogenous GLP-1Rs are essential for liraglutide-induced
thermogenesis but are dispensable for appropriate thermogenic
response to cold.

On top of improving glucose control, liraglutide also reduces
body weight in obese individuals (90). The weight reducing
effects of liraglutide on human subjects have been confirmed by
many clinical studies, although whether the decrease in body
weight is linked to increased energy expenditure or not remains
elusive (91, 92). Recently, the US Food and Drug Administration
(FDA) committee has approved the application of liraglutide as
an anti-obesity therapy. Other GLP-1 analogs, such as exendin-
4, can act on the hypothalamus to inhibit AMPK, thereby
suppressing appetite and body weight (93–95). However, the
involvement of exendin-4 in the regulation of energy expenditure
and the participation of AMPK within the VMH in this process
are not clear, and additional work will be necessary to address
these questions.

Estrogens
In addition to their critical role in the control of puberty,
reproduction, growth, and development, estrogens act both
centrally and peripherally to regulate energy balance (96, 97).
Physiological, pathological, pharmacological, or genetically-
induced estrogen deficiency promotes obesity by increasing
appetite and reducing energy expenditure, which could be
reversed by estrogen replacement (98, 99). Despite that E2 can
modulate metabolism by directly acting on peripheral tissues,
emerging evidence suggests that the hypothalamus mediates a
large part of the actions of E2 on energy balance (100). For
instance, estrogens receptors (ERs), including ERα and ERβ, are
highly expressed in the hypothalamus (101, 102). ERα is believed
to be the major mediator of the effects of estrogens on energy
homeostasis. Food intake and body weight are suppressed by
central administration of the ERα agonist propylpyrazole triol
(PPT), but not by the selective ERβ agonist diarylpropionitrile
(DPN) (103, 104). In addition, female mice with a targeted
deletion of the ERα gene develop obesity, primarily due to
decreased energy expenditure (99). Ablation of ERβ causes no
obvious change in body weight under chow condition, but it
promotes fat accumulation and improves insulin sensitivity after
challenging with high fat diet (105).

Interestingly, estrogens participate in the regulation of
food intake and energy expenditure by engaging in different
hypothalamic neuronal populations. Disruption of ERα in
POMC neurons augments food intake without affecting energy
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expenditure (106). On the contrary, silencing ERα within the
VMH suppresses energy expenditure with no concomitant
alterations in feeding behavior. The same phenotype is
recapitulated by ablating ERα in SF1 neurons of the VMH
(49, 106). More specifically, the decreased energy expenditure in
mice lacking ERα in SF-1 neurons is related to impaired BAT
thermogenesis as demonstrated by reduced UCP1 levels in BAT.
Administration of E2 into the VMH increases energy expenditure
by amplifying the sympathetic outflow to BAT and WAT, which
is associated with diminished AMPK activity in the VMH (64).
Genetic activation of AMPK in the VMH blunts E2-induced
weight loss and activation of thermogenesis in BAT and WAT
(64), suggesting that E2 promotes BAT thermogenesis and WAT
browning through suppressing AMPK in the VMH.

A recent study found that central injection of E2 alleviates
ER stress levels in the hypothalamus through decreasing
hypothalamic ceramide levels (53). Additionally, blocking
ceramide synthesis in E2 deficient rats attenuates ER stress in
the VMH and recapitulates the thermogenic effects of central
E2 (53). Similarly, pharmacological or genetic inhibition of ER
stress in the VMH of ovariectomized (OVX) rats increases
BAT temperature and UCP1 expression, which mimics the
outcome of E2 supplementation (53). Together, these findings
support the notion that E2-induced decrease of ER stress in
the VMH contributes to the maintenance of energy balance
by modulating BAT thermogenesis. Considering that AMPK
inactivation suppresses ER stress within the VMH, which also
mediates the effects of central THs on BAT thermogenesis (52),
it is possible that the AMPK (VMH)-ER stress-BAT axis might
represent a canonical pathway that underlies hormonal and
neuronal control of thermogenesis.

Except for ERα and SF-1 neurons, the role of AMPK in
other VMH cell types in regulating E2-induced thermogenesis
lacks thorough investigation. For example, it has been reported
that hypothalamic kisspeptin/neurokinin B/dynorphin (KNDy)
neurons are involved in the modulation of body temperature by
E2, but whether AMPK in the VMH participates in this process
remains to be clarified (107). Moreover, it is noteworthy that
the thermogenic effects of E2 are diminished during gestation
(108). Although hypothalamic AMPK signaling is inhibited by
high circulating E2 levels, pregnant animals exhibit reduced
temperature and BAT function (108). These observations raise
the hypothesis that pregnancy promotes a state of resistance
to the actions of E2, which may partially account for the
gestational hyperphagia and fat accumulation to meet the
metabolic demands of embryonic development (108). Unraveling
the underlying mechanisms of E2 resistance may facilitate the
development of new strategies to counteract obesity. Notably, the
GLP-1-estrogen conjugate, which is designed to activate estrogen
receptors in GLP-1 targeted tissues, has superior efficiency
over either of the individual hormones to overcome obesity,
hyperglycemia, and dyslipidemia while at the same time prevents
hallmark side effects of estrogen such as reproductive toxicity
and oncogenicity (109). GLP-1Rs deletion in the brain abrogates
the beneficial metabolic consequences of the GLP-1-estrogen
conjugate, indicating the CNS is a key action site for this chimera
(109). Based on these findings, the use of peptide chimeras

appears to be a promising approach in the context of overcoming
obesity, but the underlying principles require further elucidation.

BMP8B
Bonemorphogenetic proteins (BMPs) belong to the transforming
growth factor β (TGFβ) superfamily and regulate a wide range
of physiological processes from embryonic development to tissue
homeostasis (110). In recent years, BMPs have been discovered
to play a key role in the differentiation and development of
BAT as well as in the maintenance of energy balance (110–112).
Among the BMPs superfamily, BMP8B is expressed in BAT
and the hypothalamus, and is involved in the regulation of
BAT function and thermogenesis (113). Central administration
of BMP8B increases BAT temperature and the activity of the
SNS, resulting in reduced body weight (65). More specifically,
intracerebroventricular injection of BMP8B stimulates neuronal
activation in both the VMH and LHA (65). Nevertheless,
injection of BMP8B into the VMH, rather than the LHA,
promotes weight loss and enhances BAT thermogenesis and
WAT browning without altering feeding behavior, suggesting the
VMH is a direct targeting site for BPM8B (65, 114). Furthermore,
the thermogenic action of central BMP8B is AMPK-dependent.
BMP8B administration decreases AMPK activity in the VMH,
while activation of AMPK within the VMH diminishes BMP8B-
induced UCP1 expression in BAT and WAT (65, 114).

Interestingly, central injection of BMP8B stimulates UCP1
expression in brown and white adipocytes in females but not
males, indicating that the thermogenic action of central BMP8B
is sexually dimorphic (114). In addition, central administration
of BMP8B fails to activate the thermogenic program in BAT
and WAT in OVX female rats. E2 replacement restores the
thermogenic response to BMP8B in OVX rats, further supporting
that the presence of E2 is required for BMP8B to fully perform
its function on thermogenesis (114). Nevertheless, it is not yet
clear how E2 mediates the action of BMP8B, and future work is
necessary for clarifying this issue.

Despite BMP8B cannot directly activate neurons in the
LHA, central administration of BMP8B increases orexin (OX)
levels in the LHA, which is relevant to the inhibition of
AMPK within the VMH. Conversely, constitutive activation
of AMPK within the VMH reduces BMP8B-induced elevation
of OX in the LHA (114). Furthermore, rats pre-treated
with SB-334867, an antagonist of OX receptor1 (OX1R),
show significantly blunted thermogenic response to BMP8B
without affecting AMPK signaling in the VMH, suggesting
OX1R signaling is indispensable for the thermogenic actions
of BMP8B and is a downstream mediator of AMPK (114).
Suppressing glutamatergic signaling in the LHA by deleting
GLUT2 (glutamate vesicular transporter 2) abolishes the effects of
central BMP8B on BAT thermogenesis and reduces OX levels in
the LHA, but has no significant influence onAMPK activity in the
VMH, indicating that glutamatergic signaling acts downstream
of AMPK to up-regulate OX expression in the LHA (114).
Collectively, these results demonstrate that the thermogenic
effects of BMP8B are mediated by the inhibition of AMPK in the
VMH, the activation of glutamatergic signaling in the LHA, and
the subsequent increase of OX levels (114).
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Leptin
Leptin is a circulating hormone secreted by white adipocytes
in proportion to fat mass and informs the brain the status
of energy storage (115, 116). Leptin exerts its effects on
energy balance mainly by acting on the long-form isoform of
leptin receptor (LepRb), which is abundantly expressed in the
hypothalamus, including the ARH and VMH (117–119). Mice
lacking leptin or leptin receptor encoding genes exhibit morbid
obesity associated with hyperphagia and low metabolic rate
(115, 120). Re-expression of LepRb in the brain reverses obesity
and its related metabolic disorders in LepRb null mutant mice,
suggesting the metabolic actions of leptin are largely mediated by
the central nervous system (121, 122).

LepRb is a member of the class 1 cytokine receptor
superfamily that possesses endogenous tyrosine activity
(117). The Janus kinase 2/signal transducer and activator
of transcription 3 (JAK2/STAT3) pathway is considered as
the central mediator of the weight-reducing effects of leptin
(123, 124). Central injection of leptin promotes STAT3-
dependent transcription of POMC gene, while at the same time
inhibiting the expression of AgRP and NPY, thus suppressing
appetite and enhancing thermogenesis and energy expenditure
(124). Additionally, leptin recruits others signaling networks,
such as the phosphatidylinositol 3 kinase/protein kinase B
(PI3K/AKT), mammalian target of rapamycin complex 1
(mTORC1) and AMPK pathways to modulate food intake
and energy expenditure (60, 125–127). Noticeably, AMPK
coordinates with PI3K/AKT and mTORC1 signals to fully
facilitate the functions of leptin in the hypothalamus (128, 129).
For example, leptin stimulation promotes the phosphorylation
of AMPK at ser485 and ser491 in the hypothalamus through the
activation of the PI3K-AKT- mTORC1 pathway, which in turn
attenuates AMPK activity, leading to reduced food intake (128).

The melanocortin system is believed to play indispensable
roles in controlling leptin induced suppression of food intake
and body weight (130). Deletion of lepRb in POMC or AgRP
neurons results in hyperphagia and obesity (131, 132). Similarly,
the VMH has been identified as a key reaction site for leptin,
VMH specific SF-1 knockout mice display leptin resistance and
are susceptible to diet-induced obesity (133). Leptin directly
depolarizes SF-1 neurons in the VMH (134). Ablation of lepRb
selectively in SF-1 neurons exaggerates diet-induced obesity,
which is accompanied by impaired thermogenesis, indicating
lepRb in SF-1 neurons is required for appropriate thermogenic
response to overnutrition (134, 135). Furthermore, recent
evidence has revealed the involvement of hypothalamic AMPK
in mediating the thermogenic actions of leptin (136). Central
injection of leptin inhibits hypothalamic AMPK activity and
amplifies sympathetic drive to adipose tissues (137). In contrast,
constitutive activation of AMPK in the hypothalamus prevents
the ability of leptin to increase the sympathetic tone to BAT
(60). More specifically, inhibition of the AMPK α2 isoform in
the VMHmimics the thermogenic actions of leptin and prevents
leptin to further enhance BAT activity, suggesting AMPK within
the VMH is at least partially responsible for leptin-stimulated
thermogenesis (137).

Additionally, mice lacking protein tyrosine phosphatase 1B
(PTP1B), a negative regulator of leptin signaling, in the brain
exhibit reduced UCP1 expression in BAT, which is associated
with diminished AMPK activity in the hypothalamus (136).
Nevertheless, whether AMPK within the VMH contributes to
central PTP1B deficiency induced thermogenesis remains to
be elucidated, creating and characterizing animal models with
PTP1B deletion in the VMH may shed light on this question.
Moreover, ablation of the suppressor of cytokine signaling
3 (SOCS3) in SF-1 neurons enhances leptin sensitivity and
promotes modest weight loss during lactation, although food
intake is not affected (138). However, the role of AMPK in this
process warrants further investigation.

ER STRESS IN THE VMH: LINKING AMPK
TO THERMOGENESIS?

The ER is a dynamic organ where proteins are matured,
assembled and folded (139, 140). Improperly folded proteins are
normally delivered to the ER for degradation (139). However,
strong and prolonged cellular perturbations may alter ER
homeostasis, leading to the accumulation of potentially toxic
misfolded proteins and ER stress (141). Evidence accumulated
in the past years has revealed a close relationship between
ER stress and obesity (141). Particularly, genetic and diet-
induced obesity models are associated with elevated ER stress
levels in the hypothalamus (142). Central injection of ER stress
inducers, such as tunicamycin or thapsigargin, accelerates the
development of obesity (52, 143). In contrast, alleviating ER
stress by treating obese animals with chemical chaperones,
like tauroursodeoxycholic acid (TUDCA) or 4-phenylbutyrate
(4-PBA), increases leptin sensitivity and attenuates the risk of
obesity (53). Very recently, Contreras and colleagues found that
the impaired thermogenesis in BAT and WAT of obese rats is
closely related to the elevated ER stress levels in the VMH (51).
Intra VMH injection of ceramide triggers ER stress, resulting
in an obese phenotype characterized by decreased thermogenic
markers in BAT and WAT (51). Inducing ER stress by inhibiting
GRP78 in the VMH, but not in the ARH, increases body weight
and decreases UCP1 concentrations in BAT (52). Conversely,
overexpressing GRP78 in the VMH reduces ER stress, enhancing
thermogenesis in BAT and WAT and improving metabolic
profiles in obese animals (51, 144), suggesting that ER stress in
the VMH plays a critical role in regulating thermogenesis and
energy balance.

It is interesting that peripheral signals, such as THs, GLP-1,
E2, BMP8B, and leptin, act on the VMH to inhibit AMPK, which
subsequently enhances BAT thermogenesis through activating
the SNS (16, 52, 64, 66, 114). Both THs and E2 have been
reported to suppress AMPK in the VMH and alleviate ER stress
in the hypothalamus (52, 53). Inactivation of AMPK within the
VMH reduces ER stress levels, whereas constitutive activation
of AMPK prevents T3-induced down-regulation of ER stress
(52), indicating AMPK acts as an upstream regulator of ER
stress in the VMH. Currently, the detailed mechanisms through
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which AMPK affects ER stress are not fully understood. One
acknowledged explanation is that AMPK alters cellular lipid
composition by regulating its downstream mediator carnitine
palmitoyltransferase 1 (CPT-1), resulting in elevated intracellular
ceramide contents, which cause lipotoxicity and trigger the
initiation of ER stress (52). In line with this observation, mice
lacking CPT-1C display higher hypothalamic ER stress levels and
body weight as well as impaired thermogenic response to short-
term HFD exposure (145). Given the fact that THs, GLP-1, E2,
BMP8B and leptin all stimulate BAT thermogenesis by inhibiting
AMPK within the VMH and the close relationship between
hypothalamic AMPK and ER stress (16, 52, 64, 66, 114), the
VMH AMPK-ER stress-BAT axis may represent a canonical
pathway for multiple peripheral signals that act on the VMH
to control thermogenesis, although more studies are needed to
further testify this hypothesis.

TARGETING AMPK WITHIN THE VMH TO
COUNTERACT OBESITY

AMPK is a major energy regulator which exerts opposite
actions regarding metabolism in the CNS and the periphery
(146–148). On the one side, activation of AMPK promotes fatty
acid oxidation and lipolysis in skeletal muscle, and diminishes
glucose production in liver, contributing to the maintenance of
lipid and glucose homeostasis (149, 150). On the other side,
AMPK activation in the hypothalamus augments food intake
and suppresses energy expenditure, promoting the development
of obesity (146). Therefore, neither systematic activation nor
inhibition of AMPK would be a good strategy for the treatment
of obesity. In addition, although AMPK has been explored as a
pharmacological target for years, the potential cardiac toxicity
effects of systematically administrated AMPK activators prevent
their clinical application. Therefore, site specific manipulation of
AMPK is necessary in order to achieve better outcomes.

Both the VMH and LHA are important areas responsible for
the control of food intake and adaptive thermogenesis (151–
155). Previous virus tracing experiments have demonstrated that
SF-1 neurons in the VMH project to and terminate in the
LHA, providing evidence that these two nuclei are anatomically
connected (10, 156). On the other hand, the AMPK (VMH)–
glutamate- OX (LHA) pathway unravels a molecular basis for
the functional interplay between these two major areas for
the modulation of BAT thermogenic activity (114). It is of
interest to test whether the AMPK (VMH)–glutamate- OX
(LHA)-SNS-BAT axis is a universal determinant mechanism for
peripheral hormones to regulate BAT thermogenesis (16, 52,
64, 65). Obviously, addressing this question is of considerable
significance if we wish to fully understand the hormonal and
neuronal control of BAT thermogenesis and may pave the way
for developing novel therapies to overcome obesity.

Activation of rat-insulin-promoter-cre (RIP-Cre) neurons in
the VMH preferentially promotes the recruitment of beige fat
but has no effect on BAT (157). In contrast, inhibiting AMPKα1
activity in SF-1 neurons increases thermogenesis in both BAT
and WAT (18). Additionally, central administration of BMP8B

increases the sympathetic outflow to BAT but does not alter
the sympathetic tone to kidney (114). These findings together
indicate that the sympathetic innervations to different organs
might be orchestrated by distinct subsets of neurons in the CNS.
Notably, obesity is accompanied by elevated sympathetic tone
to the cardiovascular system, which is a major contributor to
obesity-related hypertension and heart disease (158). Hence, in
order to stimulate thermogenesis specifically in adipocytes while
circumventing detrimental cardiovascular effects, systematically
examining the sympathetic connections between the VMH and
peripheral tissues is necessary.

Furthermore, AMPK within the VMH plays a crucial role
in the detection of acute hypoglycemia and the initiation of
the glucose counter-regulatory response (159–162). Thereby, the
potential hypoglycemic risk should be taken into consideration
before the application of AMPK inhibitors. Nevertheless, it is
noteworthy that the α1, but not the α2, isoform of AMPK within
the VMH is mainly responsible for BAT thermogenesis andWAT
browning (16, 18, 52). Conversely, the AMPK α2, but not the α1,
isoform is a key contributor to the hypoglycemia regulation in
the VMH (159–161). In this sense, delicately designed drugs that
specifically inhibit the AMPK α1, but not the α2, isoform might
be helpful to selectively enhance adaptive thermogenesis and at
the same time circumvent the hypoglycemia issue.

Nevertheless, even though AMPK serves as a promising target
for obesity in a number of animal models, plenty of difficulties
need to be addressed before the clinical application of drugs
that modify AMPK in treating human obesity. Firstly, due to
the multifaceted actions of AMPK in different organs, site-
specific manipulation of AMPK is required but hard to achieve
in humans. Besides, the advancement of technology allows for
region-selective or even neuron-selective gene manipulations
in experimental animals, but targeting specific brain areas in
humans remains challenging. In addition, central regulation
of thermogenesis requires intact sympathetic innervations
to adipocytes. Obesity is often accompanied by impaired
sympathetic nerve distributions in fat tissues (163), which may
jeopardize the anti-obesity effects of AMPK inhibition in the
VMH. Moreover, while the β-AR agonist Mirabegron robustly
stimulates glucose uptake in BAT of healthy adult humans
(164), administration of a panadrenergic agonist Ephedrine
produces minimal effects on BAT activity in obese subjects
(165), suggesting the development of β-AR resistance in obesity.
Finally, the distribution and regulation of brown and beige
adipocytes in humans are not the same as that of rodents.
Therefore, whether orchestrating AMPK within the VMH in
humans would produce similar beneficial metabolic outcomes
waits to be tested.

CONCLUDING REMARKS

As summarized in Figure 1, the importance of AMPK within
the VMH in regulating thermogenesis is demonstrated by the
fact that central THs, GLP-1, E2, BMP8B, and leptin all increase
BAT thermogenesis and WAT browning by inhibiting AMPK
in the VMH (16, 52, 64–66). Furthermore, ER stress in the
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FIGURE 1 | AMPK within the VMH regulates BAT thermogenesis and WAT browning. Peripheral signals, such as THs, GLP-1, E2, BMP8B, and leptin, may act on the

VMH to inhibit AMPK, which subsequently promotes BAT thermogenesis and WAT browning through activating the SNS, resulting in body weight loss. Additionally,

THs and E2 may decrease ceramide and ER stress levels by suppressing AMPK in the VMH, leading to enhanced thermogenesis via the SNS. Alleviating ER stress in

the VMH also increases hypothalamic leptin sensitivity. Whether ceramide and ER stress can mediate the thermogenic effects of GLP-1 and BMP8B warrant further

investigation. The solid blue arrows represent activation, the dotted red arrows represent inhibition. 3V: third ventricle. ARH: arcuate nucleus of the hypothalamus.

VMH: ventromedial nucleus of the hypothalamus. AMPK: adenosine monophosphate-activated protein kinase. ER stress: endoplasmic reticulum stress. SNS:

sympathetic nervous system. THs: thyroid hormones. GLP-1: glucagon-like peptide-1. E2: estrogens. BMP8B: Bone morphogenetic protein 8B.

VMH mediates the effects of AMPK on thermogenesis (52),
suggesting that ER stress is another useful target for obesity.
Chemical chaperones, like TUDCA and 4-PBA, are sufficient
to reduce hypothalamic ER stress and thereby decreases the
risk of obesity (51, 52). More importantly, clinical evidence
indicates that some of these chemical chaperones have high
safety profiles in humans (166, 167). Thus, designing drugs
that act specifically on the VMH to inhibit AMPK or ER
stress might represent a promising approach for fighting
against obesity.

Currently, there are still some fundamental questions that
need to be addressed to fully uncover the role of AMPK in
the VMH. First, although recent studies have demonstrated that
SF-1 neurons are the key neuronal population which mediates
the regulatory effect of AMPK on thermogenesis (18), the
involvement of other neuronal populations in thermoregulation
is poorly understood. Second, THs and E2 also reduce ER
stress in the hypothalamus by inhibiting AMPK in the VMH,
which contributes to the thermogenic actions of these hormones
(52, 53). It is of significance to explore whether ER stress is
a common downstream mediator for the thermogenic effects

of THs, GLP-1, E2, BMP8B, and leptin. Third, how different
hormones act on the VMH to inhibit AMPK is another
question that warrants further investigation. Fourth, a better
understanding of how VMH neurons regulate sympathetic
outflow to different organs is required for avoiding undesirable
side effects.

Overall, considering the critical role of AMPK within the
VMH in regulating thermogenesis and the existence of brown
and beige adipocytes in adult humans, more investigations
are needed to expand our understanding of the neuronal and
hormonal control of adaptive thermogenesis and the role of
AMPK within the VMH in this process. Addressing these
questions may facilitate the development of drugs that are
specifically targeted at AMPK within the VMH to enhance
thermogenesis and reduce body weight as well as bypass
unexpected detrimental effects.
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