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Enzymatically oxidized lipids are a specific group of biomolecules that function as key
signaling mediators and hormones, regulating various cellular and physiological processes
from metabolism and cell death to inflammation and the immune response. They are
broadly categorized as either polyunsaturated fatty acid (PUFA) containing (free acid
oxygenated PUFA “oxylipins”, endocannabinoids, oxidized phospholipids) or cholesterol
derivatives (oxysterols, steroid hormones, and bile acids). Their biosynthesis is
accomplished by famil ies of enzymes that include l ipoxygenases (LOX),
cyclooxygenases (COX), cytochrome P450s (CYP), and aldo-keto reductases (AKR). In
contrast, non-enzymatically oxidized lipids are produced by uncontrolled oxidation and
are broadly considered to be harmful. Here, we provide an overview of the biochemistry
and enzymology of LOXs, COXs, CYPs, and AKRs in humans. Next, we present
biosynthetic pathways for oxylipins, oxidized phospholipids, oxysterols, bile acids and
steroid hormones. Last, we address gaps in knowledge and suggest directions for
future work.

Keywords: biosynthesis of oxidized lipids, lipoxygenase (LOX), cyclooxygenase (COX), cytochrome P450, aldo-keto
reductase (AKR), oxylipins, oxidized phospholipids, sterols and steroid hormones
INTRODUCTION

Lipids are a key component of life. They play essential roles in membrane structure, cell signaling
and energy production. Like other biomolecules, they undergo chemical modifications that expand
their functional repertoire. One modification that has been steadily gaining attention is lipid
oxygenation, with interest being attributed to two factors: advances in analytical methods that allow
detection of oxygenated species, and the ever-growing body of literature implicating them in
biological processes and disease. “Enzymatically oxidized lipids” constitute a large portion of known
oxygenated lipid mediators, being bioactive lipids that are produced locally through specific
Abbreviations: 4-HNE, 4-hydroxy-2-nonenal; AA, arachidonic acid; AKR, aldo-keto reductase; ALA, a-linolenic acid; COX,
cyclooxygenase; CE, cholesteryl ester; CYP, cytochrome P450; DGLA, dihomo-g-linolenic acid; DHA, docosahexaenoic acid;
DPEP2, dipeptidase 2; EET, epoxy-eicosatrienoic acid; EPA, eicosapentaenoic acid; GGT, g-glutamyl transpeptidase; GLA,
g-linolenic acid; GPCR, G protein-coupled receptor; HETE, hydroxy-eicosatetraenoic acid; HpETE, hydroperoxy-
eicosatetraenoic acid; HSD, hydroxysteroid dehydrogenase; LA, linoleic acid; LOX, lipoxygenase; LTA4, leukotriene A4;
lysoPL, lysophospholipid; oxPL, oxidized phospholipids; PG, prostaglandin; PL, phospholipid; PUFA, polyunsaturated fatty
acid; SDR, short-chain dehydrogenase/reductase; SPM, specialized pro-resolving mediator.
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biosynthetic pathways in response to extracellular stimuli. Those
derived from oxygenation of polyunsaturated fatty acids (PUFA)
such as arachidonic acid (AA) include prostaglandins (PG),
thromboxanes and leukotrienes, which function in modulating
inflammation, the immune response, and hemostasis, and are
broadly termed “oxylipins” (1, 2). Oxylipins also include
multiply oxygenated derivatives of eicosapentaenoic acid (EPA)
and docosahexaenoic acid (DHA), of which specific enantiomers
have been termed “specialized pro-resolving mediators” (SPM)
for their proposed roles in the resolution of inflammation (3).
SPMs derived from DHA include D-resolvins, maresins and
protectin. On the other hand, E-resolvins are proposed to be
generated from EPA but the enzymatic pathways are unclear and
require further investigation. Oxylipins also constitute a core
functional group on larger lipids including oxidized
phospholipids (oxPL), endocannabinoids and cholesteryl esters
(CE). Oxidized CEs are conversely associated with
atherosclerosis progression (4), whereas enzymatically oxidized
phospholipids (eoxPL) are pro-coagulant and promote a variety
of innate immune actions in leukocytes and platelets (5).

Enzymatically oxidized lipids are not limited to those
containing oxygenated PUFA functional groups. Oxidized
derivatives of cholesterol include steroid hormones, bile acids
and their oxysterol precursors. Steroid hormones regulate
multiple physiological processes including metabolism (e.g.,
glucose homeostasis by glucocorticoids), water retention,
immune function, and development of sex characteristics (6–
8). Bile acids, while traditionally known for aiding in fat digestion
and bilirubin excretion, are also being increasingly revealed as
signaling molecules and metabolic regulators (9, 10). Similarly,
accumulating evidence is revealing oxysterols as more than just
bile acid intermediates with functions in signaling (11).

Enzymatic lipid oxidation is facilitated by a network of proteins
that use PUFAs or sterols as substrates, specifically, lipoxygenase
(LOX), cyclooxygenase (COX), and cytochrome P450 (CYP), all of
which exist as several isoforms exhibiting broad substrate specificity
(12–16). In general, PUFA oxygenation is initiated by COXs, LOXs,
and to a lesser extent CYPs. For example, the biosynthesis of PGs is
initiated by COXs, whereas the formation of leukotrienes begins
with a LOX. Additionally, crossover between COX, LOX, and CYP
is proposed to produce various SPMs. On the other hand,
cholesterol oxidation is dominated by CYPs. For example,
sidechain shortening during steroid hormone synthesis is
catalyzed by CYP11A1 (P450scc). Bile acids are synthesized from
cholesterol predominantly by two pathways: the neutral pathway
starting with an endoplasmic reticulum resident enzyme CYP7A1,
and the acidic pathway starting with CYP27A1 in mitochondria
(17). CYPs account for many enzymes in both pathways, catalyzing
the formation of oxysterols as well as oxygenated PUFAs. Last, aldo-
keto reductases (AKR) and hydroxysteroid dehydrogenases (HSD)
catalyze key redox reactions in bile acid and steroid
hormone biosynthesis.

By contrast, non-enzymatically oxidized lipids are produced
through uncontrolled oxidation via free radical mechanisms.
This involves the oxidation of lipids by free radicals, followed by
chain propagation and ultimately termination. Notably, during
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oxygenation of PUFA, active site intermediates can escape to
react in an uncontrolled manner, leading to some oxidized lipids
forming due to non-enzymatic rearrangements of enzymatic
pathway intermediates.

Here, we provide an overview of major enzymes involved in
lipid metabolism, including LOXs, COXs, CYPs and AKRs. Then
we outline the biosynthetic pathways of oxylipins, oxPLs,
oxysterols, bile acids and steroid hormones. Finally, we address
outstanding questions and suggest directions for future work.
ENZYME FAMILIES INVOLVED IN THE
BIOSYNTHESIS OF OXIDIZED LIPIDS

Lipoxygenase (LOX)
Human LOX: Isoforms and Tissue Distribution
Lipoxygenases (LOX) are a family of non-heme iron-containing
dioxygenases. They catalyze the stereospecific addition of
dioxygen to lipids containing a (1Z,4Z)-pentadiene group
producing lipid hydroperoxides. The human genome contains
six functional LOX genes, expressed in various tissues (Table 1).
LOXs were traditionally named according to their positional
specificity for arachidonic acid (AA). However, the latest
characterized member eLOX3 has limited lipoxygenase activity
(38), while some LOXs show preference for other PUFA.
Sequence analysis of human LOXs (using UniProt entries (39))
shows that 12R-LOX (ALOX12B) is evolutionarily closer to 15-
LOX-2 (ALOX15B; 48.2% identity) than 12S-LOX (ALOX12;
35.7% identity). Additionally, human 15-LOX-1 (ALOX15)
exhibits dual positional specificity which is not reflected in the
name (18). The lack of a robust naming system is a common
cause of confusion. Thus, the use of gene names alongside
enzyme names is recommended (14).

LOXs are typically constitutively expressed, except for 15-
LOX-1 (ALOX15) which is inducible by IL-4 and IL-13 in
monocyte-derived macrophages (28). Although 15-LOX-2
(ALOX15B) is constitutively expressed in the same cell type, its
expression can be increased by cytokines, hypoxia, and
lipopolysaccharide. It is possible that other constitutively
expressed LOXs share this property.

Structure and Membrane Association
of Mammalian LOXs
There are a limited number of published crystal structures for
mammalian LOXs. Available structures of 5- and 15-LOXs show
a single polypeptide chain that consists of two domains: a small
b-barrel N-terminal domain and a larger a-helix-rich C-terminal
domain containing the catalytic non-heme iron (40–42). The
coordination positions of the catalytic iron are occupied by three
conserved His residues, the carboxyl group of the C-terminus Ile
residue, a water molecule and one last variable ligand (water, His,
Asn, or Ser). Studies on mammalian LOXs found that the N-
terminal domain is not required for catalytic activity, but instead
functions in membrane binding and regulation (43, 44). The N-
terminal domain of mammalian 5-LOXs (ALOX5) was found to
be important for the calcium-dependent translocation from the
November 2020 | Volume 11 | Article 591819
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cytosol or nucleus (depending on cell type) to the nuclear
envelope and enzyme activity (45, 46). Similar findings were
reported for mammalian 15-LOXs, with the translocation from
the cytosol to the cell membrane instead (47, 48). Unlike other
LOXs, the activity of 5-LOX requires interaction with partner
proteins 5-lipoxygenase activating protein (FLAP), coactosin-
like protein (CLP) and cytosolic phospholipase A2 (cPLA2) (49,
50). Additionally, 5-LOX undergoes phosphorylation at multiple
sites, regulating its translocation and activity, and is allosterically
activated by ATP (51–53).

On the other hand, 15-LOXs do not require accessory proteins
for free FA oxygenation. Instead, 15-LOXs form a complex with a
small scaffolding protein, phosphatidylethanolamine-binding
protein 1 (PEPB1) (54). This complex facilitates 15-LOX activity
on PL-esterified PUFA and is proposed to play regulatory roles in
ferroptosis along with GPX. PEPB1 has been suggested to direct 15-
LOX activity toward PL substrates when free AA is depleted (55).
The crystal structure of human 15-LOX-2 (ALOX15B) revealed a
hydrophobic loop in the N-terminal domain that is flanked by
calcium binding sites, a feature that is absent in 5-LOX (42).
Hydrogen-deuterium exchange mass spectrometry showed a
decrease in H/D exchange for the hydrophobic loop, supporting a
role in membrane hopping (48, 56). Both 5-LOX and 15-LOXs
associate with membranes in a calcium-dependent process but they
exhibit differences in activity, translocation and binding partners.

Calcium-dependent membrane association has also been
shown for platelet 12S-LOX (ALOX12), and more recently,
12R-LOX (ALOX12B), and eLOX3 (19, 57). The activity of
12S-LOX (ALOX12) is thought to be regulated by the
availability of its substrates, which are supplied through the
action of phospholipases. It is currently unknown whether
12S-LOX is regulated by other mechanisms. Research on the
regulation of 12R-LOX and eLOX3 is also limited, although
calcium has been shown to increase the activity of mouse 12R-
LOX but not eLOX3 (58).

Aside from the catalytic domain of 12S-LOX (ALOX12), no
crystal structures are available for 12-LOXs or eLOX3. However,
human platelet 12S-LOX (ALOX12) was characterized using
small-angle x-ray scattering, showing its occurrence as a dimer
Frontiers in Endocrinology | www.frontiersin.org 3
in solution (59). This challenged the idea that all human LOXs
exist and function as monomers. Human 5-LOX displays full
activity as a monomer but forms functional dimers as well,
thought to exist in equilibrium (60). Similarly, rabbit 15-LOX-
1 (ALOX15) undergoes ligand-induced dimerization in aqueous
solutions, and molecular dynamics predicts stable dimers in the
presence of substrate fatty acids (61). This supports the idea of
monomer-dimer equilibria in LOXs. Human 15-LOX-1 (81.1%
sequence identity to rabbit) likely exhibits the same property.

In summary, all six human LOXs associate with membranes
in a calcium-dependent manner. 5-LOX requires the help of
protein partners for membrane translocation and activity,
whereas 15-LOXs only require a partner protein to efficiently
catalyze the oxygenation of PL-esterified PUFA. Less is known
about the regulation of 12-LOXs and eLOX3. Dimerization and
monomer-dimer equilibria have been observed in several LOX
isoforms and represent a potential regulatory mechanism.
Finally, complete crystal structures have yet to be reported for
12S-LOX, 12R-LOX, and eLOX3. In the case of 12S-LOX, a
crystal structure would be beneficial in the rational design of
inhibitors, as the enzyme functions in platelet activation.

Reaction Mechanism of LOX
The dioxygenase activity of LOX represents a highly controlled
form of lipid peroxidation (Figure 1A). First, stereospecific
hydrogen atom removal is carried out by the non-heme ferric
iron [Fe(III)]. Fe(III) is not a strong enough oxidizer to abstract
hydrogen directly. Thus, a mechanism involving proton-coupled
electron transfer (PCET) has been proposed (62) (Figure 1A). In
this, the electron is directly transferred to Fe(III) and the proton
is picked up by the hydroxide ligand in a concerted mechanism
(simultaneously), producing a lipid alkyl radical and ferrous iron
[Fe(II)]. This is followed by a rearrangement of the lipid radical
into the more stable conjugated diene. After that, dioxygen is
introduced onto the opposite side of the removed hydrogen
(antarafacially), generating a lipid peroxyl radical. Finally, the
lipid peroxyl radical is reduced by Fe(II) and protonated to form
a lipid hydroperoxide, through PCET. This reforms Fe(III) for
another round of catalysis.
TABLE 1 | Human LOXs: Genes, substrates, and major expression sites.

Gene Protein Preferred substrate(s) Expression sites Refs.

ALOX12 12S-LOX DHA & EPA > AA Platelets, umbilical vein endothelial cells, vascular smooth muscle cells,
skin epidermis

(18–22),

ALOX12B 12R-LOX O-Linoleoyl-w-hydroxyceramide
AA & 8,11,14-eicosatrienoic acid >
GLA

Hair roots, keratinocytes, B-cells, tonsil epithelial cells, bronchial epithelial
cells

(23–27)

ALOX15 15-LOX-1
(12/15 LOX murine
ortholog)

DHA > EPA > AA Monocytes, macrophages, dendritic cells, eosinophils, reticulocytes,
tracheal epithelium

(18, 28–32)

ALOX15B 15-LOX-2
(8-LOX
murine ortholog)

DHA > EPA > AA Macrophages, hair roots, prostate, lung, cornea, skin (18, 28, 33),

ALOX5 5-LOX AA & 5S-HpETE Leukocytes, dendritic cells, mast cells, lung, placenta (34–36)
ALOXE3 eLOX3 9R-Hydroperoxy-linoleoyl-w-

hydroxyceramide
12R-HpETE

Skin epidermis (25, 37)
November 2020 | Volume 11 | A
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FIGURE 1 | Reaction mechanism of lipoxygenases (LOXs). (A) Dioxygenase activity. Hydrogen atom removal is thought to proc
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The stereo and regio-specificity of lipoxygenation are
determined by structural features which: (i) accommodate and
position the substrate in a specific orientation, and (ii) direct
radical rearrangement and oxygen insertion. These features
include a U-shaped cavity that accommodates the substrate
(63), a migration channel for oxygen (64), a glycine/alanine
“switch” that determines stereospecificity by directing oxygen
(65), and several amino acid residues that control positional
specificity (66, 67). These properties are explored in-depth by
Newcomer and Brash (68).

In addition to classical dioxygenase activity, LOXs catalyze
other reactions that involve free-radical processes like hydrogen
abstraction, homolytic bond cleavage, and radical rearrangement
(69). eLOX3 exhibits a hydroperoxide isomerase activity
(lipohydroperoxidase activity) which converts hydroperoxides
to epoxy-alcohols and ketones (70) (Figure 1B). eLOX3 has
restricted dioxygenase activity (38), and its hydroperoxide
isomerase activity is considered its primary catalytic reaction.
Also, mammalian 5-LOXs and human 15-LOX-1 (ALOX15)
possess leukotriene A4 synthase activity which produces
epoxides from hydroperoxides (71–74). The mechanism
involves the homolytic cleavage of a hydroperoxide into an
alkoxy radical and hydrogen atom removal (via PCET) from a
bis-allylic methylene carbon generating an alkyl radical. The
resulting biradical is stabilized by epoxide formation
(Figure 1C).

LOXs are inactive in their basal form with Fe(II) and require
activation via oxidation into Fe(III) (Figure 1D). LOX activation
is facilitated by hydroperoxides such as their dioxygenase
reaction products. Although the proposed LOX catalytic cycle
regenerates the ferric iron for another round of catalysis, small
amounts of radical intermediates can escape the active site
resulting in an incomplete catalytic cycle and requiring
repeated activation of the enzyme (formation of Fe(III) by
hydroperoxide) for sustained catalysis (69, 75, 76).

Some LOXs exhibit suicide inactivation, a property in which
the reaction product rapidly inactivates the enzyme. Human 5-
LOX is irreversibly inactivated by both of its products 5-HpETE
and leukotriene A4 (77). Similarly, rabbit reticulocyte 15-LOX
(human 15-LOX-1 ortholog) is inactivated by its product 15-
HpETE, and the mechanism is suggested to be through
formation of reactive intermediates that covalently bind the
enzyme (78). The dioxygenase reaction and the other two
activities (lipohydroperoxidase and leukotriene synthase) have
been proposed to inactive LOXs through different mechanisms,
but the mechanistic details remain unclear (78).

LOXs Act on a Broad Range of Substrates
LOX isoforms have different substrate preferences. Substrates of
mammalian 5-LOXs include AA, its hydroperoxide product 5S-
HpETE, as well as epoxy-alcohols derived from EPA and DHA
(71, 79). The former two are important in the biosynthesis of
leukotrienes, while the latter two are proposed to be precursors of
E- and D-series resolvins, respectively (75, 80). 15-LOXs
(ALOX15 and ALOX15B) accept AA, EPA, DHA, linoleic acid
(LA), and g-linolenic acid (GLA) as substrates. The preference of
Frontiers in Endocrinology | www.frontiersin.org 5
human 15-LOX orthologs is: DHA > EPA > AA > GLA > LA
(18). One key difference is that 15-LOX-1 (ALOX15) possesses
dual positional specificity for some of its substrates (e.g., 12 and
15-lipoxygenase activities for AA), whereas 15-LOX-2
(ALOX15B) exhibits singular specificity (15-lipoxygenase
activity) (55). The hydroperoxide isomerase and epoxidase
activities of 15-LOX-1 (ALOX15) are proposed to function in
the synthesis of eoxins, E-series resolvins, and protectin from
their respective precursors. Additionally, human 15-LOX-1
oxygenates PUFA-containing fatty amides and 2-arachidonoyl-
glycerol ester (81, 82). Finally, mammalian 15-LOXs can catalyze
the oxygenation of PUFA in lysophospholipids (lysoPL), PLs,
CEs, and lipoproteins (83–88).

PUFA substrates of platelet 12S-LOX (ALOX12) include AA,
EPA, DHA, and dihomo-g-linolenic acid (DGLA) (18, 89). While
no single study has compared all substrates at the same time, one
determined the order of preference for the first three substrates
to be: DHA > EPA > AA (18). Another found comparable kinetic
parameters for EPA, AA, and DGLA as substrates (89). Both
observed a singular positional specificity for 12S-LOX. LA, GLA,
and a-linolenic acid (ALA) were all found to be poor substrates
for 12S-LOX (18, 89, 90). Furthermore, human 12S-LOX
possesses lipoxin synthase activity, which converts leukotriene
A4 into lipoxins A and B (91). The enzymatic activities of 12S-
LOX are also proposed to function in the biosynthesis of
hepoxilins and maresins (92, 93). Recently, 12S-LOX was
shown to oxygenate 2-AA-lysoPL, proposing alternate
pathways for oxylipin and oxPL biosynthesis (94).

Mammalian 12R-LOX (ALOX12B) and eLOX3 (ALOXE3) are
co-expressed in skin and their functions are related. 12R-LOX
efficiently catalyzes the peroxidation of AA, DGLA and GLA, and
less efficiently LA, EPA and DHA (23, 24). Later, 12R-LOX was
shown to oxygenate LA esterified to w-hydroxyacyl-sphingosine
more efficiently than free LA (25). The hydroperoxide product of
this reaction is further converted into an epoxy-alcohol by the
isomerase activity of eLOX3. These two reactions are essential for
the proper formation of the water-impermeable barrier in
corneocytes (25). Human eLOX3 isomerase activity has also been
observed on the 12R- and 12S-hydroperoxides of AA, with the
reaction occurring 2-3 times faster for the R-stereoisomer (95).
These reactions produce hepoxilins, which play a role in skin
inflammation. Curiously, mouse 12R-LOX and eLOX3 metabolize
the methyl esters of AA and LA more efficiently than the
unmodified FAs (58). However, human and mouse orthologs are
known to exhibit differences in substrate preference and regio-
specificity (95). Thus, further work is needed to assess the ability of
human 12R-LOX tometabolize fatty methyl esters and whether that
reaction is biologically relevant.

Several aspects of LOX enzymology remain unresolved. First,
the functional implications of suicide inactivation are unknown,
that is, the reason why some LOXs have not evolved to resist
suicide inactivation. This suggests a biological function for this
property, perhaps in regulation. Additionally, the mechanistic
details of suicide inactivation are not fully understood. Second,
due to the ever-increasing list of LOX substrates, it has been
difficult to pinpoint biologically relevant substrates and assign
November 2020 | Volume 11 | Article 591819
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clear functions to all LOX isoforms. For example, the function of
15-LOX-2 (ALOX15B) in macrophages remains unclear,
although it has been recently shown to regulate cholesterol
levels (96). Unique substrates of each isoform (e.g., CEs for 15-
LOXs, lysoPLs for 12S-LOX) might be worth investigating.
Cyclooxygenase (COX)
Human COX: Isoforms and Tissue Distribution
Cyclooxygenases (COXs), also called prostaglandin-
endoperoxide synthases and prostaglandin G/H synthases, are
heme-containing enzymes that possess both oxygenase and
peroxidase activities. There are two COX genes in humans:
PTGS1 and PTGS2, which encode for COX-1 and COX-2,
respectively. Traditionally, it was thought that COX-1 is
constitutively expressed, whereas COX-2 is inducible in
response to inflammatory signals. However, several studies
suggest constitutive COX-2 expression in the brain, lungs, gut,
thymus, kidneys, and blood vessels (97–99). In the vasculature,
COX-2 has been demonstrated to be a key source of vascular
prostacyclin (100, 101). COX-1 is ubiquitously expressed in the
body, and its expression sites include blood vessels, prostate,
immune cells (monocytes, T-cells), platelets, stomach, resident
inflammatory cells, smooth muscles, and mesothelium of many
organs (102–105). On the other hand, COX-2 is inducible in
many tissues including prostate, immune cells (T-cells, B-cells,
monocytes), and stomach (102–104, 106), but also constitutively
expressed in some tissues as previously mentioned.

Structure of COX
The role of COXs as mediators of inflammation and their
potential as drug targets were drivers for the elucidation of
their structures. The crystal structure of sheep COX-1 has been
solved in the presence and absence of various synthetic ligands
(107–109). Similarly, there are available structures for mouse
COX-2 in the presence and absence of natural and synthetic
ligands (13, 110–113), as well as human COX-2 with several
inhibitors (114, 115).

Both COX isoforms are homodimers, and this quaternary
structure is necessary for enzymatic activity (116). Each
monomer consists of three domains: An N-terminal epidermal
growth factor (EGF)-like domain, a membrane binding domain,
and a large C-terminal catalytic domain. The EGF-like domain is
located at the dimer interface and potentially facilitates
dimerization. It is also thought to facilitate membrane binding
(117). The membrane binding domain consists of four
amphipathic a-helices that insert into one face of a membrane
bilayer. Both COXs are found on the luminal face of the
endoplasmic reticulum (ER) and the inner and outer nuclear
membranes (118). However, COX-2 is also found in the Golgi
apparatus (119). The catalytic domain (in both isoforms)
contains separate oxygenase and peroxidase active sites on
opposite sides of the heme cofactor. The oxygenase active site
is located towards the membrane binding face at the end of a
hydrophobic tunnel that allows substrate entry, whereas the
peroxidase active site is in a groove on the opposite face of the
enzyme (120).
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COXs undergo N-glycosylation at multiple asparagine
residues. This facilitates their proper folding, and regulates the
turnover of COX-2 by controlling its trafficking between the ER
and the Golgi apparatus (119, 121, 122). COX-2 can also be S-
nitrosylated by inducible nitric oxide synthase, which has been
proposed to enhance its activity (123). In vitro experiments on
recombinant human COX-1 and COX-2 demonstrated that both
isoforms can be S-nitrosylated by a nitric oxide donor, but only
COX-2 showed increased cyclooxygenase activity (124). Circular
dichroism data suggest an altered, less dynamic conformation for
both isoforms after S-nitrosylation with less a-helices, turns, and
random coils, but more b-sheets. The structural change was
more pronounced in COX-2 compared to COX-1. These
findings provide new insight into the structural dynamics of
COXs. The occurrence and biological relevance of this altered
COX conformation is unexplored in vivo and would benefit from
further investigation.

Although COXs are sequence homodimers, they are
considered conformational heterodimers because one
monomer functions as the catalytic subunit (Ecat) and the
other as an allosteric regulator (Eallo) (125–127). For both COX
isoforms, the binding of one heme molecule to Ecat is required for
full activity. Several substrate and non-substrate FAs can bind
Eallo to regulate the activity of Ecat, and the two COX isoforms
exhibit differences in this regard. COX-1 is inhibited by palmitic
acid, stearic acid, margaric acid and oleic acid (127), none of
which are COX substrates. On the other hand, COX-2 is
stimulated by palmitic acid and stearic acid (126). Substrate
FAs (like AA and EPA) also bind to Eallo to regulate COX
activity, with notable differences in the responses of the two
isoforms (reviewed in (128)).

Catalytic Mechanism of COX
COXs possess two enzymatic activities: a dioxygenase activity
and a peroxidase activity. The dioxygenase activity is a controlled
peroxidation process (129), and the role of the enzyme is to
direct hydrogen abstraction and the stereochemistry of
formation of intermediates (120). Unlike LOXs where
hydrogen abstraction is carried out by a non-heme associated
Fe(III), hydrogen abstraction in COX is carried out by a catalytic
tyrosyl radical (Figure 2A). The heme group oxidizes a tyrosine
residue in the active site into a radical, which then abstracts a
hydrogen (stereo- and regio-specifically) from the (1Z,4Z)-
pentadiene group of the lipid. Using AA as an example
substrate, the 13-pro-S hydrogen is abstracted. The resulting
alkyl radical rearranges into a conjugated diene before the
addition of dioxygen at C11, generating a peroxyl radical (11R-
stereochemistry). Rotation of the peroxyl radical positions the
outer oxygen atom in the correct orientation to attack the C9
carbon resulting in an endoperoxide (130). A second cyclization
involving C8 and C12 generates a bicyclic ring and a radical at
C15. Note that the cyclopentane ring is formed in the trans
configuration (131). This differs from the non-enzymatically
generated isoprostanes which occur predominantly in the cis
configuration (132). Following the second cyclization, dioxygen
is added onto the si face of the C15, forming a peroxyl radical
(15S-stereochemistry). Hydrogen atom transfer from the active
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site tyrosine residue forms prostaglandin G2 (PGG2) and
regenerates the tyrosyl radical for another round of catalysis.

The peroxidase activity of COX reduces PGG2 into PGH2

(Figure 2A). The mechanism involves a two-electron reduction
of the hydroperoxide into an alcohol, with a corresponding
oxidation of the heme group into the oxoferryl form (133)
(Figure 2B). Regeneration of the heme group can be achieved
by two sequential one-electron reductions. The peroxidase
activity is required for the dioxygenase activity as the oxidation
of the tyrosine into a radical is done by the oxoferryl-porphyrin
cation radical generated during the peroxidase reaction cycle
Frontiers in Endocrinology | www.frontiersin.org 7
(133) (Figure 2B). Suicide inactivation has been described for
both the dioxygenase and peroxidase activities of COX
(133, 134).

The dioxygenase activity of COX can also result in a
lipoxygenase-type reaction, in which one dioxygen molecule is
introduced and no endoperoxide formation occurs (135, 136)
(Figure 2A). In this case, the peroxyl radical formed after the
addition of the oxygen is reduced into a hydroperoxide instead of
participating in the cyclization reaction. This reaction represents
an incomplete catalytic cycle and occurs as a side product. Using
AA as a substrate, this lipoxygenase-type reaction (after
A

B

FIGURE 2 | Reaction mechanism of cyclooxygenases (COXs). (A) Production of eicosanoids from arachidonic acid through the dioxygenase and peroxidase
activities of COX. The cyclooxygenase reaction is colored black. Peroxidase reactions are coloured blue. Reactions that produce HpETEs are colored red. Side
reactions that produce 15-HETEs are depicted by dashed arrows. (B) The peroxidase cycle generates the Tyr radical required for hydrogen abstraction (porphyrin
ring of heme not shown).
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reduction by peroxidase) leads to the formation of 11R-HETE
(HETE: hydroxy-eicosatetraenoic acid), 15R-HETE and 15S-
HETE (minor product compared to 15R-HETE in both
isoforms) (137). C11 and C15 are the same oxygen insertion
sites in the dioxygenase (cyclooxygenase reaction), and these by-
products are thought to arise from alternate conformations of
substrate in the active site (138).

Aspirin (acetylsalicylic acid) is an inhibitor of COXs, and its
mechanism of action involves the acetylation of a serine residue
(Ser530 in COX-2) in the active site. Acetylation of COX-1 leads
to complete inhibition (139), whereas the acetylation of COX-2
promotes the lipoxygenase-type reaction and the formation of
15R-HETE (140). It was previously thought that acetylation
completely inhibits PG production by COX-2 (cyclooxygenase
reaction). However, recent evidence shows that the acetylated
enzyme retains that activity (15S-PG formation) but also more
favorably forms 15R-PGs (141), although PGs are still minor
products compared to 15R-HETE for acetylated-COX-2. These
findings are consistent with an earlier study that reported the
formation of 15R-PGE2 in COX-2 Ser530 mutants (137). Thus,
both acetylation and mutagenesis of Ser530 in COX-2 promote
15R-PG formation.

COX Isoforms Differ in Their Substrate Specificity
COXs catalyze the transformation of AA into PGH2, which is a
precursor of other PGs (PGD2, PGE2, PGF2a, PGI2) and
thromboxane. These oxygenated AA derivatives are generated
through the action of tissue-specific enzymes downstream of
COX (discussed in section 3.1) and play roles in inflammation,
blood flow regulation and blood clotting through interactions
with specific GPCRs (142).

COXs also accept other PUFAs as substrates including
DGLA, LA, ALA, EPA, and GLA (143), at least in vitro. An
early study determined the efficiency of substrate utilization for
human COXs (Kcat/Km) to be AA > DGLA > LA > ALA, with
ALA being a poor substrate for COX-1. EPA and GLA are poor
substrates for both isoforms but they are better substrates for
COX-2 than for COX-1 (143). Later studies have tested other
PUFAs like eicosadienoic acid, adrenic acid, docosapentaenoic
acid and DHA as COX substrates (127, 144). In general, COX-2
was found to be more efficient than COX-1 for a broader range of
PUFAs. That said, AA is the preferred substrate for both
isoforms, but COX-2 can oxygenate it at lower concentrations
compared to COX-1 due to differences in their allosteric
regulation by FAs (145).

COX-2 can also catalyze the 11R-, 15R-, 15S-dioxygenation and
bis-oxygenation of 5S-HETE, forming diHETEs in the former three
reactions and a di-endoperoxide product in the later reaction.
However, acetylation of COX-2 shifts the specificity into favoring
15R-dioxygenation producing 5S,15R-diHETE (146). Additionally,
COX-2 can oxygenate AA in complex lipids for example;
arachidonoylethanolamide, 2-arachidonoylglycerol (2-AG), and
N-arachidonoyl-glycine (147–149). Recently, 2-AA-lysoPL, and
ethanolamide derivatives of EPA and DHA were also shown to
be COX-2 substrates (88, 150). Oxygenation of AA-lysoPL by COX-
2 generates eicosanoid-lysoPL, which can be hydrolyzed to release
eicosanoids through intracellular lipases (88). The ability of COX-2
Frontiers in Endocrinology | www.frontiersin.org 8
to bind and oxygenate a broader range of substrates compared to
COX-1 has been attributed to a larger active site, the orientation of
an Arg residue in the substrate binding pocket and amino acid
residues lining the tunnel leading to the cyclooxygenase active
site (13).

COX isoforms exhibit differences in expression, tissue
distribution, allosteric regulation, and substrate specificity.
However, some aspects of COX biochemistry are unclear. For
example, the physiological functions of COX-2-derived
oxygenated endocannabinoids are unclear. Additionally, COX-
2 oxygenates AA-lysoPLs into eicosanoid-lysoPLs, which are
proposed to function in signaling and as precursors to other
mediators (88). However, the metabolism of eicosanoid-lysoPLs
requires further investigation.

Cytochrome P450 (CYP)
Human CYPs: Nomenclature and Tissue Distribution
Cytochrome P450s (CYP) are a superfamily of heme-containing
monooxygenases that are ubiquitous across all domains of life.
There are 57 functional CYP genes in humans, and their products
are further divided into 18 families and 41 sub-families based on
amino acid sequence (151, 152). A robust, unified nomenclature
system has been devised for CYPs, encompassing all known CYPs
across living organisms (153, 154). The name includes the root
“CYP”, followed by a number for family, a letter for subfamily, and
a gene-identifying number for isoforms. Additionally, an asterisk
and a number are added at the end to denote alleles (155). Families
and subfamilies are based on 40% and 55% amino acid sequence
identity, respectively.

CYPs are widely distributed in mammalian tissues (156–158),
with a particularly high expression in the liver, brain, kidney and
lung. Intracellularly, mammalian CYPs are generally bound to
mitochondrial membranes and the endoplasmic reticulum (ER;
microsomes when in vitro) (159, 160). There is also evidence of
mammalian CYPs in other compartments including the plasma
membrane and the nucleus, based on in vitro studies on cultured
cells (161–164). Some microsomal CYPs are also targeted into
the mitochondria (159). In the human genome, 50 out of the 57
functional CYP genes code for microsomal CYPs, and the
remaining seven for mitochondrial isoforms. Some CYPs are
inducible by environmental stimuli, whereas others are
constitutively expressed (152). Induction of CYP expression by
environmental compounds can be through interactions with
nuclear receptors, transcriptional regulatory elements, or non-
coding RNAs (165).

Two major functions of CYPs are in drug metabolism and
lipid metabolism. Here, we focus on lipid metabolism which
involves members of most human CYP families. For an extensive
review, the reader is referred to Nelson and Nebert (166).

Structure of Mammalian CYPs
Structural characterization was first carried out on bacterial
CYPs, which are typically water soluble. On the other hand,
mammalian CYPs are membrane-bound, and initial attempts to
crystallize them were unsuccessful until a small N-terminal
hydrophobic helical segment was replaced with a hydrophilic
sequence from a related protein. The first structure to be
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published was of rabbit CYP2C5, a microsomal CYP isoform
that hydroxylates progesterone (167). Comparison of CYP2C5
structure with closely related microbial CYPs showed a similar
folding geometry, but unique features of the mammalian enzyme
were observed such as a hydrophobic surface that was proposed
to play a role in membrane binding (167).

CYPs consist of two domains: a b-sheet-rich N-terminal
domain and a larger helix-rich C-terminal catalytic domain.
The N-terminal domain in microsomal CYPs contains a
transmembrane helix that plays a role in membrane anchoring,
but that role is not exclusive as CYPs contain other regions (in
the catalytic domain) that bind the membrane. This
transmembrane helix is not present in mitochondrial CYPs,
and their membrane binding is facilitated by hydrophobic and
amphipathic regions on the surface (160, 168). The N-terminus
also contains a signal peptide sequence for trafficking into the
appropriate compartment, that in the case of mitochondrial
CYPs, is cleaved during transport. The catalytic domain
contains a deep cavity that houses the heme prosthetic group.
A thiolate ion in a conserved cysteine residue occupies the fifth
coordination position of heme, and a water molecule occupies
the sixth position in the resting state. There is variable flexibility
in the active site among CYPs, and a high degree of flexibility has
been correlated to substrate promiscuity (169, 170). Residues in
helices surrounding the active site heme position the substrate
for catalysis. Additionally, in the CYP4 family, a covalent linkage
has been identified between the heme group and a conserved
glutamic acid residue (171), and this interaction plays a role in
substrate positioning for w-hydroxylation (hydroxylation at the
methyl end of FAs) (172).

Other structural features of CYPs include access channels that
allow entry of substrates from both the aqueous and membrane
compartments and an exit channel for the product (160).
Furthermore, oligomerization is well-documented in both
microsomal and mitochondrial CYPs, which can be between
subunits of the same CYP (homomeric; e.g., CYP2C2) or
different CYPs (heteromeric; e.g., CYP2E1/CYP3A4 and
CYP1A2/CYP2B4) (173–180). These interactions provide an
additional layer of regulation and play a role in substrate specificity.

Enzymology of Mammalian CYPs
CYPs catalyze a wide range of reactions (181, 182), but the most
common include C-hydroxylation, heteroatom oxidation,
heteroatom dealkylation, epoxidation, and group migration
(182). Many reactions of CYPs are dependent on their ability
(owing to the thiolate-heme group) to catalyze the scission of
dioxygen and incorporate one of the oxygen atoms into the
substrate, with the other being reduced to water. These reactions
require electron transfer from a donor, NADPH, to the heme iron.
However, transfer of electrons from NADPH to CYPs requires
protein partners: NADPH cytochrome P450 reductase in the case
of microsomal CYPs, and the combined functions of adrenodoxin
reductase and adrenodoxin in mitochondrial CYPs. Thus, CYPs
form complexes with their redox partners, at least during catalysis.
That said, not all CYP reactions require external oxygen or
electron donors. Examples are isomerization reactions catalyzed
Frontiers in Endocrinology | www.frontiersin.org 9
by CYP5A1 (thromboxane synthase) and CYP8A1 (prostacyclin
synthase) (183), two enzymes involved in PGH2 metabolism.

A generalized reaction mechanism for CYPs (Figure 3A)
contains the following steps: starting with the resting state,
substrate recruitment displaces H2O from the 6th (axial)
position of the heme Fe(III). This is followed by a 1-electron
reduction from a donor forming Fe(II), O2 binding, and another
1-electron reduction resulting in a negatively charged peroxo
group. Protonation of this complex twice by nearby H2O or
amino acid residues results in the scission of the dioxygen (O-O
bond) into an oxoferryl intermediate (compound I) and a water
molecule (184). Compound I is thought to be the direct oxidant
in many CYP oxidation reactions (185). In hydroxylation
reactions, compound I abstracts a hydrogen from an alkyl
group in the substrate generating a carbon radical and an iron
oxygen complex, which rapidly react together forming a
hydroxyl group on the substrate and regenerating the heme
iron into the Fe(III) state (Figure 3B). Although this is a
generalized reaction scheme for CYPs, the intermediates
following O2 binding until compound I have been difficult to
characterize due to their instability and the exact electronic
structures are not fully assigned (185).

Mammalian CYPs Play Crucial Roles in Oxidative
Lipid Metabolism
CYPs are involved in the metabolism of a wide range of lipids
including PUFAs and sterols (Table 2). Hydroxylation and
epoxidation are two common CYP-mediated reactions for PUFA
substrates. CYPs can hydroxylate FAs terminally (w-
hydroxylation) or midchain. Similarly, CYP-mediated
epoxidation can occur on various double bonds in PUFA. CYPs
exhibit variable preference with respect to the reaction type and
positional specificity. CYP1-3 families catalyze epoxidation and
hydroxylation reactions for FAs, whereas the CYP4 family favors
hydroxylationoverepoxidation, specificallyw-hydroxylation (204).

Terminal hydroxylation of AA by CYPs produces 20-
hydroxyeicosatetraenoic acid (20-HETE), which functions in
blood pressure regulation and water balance (205).
Additionally, terminal hydroxylation functions in w-oxidation
(a catabolic pathway for FAs), the degradation of some
eicosanoids (206, 207), and the proper formation of the skin
permeability barrier (208). Midchain hydroxylation of PUFA
produces mono-hydroxylated derivatives (HETEs in the case of
AA) with various bioactivities (reviewed in (152)). Unlike LOXs
and COXs which oxygenate carbons two bonds away from bis-
allylic methylene carbons, CYPs can also oxygenate bis-allylic
carbons (producing 7-, 10- and 13-HETE from AA), and various
other positions (209–211). However, bis-allylic hydroxylation
products are unstable in mildly acidic conditions and rearrange
into conjugated dienes (211).

Epoxidation of AA by CYPs produce epoxy-eicosatrienoic
acids (EET). However, other PUFA like LA, EPA and DHA also
undergo CYP-mediated epoxidation. Epoxy derivatives of
PUFAs are implicated in blood pressure regulation and
inflammation (15). Their metabolism is undertaken by several
epoxide hydrolases including soluble epoxide hydrolase (sEH)
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and microsomal epoxide hydrolase (mEH) (212). The action of
epoxide hydrolases produces dihydroxy derivatives which
possess different bioactivities from their epoxide precursors (15).

Arachidonoylethanolamide also undergoes CYP hydroxylation
and epoxidation (213, 214). Similarly, CYPs catalyze epoxidation of
EPA and DHA ethanolamides, producing compounds with anti-
inflammatory and anti-angiogenic effects (215). These lipids can be
degraded by both sEH and fatty acid amide hydrolase (FAAH)
(215), suggesting a link between the CYP epoxygenase and
endocannabinoid pathways. The metabolism and biological roles
of these mediators is an active area of research (216).

CYPs catalyze several types of reactions in the metabolism of
sterols, some of which involve multiple oxygenation/
hydroxylation steps. Demethylation of lanosterol by CYP51A1
is a key reaction in cholesterol biosynthesis and involves three
successive oxidations of a methyl group, resulting in its release as
formic acid and the introduction of a double bond at the D ring
(217). Similarly, the formation of estradiol from testosterone via
the action of CYP19A1 (P450arom) involves the elimination of a
methyl group by three successive oxidation steps and the
introduction of a double bond at the A ring. Additionally,
cholesterol side-chain cleavage by CYP11A1 (P450scc) involves
two hydroxylation steps on different carbons followed by a C-C
bond cleavage (218). This reaction produces pregnenolone which
is a key intermediate in the formation of androgens, estrogens,
glucocorticoids and mineralocorticoids.

CYP-mediated hydroxylation reactions are ubiquitous in
cholesterol metabolism, leading to the formation of oxysterols,
steroid hormones and bile acids. Key enzymes in the bile acid
Frontiers in Endocrinology | www.frontiersin.org 11
biosynthesis pathways are CYP7A1 (cholesterol 7a-hydroxylase),
CYP8B1 (sterol 12a-hydroxylase), CYP27A1 (commonly named
sterol 27-hydroxylase, but more correctly sterol (25R)26-
hydroxylase) and CYP7B1 (oxysterol 7a-hydroxylase) (219, 220).
Of these enzymes, CYP27A1 can both hydroxylate and carboxylate
the terminal carbon of the sterol side-chain (221). Other enzymes
involved in quantitatively minor bile acid biosynthesis pathways
are CYP46A1 (cholesterol 24S-hydroxylase) which 24S-
hydroxylates cholesterol (222, 223) and CYP3A4 which has 4b-
and 25-hydroxylase activity (189, 224). CYP enzymes involved in
steroid hormone biosynthesis include CYP11A (P450scc) (225),
CYP17A1 (steroid 17a-hydroxylase) (226), CYP21A2 (steroid 21-
hydroxylase), CYP11B1 (steroid 11b-hydroxylase), and 11B2
(aldosterone synthase) and CYP19A1 (aromatase) (198).

Thus, CYPs play indispensable roles in the metabolism of
both PUFA and cholesterol. However, some human CYPs like
CYP2A7 and CYP20A1 have no assigned functions and remain
orphan enzymes.

Human Aldo-Keto Reductases (AKRs) and
Hydroxysteroid Dehydrogenases (HSDs)
AKRs: Nomenclature, Genes, and Tissue Distribution
Aldo-keto reductases (AKRs) are a superfamily of NADPH-
dependent oxidoreductases. They catalyze the reduction of
carbonyl groups to alcohols. A nomenclature system has been
proposed for AKRs (227). Like CYPs, AKRs are grouped into
families and subfamilies based on amino acid sequence. Families
have 40% sequence identity, whereas subfamilies are defined by
60% sequence similarity. The nomenclature consists of the root
TABLE 2 | Examples of human cytochrome P450s (CYPs) and their involvement in lipid metabolism.

Enzyme Lipid substrate(s) Reaction(s) Refs.

CYP1A1 AA, EPA, DHA Epoxidation & hydroxylation (186)
CYP2C8 AA, EPA, DPA, DHA Epoxidation & hydroxylation (186–188)
CYP3A4 Sterols Hydroxylation (189–191)
CYP4A11 Lauric acid, PA

AA, EPA, DPA, DHA
w-Hydroxylation
w/w-1-Hydroxylation

(188, 192),

CYP4F2 AA, EPA, DPA, DHA w/w-1-Hydroxylation (188)
CYP5A1
(thromboxane synthase)

PGH2 Isomerization (183)

CYP7A1 Cholesterol, 7-DHC 7a-Hydroxylation, epoxidation, carbonylation (161, 193, 194)
CYP7B1 Oxysterols, steroids 7a-Hydroxylation (195)
CYP8A1
(prostacyclin synthase)

PGH2 Isomerization (183)

CYP8B1 Sterols 12a-Hydroxylation (196)
CYP11A1
(P450scc)

Cholesterol Side-chain cleavage (197)

CYP11B1 11-Deoxycortisol, 11-deoxycorticosterone 11b-Hydroxylation (198)
CYP11B2 11-Deoxycorticosterone 11b-Hydroxylation, 18-hydroxylation & oxidation (198)
CYP17A1 Pregnenolone, progesterone 17-Hydroxylation (199)
CYP19A1
(P450arom/aromatase)

Testosterone Aromatization (199)

CYP21A2 Progesterone Hydroxylation (199)
CYP24A1 Calcitriol 24-Hydroxylation (200)
CYP26A1 all-trans-Retinoic acid Hydroxylation (201)
CYP27A1 Sterols (25R)26-Hydroxylation and carboxylation (197)
CYP39A1 24-hydroxycholesterol 7a-Hydroxylation (17)
CYP46A1 Cholesterol, desmosterol 24S-Hydroxylation, 24S-epoxidation (197, 202)
CYP51A1 Lanosterol 14a-Demethylation (203)
November 2020 | Volume 11
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“AKR” followed by a number for family, a letter for subfamily
and finally a number as a unique gene identifier. The
nomenclature has also been expanded to accommodate
multimers (228). The older (trivial) names of AKRs are still
heavily in use, which could lead to confusion. Thus, it is advised
to follow the nomenclature system proposed by Jez et al. (227).

There are 15AKRs in the human genome spanning three families
and seven subfamilies. Human AKRs have variable expression and
accept a wide range of substrates (Table 3). They are involved in the
metabolism of sugars, prostaglandins and sterols, as well as the
detoxification of carbonyl compounds like lipid peroxidation
products. Additionally, members of family 6 (AKR6A3, AKR6A5,
and AKR6A9) are constituents of voltage-gated potassium channels
(250). All human AKRs have either established or proposed roles in
lipid metabolism except for AKR1E2.

Human AKRs are generally cytosolic with some exceptions.
AKR1B15 is found in mitochondria (236). Members of the
AKR1C subfamily in the lung (1C1, 1C2 and 1C3) are also
secreted in pulmonary surfactant (256). AKR1B10 is present in
lysosomes and is secreted into the intestinal lumen by epithelial
cells (257). AKR6 members form a complex with a plasma
membrane voltage channel on the cytosolic side. Finally, rat
AKR7A2 associates with the Golgi apparatus (258). Human
AKR7A2 contains a similar N-terminal amphipathic sequence
and likely associates with the Golgi apparatus.

Mammalian AKRs: Structure and Enzymology
Crystal structures have been solved for many mammalian AKRs.
They comprise of a triosephosphate isomerase barrel motif (a/b)
Frontiers in Endocrinology | www.frontiersin.org 12
8 which has alternating a-helices and b-strands repeating eight
times. The a-helices surround an internal b-barrel formed by the
b-strands. The active site is located at the base of the barrel, in
which the substrate and the nicotinamide head group of NADPH
(cofactor) are proximally positioned for the reaction, while three
flexible loops form the back of the barrel and control substrate
specificity (259, 260). The structure also contains two additional
helices that are not part of the barrel motif. Family 1 AKRs are
monomeric, whereas families 6 and 7 form tetramers and dimers,
respectively (258, 261).

AKRs catalyze the stereospecific reduction of carbonyls into
alcohols. They can also catalyze the reverse oxidation reaction.
However, the reducing direction is generally favored due to the
abundance of reduced cofactor in the cellular environment. AKRs
can use both NADPH and NADH, but NADPH is the preferred
cofactor for most known AKRs as they interact with the
phosphoryl group present in NADPH but not NADH (262, 263).
The stereospecific nature of the reaction is due to the orientation of
the NADPH and the substrate in the active site. The NADPH is
bound in the anti-conformation (with respect to the ribose ring)
which promotes the transfer of the 4-pro-R hydride (264), and the
substrate is positioned perpendicular to the cofactor.

The reaction of AKRs follows an ordered bi-bi mechanism in
which the NADPH cofactor binds first and leaves last. The active
site of AKRs contains a highly conserved catalytic tetrad of Tyr,
Lys, Asp and His. The hydride transfer is facilitated by acid-base
catalysis involving the protonation state of Tyr and the other
catalytic residues. In the reduction direction, the protonated
form of Tyr acts as an acid by participating in proton relay
TABLE 3 | Human AKRs: Genes, expression sites, and example substrates.

Gene Alternative protein name Expression sites Example substrates Refs.

AKR1A1 Aldehyde reductase Brain, kidney, liver, small
intestine

4-HNE, acrolein, succinic semi-aldehyde, D-glucuronic
acid, phospholipid aldehydes

(229, 230),

AKR1B1 Aldose reductase/Prostaglandin F
synthase

Ubiquitous Glucose, 4-HNE & its glutathione conjugate, acrolein,
PGH2, phospholipid aldehydes

(229, 230),

AKR1B10 Small intestine aldose reductase Small intestine, colon, liver,
cornea

Farnesal, retinoids, acrolein, phospholipid aldehydes (229, 231–235),

AKR1B15 Aldo-keto reductase/3-Keto-acyl CoA
reductase

Placenta, testis, adipose tissue Androgens, estrogens,
3-keto-acyl CoA conjugates

(236)

AKR1C1 20a-HSD Kidney, lung, liver, testis, brain Progesterone, estrone, 5a-dihydrotestosterone, 4-HNE (230, 237–239),
AKR1C2 Type 3 3a-HSD Liver, brain, lung, prostate Progesterone, estrone, 5a-dihydrotestosterone (237, 238),
AKR1C3 Type 5 17b-HSD/Prostaglandin F

synthase
Liver, lung, prostate, brain,
breast, lymphocytes

Progesterone, estrone, 5a-dihydrotestosterone, PGH2,
PGD2, 4-HNE

(238, 240–242),

AKR1C4 Type 1 3a-HSD Liver 3-Keto-5b-sterols,
5a-dihydrotestosterone

(230, 238),

AKR1D1 Steroid 5b-reductase Liver, placenta, brain D4-Ketosteroids, particularly bile acid intermediates (237, 243–245),
AKR1E2 1,5-Anhydro-D-fructose reductase Liver, testis 1,5-Anhydro-D-fructose (246, 247)
KCNAB1 Potassium voltage-gated channel b-

subunit-1 (Kvb1)/AKR6A3
Brain, heart Lipid peroxidation-derived aldehydes (presumed)* (248, 249)

KCNAB2 Potassium voltage-gated channel b-
subunit-2 (Kvb2)/AKR6A5

Brain, spinal cord Methylglyoxal, acrolein, 4-ONE, oxPL, PGJ2* (250–252)

KCNAB3 Potassium voltage-gated channel b-
subunit-3 (Kvb3)/AKR6A9

Brain No data. (253)

AKR7A2 Aflatoxin aldehyde reductase (AFAR1) Ubiquitous Aflatoxin B1, succinic semi-aldehyde, 4-HNE (230, 254)
AKR7A3 Aflatoxin aldehyde reductase (AFAR2) Liver, stomach, pancreas,

kidney
Aflatoxin B1 (255),
November 2020 | Volume 11
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with His (259) (Figure 4A). This polarizes the carbonyl group of
the substrate, allowing it to accept a hydride ion from the
cofactor. In the oxidation direction, the phenolate form of Tyr
(generated through proton relay with Lys and Asp) acts as a base
and abstracts a proton from the alcohol group of the substrate,
facilitating hydride transfer to the cofactor (259) (Figure 4B).

AKR1D subfamily members catalyze the irreversible 5b-
reduction of sterol double bonds into single bonds, instead of
the reversible reduction of carbonyls typical of AKRs (Figure
4C). They possess an altered catalytic tetrad with Glu replacing
His (265). This substitution allows the substrate to penetrate
deeper into the active site pocket, positioning C5 close to the 4-
pro-H of NADPH (259). The catalytic Glu residue is thought to
act as a superacid, facilitating the enolization of the steroid
double bond and allowing hydride transfer to C5 (259, 265).

Human AKR1B1 catalyzes the isomerization of PGH2 to
PGD2 in the absence of cofactor, as well as the reduction of
PGH2 to PGF2a in the presence of cofactor (266). Curiously, both
Frontiers in Endocrinology | www.frontiersin.org 13
of these reactions are reported to be facilitated by a catalytic triad
of Lys, His and Asp, without the involvement of Tyr in catalysis,
although Tyr is still required for the p‐nitrobenzaldehyde
reductase activity of the enzyme (266). Thus, both Tyr and His
can participate in acid-base catalysis, at least in AKR1B1.

Involvement of Human AKRs in Lipid Metabolism
Human AKRs play roles in the detoxification of reactive
carbonyls. Several AKRs metabolize lipid peroxidation-derived
aldehydes like acrolein and 4-HNE (Table 3). Additionally, some
AKRs (1A1, 1B1, 1B10, 6A5) can reduce oxidized phospholipids,
particularly phospholipid aldehydes (229, 251). These activities
mitigate the cytotoxicity of reactive carbonyls (240, 267–269),
and in the case of family 6 AKRs are also thought to function in
redox sensing (251).

Both AKR1B1 and AKR1C3 exhibit prostaglandin F synthase
activity (270, 271). AKR1B1 catalyzes the reduction of PGH2 to
PGF2a. AKR1C3 catalyzes the same reaction as well as the
A B

C

FIGURE 4 | Catalytic mechanism of aldo-keto reductases (AKRs) in the: (A) Reduction direction and (B) Oxidation direction. (C) 5b-Reduction of steroid double
bond by AKR1D1.
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reversible reduction of PGD2 to 9a ,11b-PGF2 (241).
Furthermore, AKR1B1 catalyzes the isomerization of PGH2 to
PGD2 exclusively in the absence of NADPH as noted previously.
However, the biological relevance of this activity is not clear as
this isomerization reaction is also catalyzed by two prostaglandin
D synthases (272), and the cellular redox status favors the
reduction reaction. Both PGF2a and its isomer 9a,11b-PGF2
promote uterine contractions during labor (237).

Six of the 15 human AKRs are involved in sterol/steroid
metabolism: AKR1B15, the four members of the AKR1C
subfamily (also grouped as hydroxysteroid dehydrogenases;
HSDs), and AKR1D1. AKR1B15 catalyzes the 17b-reduction of
androgens and estrogens (236). AKR1C1 (20a-HSD) catalyzes the
20a-reduction of progesterone inactivating it (273), whereas
AKR1C2 (Type 3 3a-HSD) possesses a 3a-dehydrogenase activity
and deactivates 5a-dihydrotesterone (259). AKR1C3 (Type 5 17b-
HSD) exhibits 17-ketoreductase activity and produces testosterone
and estradiol from their respective precursors.

AKR1D1 and AKR1C4 (Type 1 3a-HSD) catalyze key steps
in bile acid biosynthesis. AKR1D1 catalyzes irreversible 5b-
reduction of a double bond in 3-ketosterols. This modification
changes the geometry of the steroid nucleus from flat to twisted,
with a bend in the A/B ring junction. Next, AKR1C4 catalyzes
the 3a-reduction of the ketosteroid, resulting in a 3a,5b-
configuration, a characteristic feature of bile acids.
Other HSDs Belong to the Short-Chain
Dehydrogenase/Reductase (SDR) Family
Some HSDs belong to a different family of enzymes: the short-
chain dehydrogenases/reductases (SDR). SDRs exhibit key
differences from AKRs in structure, kinetics, catalytic
mechanism, and reaction stereochemistry (reviewed in (274)).
Of note, HSDs of the SDR family work as either ketosteroid
reductases or hydroxysteroid oxidases, depending on their
preference for the corresponding forms of NADP(H) or NAD
(H). This contrasts with HSDs of the AKR1C family which
operate in the reduction direction using (primarily) NADPH
(274). Like CYPs and AKRs, a systematic nomenclature has been
proposed for SDRs (275). However, the old names (especially for
HSDs) remain heavily in use. HSDs of the SDR family have
important functions in sterol/steroid metabolism (Table 4).
Frontiers in Endocrinology | www.frontiersin.org 14
BIOSYNTHETIC PATHWAYS OF OXIDIZED
LIPIDS

Oxygenated PUFA and Oxidized
Phospholipids
Classification of Oxygenated PUFA as Eicosanoids
and Docosanoids
The term “oxylipin” refers to oxygenated PUFA derivatives. It
encompasses a wide range of oxidized lipids like hydroxy-,
epoxy-, oxo-FAs, and endoperoxides. Oxylipins can be
classified according to their precursor into eicosanoids (C20)
or docosanoids (C22), etc., and this system will be used from here
on. Following the classification system of the LIPID MAPS
consortium, eicosanoids include prostaglandins, leukotrienes,
thromboxanes, lipoxins, hepoxilins, E-resolvins, as well as
hydroxy-, hydroperoxy-, epoxy-, and oxo-eicosanoids (286).
Likewise, docosanoids include D-resolvins, protectins, maresins,
hydroxy-, hydroperoxy-, epoxy-, and oxo-docosanoids. Structures
of these lipids are available on the LIPID MAPS database (287).

Here, we focus on the biosynthesis of eicosanoids derived
from AA and EPA, and docosanoids derived from DHA, as they
are the most studied. Due to the broad substrate specificity of
enzymes involved in lipid oxidation, PUFAs with shorter chains
or different number of double bonds also undergo similar
reactions. Similarly, oxygenation of endocannabinoids occurs
on the PUFA moiety and follows the enzymatic mechanisms
described here. Further aspects of oxygenated endocannabinoids
are discussed in other reviews (216, 288).

Release of PUFA from Membranes for Oxylipin
Biosynthesis
Intracellular concentration of free PUFA is tightly regulated
through conjugation with coenzyme A (CoA) and subsequent
esterification into lysoPL forming PL or shuttling into other
pathways (like b-oxidation). PUFAs are abundant in membrane
PLs, typically esterified at the sn-2position.The classical pathwayof
oxylipin biosynthesis involves the release of PUFA frommembrane
PL via the action of lipases like phospholipase A2 (PLA2),
phospholipase C and diacylglycerol lipase (289, 290). PLA2

enzymes are classified into six types: secreted (sPLA2), cytosolic
(cPLA2), calcium-independent (iPLA2), platelet-activating factor
TABLE 4 | Human SDR-HSDs and their substrates/reactions.

Gene Alternative protein names Substrates Reaction Refs.

HSD3B1 Type 1 3b-HSD/D5-4 isomerase/SDR11E1 3b-Hydroxy-D5-sterols Oxidation & isomerization (276, 277),
HSD3B2 Type 2 3b-HSD/D5-4 isomerase/SDR11E2 3b-Hydroxy-D5-sterols Oxidation & isomerization (277, 278),
HSD3B7 Type 7 3b-HSD/SDR11E3 3b-Hydroxy-D5-sterols Oxidation & isomerization (279)
HSD11B1 Type 1 11b-HSD/Corticosteroid 11b-dehydrogenase

isozyme 1/SDR26C1
11b-Hydroxysterols (e.g. cortisol), Oxidation (280)

HSD11B2 Type 2 11b-HSD/Corticosteroid 11b-dehydrogenase
isozyme 2/SDR9C3

11b-Hydroxysterols (e.g. cortisol), Oxidation (280)

HSD17B1 Type 1 17b-HSD/Estradiol 17b-dehydrogenase 1/
SDR28C1

Estrogens and androgens Reduction (281, 282)

HSD17B4 Type 4 17b-HSD/Peroxisomal multifunctional enzyme type
2/SDR8C1

(24R,25R)-3a,7a,12a,24-Tetrahydroxy-5b-
cholestan-26-oyl-CoA

Reduction (283)

HSD17B7 Type 7 17b-HSD/3-Ketosteroid reductase/SDR37C1 3b-Hydroxysterols, 17b-estradiol Reduction (284, 285)
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acetylhydrolases (PAH-AH), lysosomal (LPLA2), and adipose
(AdPLA), and these are further divided into groups and
subgroups (291, 292). cPLA2a is localized in the cytosol but
translocates to intracellular membranes upon calcium activation,
and exhibits selectivity for phospholipids containingAA at the sn-2
position (293, 294).On the other hand, the release ofDHA from the
membrane can be facilitated by iPLA2b (295, 296). Last, sPLA2

enzymes are involved in the release of AA, EPA and DHA (297,
298). PLA2 enzymes are extensively reviewed by Murakami (299).

Biosynthesis of Eicosanoids
Arachidonic acid is a substrate of eicosanoids produced through
the actions of COXs, LOXs, CYPs, and other downstream
Frontiers in Endocrinology | www.frontiersin.org 15
enzymes (Figure 5A). The most established of these are mono-
oxygenation products of AA, DHA, and EPA and classic
prostaglandins, leukotrienes, and thromboxane from COXs,
LOXs, and CYPs. Most of these were described from the
1950s–90’s in seminal studies, with many conducted at the
Karolinska Institute in Stockholm by Sune Bergstrom, Bengt
Samuelsson and colleagues. Indeed, the Nobel Prize for
Physiology and Medicine was awarded for discovery of
prostaglandins and related biologically active substances in
1985 to Bergstrom, Samuelsson and John Vane. More recently,
research has focused on characterization of multiply oxygenated
PUFAs from AA, EPA, and DHA including several which are
proposed to form from transcellular sequential oxygenation by
A

B

FIGURE 5 | Biosynthesis of eicosanoids derived from: (A) Arachidonic acid and (B) Eicosapentaenoic acid. HETE, hydroxy-eicosatetraenoic acid; Hp, hydroperoxy;
Ep, epoxy; LTA4H, leukotriene A4 hydrolase; LTC4S, leukotriene C4 synthase; GGT, g-glutamyl transpeptidase; DPEP2, dipeptidase 2; sEH, soluble epoxide
hydrolase; 12-HEDH, 12-hydroxyeicosanoid dehydrogenase; PGES, prostaglandin E synthase (m: microsomal, c = cytosolic); PGDS (prostaglandin D synthase (L:
lipocalin type, H: hematopoietic); 15-PGDH, 15-hydroxyprostaglandin dehydrogenase; PG-9KR, prostaglandin 9-ketoreductase; EET, epoxyeicosatrienoic acid;
DiHETrE, dihydroxy-eicosatrienoic acid; HEPE, hydroxy-eicosapenataenoic acid.
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various enzymes. However, for many of these, their specific
biosynthetic pathways, enantiomeric composition and
biological actions in tissues are not well understood and the
levels formed are extremely low in comparison to classic PGs and
monohydroxy-oxylipins. Furthermore, their bioactions often
require amounts of lipids that are considerably higher than
levels detected in cell and tissue samples, and thus could be
considered pharmacological.

COXs convert AA into PGG2 which is reduced into PGH2

(Figure 5A). From there, PGH2 functions as substrate for classic
PGs and thromboxane, generated by tissue-specific enzymes.
CYP5A1 (thromboxane synthase) is expressed in several cell
types and tissues (platelets, macrophages, lung, kidney, liver) and
catalyzes the isomerization of PGH2 into thromboxane A2, a
potent vasoconstrictor and activator of platelet aggregation (300,
301). CYP5A1 also catalyzes the cleavage PGH2 into
malondialdehyde and 12-hydroxyheptadecatrienoic acid.
CYP8A1 (prostacyclin synthase) is widely expressed (abundant
in ovary, heart, lung, skeletal muscle, and prostate) and catalyzes
the isomerization of PGH2 into prostacyclin (PGI2), a vasodilator
and inhibitor of platelet aggregation (302).

PGH2 can also be converted into PGD2 through the action of
AKR1B1 or PGD synthases, of which there are two isoforms:
lipocalin-type PGD synthase (in the central nervous system, male
genitalia, heart, cerebrospinal fluid and plasma) and
hematopoietic PGD synthase (in antigen-presenting cells, mast
cells and megakaryocytes) (266, 303). PGD2 plays roles in the
regulation of body temperature, sleep cycle, pain perception and
the immune response (304). In the uterus, AKR1C3 catalyzes the
reduction of PGD2 into 9a,11b-PGF2, which promotes uterine
contractions (237). Similarly, AKR1C3 and AKR1B1 catalyze the
reduction of PGH2 into PGF2a, which also promotes uterine
contractions (305). Finally, PGH2 can be converted into PGE2
via the action of PGE synthases, of which there are three
isoforms: an inducible microsomal isoform (mPGES-1), a
constitutive microsomal isoform (mPGES-2) and a constitutive
cytosolic isoform (cPGES) (306). PGE2 is abundant in the body
and plays a complex role in immunity and inflammation (307).
Additionally, PGE2 is reduced into PGF2a by prostaglandin 9-
ketoreductase (PG-9KR) (308).

COXs also produce 11R-, 15R-, and 15S-HpETEs as side
products, all three of which can be reduced into their
corresponding alcohols by peroxidase activity, which are in
turn reduced into oxo-ETEs by 15-hydroxyprostaglandin
dehydrogenase (15-PGDH). Bioactivities of HETEs and oxo-
ETEs are extensively reviewed by Powell and Rokach (309).

5-LOX converts AA into 5S-HpETE (Figure 5A), which is
reduced into 5S-HETE through the action of a peroxidase (e.g.,
GPX) or converted into leukotriene A4 (LTA4) through the
leukotriene synthase activity of 5-LOX. Various immune cells
(neutrophils, monocytes, platelets) express 5-hydroxyeicosanoid
dehydrogenase (5-HEDH) which converts 5S-HETE into 5-oxo-
HETE, a potent chemoattractant for eosinophils (310). On the
other hand, LTA4 serves as a precursor for LT peptide conjugates
(LTC4, D4 and E4) and lipoxins (A and B). LTC4, D4, and E4 are
synthesized from LTA4 through LTC4 synthase (a gluthathione-
Frontiers in Endocrinology | www.frontiersin.org 16
S-transferase), g-glutamyl transpeptidase (GGT) and dipeptidase
2 (DPEP2). Leukotrienes exhibit pro-inflammatory properties
and are implicated in asthma and allergic reactions (311). On the
other hand, lipoxins are thought to be synthesized by 12S-LOX
through a transcellular pathway which involves interactions
between two cell types (312). Lipoxins exhibit anti-
inflammatory properties and are proposed to play a role in
wound healing and tissue homeostasis (313). Alternatively,
LTA4 can be hydrolyzed by leukotriene A4 hydrolase (LTA4H)
into LTB4, which attracts neutrophils (314).

15-LOXs converts AA into 15S-HpETE (Figure 5A), which
can be reduced into 15S-HETE then oxidized into 15-oxo-ETE.
15S-HpETE and 15S-HETE are also substrates for 5-LOX, which
produces a 5S,6S epoxy intermediate that can be hydrolyzed into
lipoxins by unidentified hydrolases. Additionally, 15S-HpETE is
proposed to be a precursor for eoxin A4 (a 14,15 leukotriene),
which is converted into peptide conjugates (eoxin C4, D4, and E4)
similar to leukotrienes (315). Conversion of eoxin A4 into C4 is
thought to involve LTC4S. Enzymes that catalyze the following
two steps leading to eoxin D4 and E4 are unidentified,
presumably a GGT isoform and DPEP2. Eoxins are produced
in eosinophils, mast cells and airway epithelial cells, and have
been shown to possess pro-inflammatory properties (316).

12S-HpETE and 12R-HpETE are produced by 12S-LOX and
12R-LOX, respectively (Figure 5A). These hydroperoxides can
be reduced to their corresponding alcohols via a peroxidase,
and both alcohols further oxidized into 12-oxo-ETE by 12-
hydroxyeicosanoid dehydrogenase (12-HEDH) (309). Both
hydroperoxides are also precursors for hepoxilins, which are
epoxy-alcohols. eLOX3 in skin converts 12R-HpETE into either
hepoxilin A3 or 12-oxo-ETE. On the other hand, 12S-HpETE
can be converted into hepoxilin A3 or B3 by either 12S-LOX or
eLOX3, but eLOX3 also generates 12-oxo-ETE (70, 317).
Hepoxilins A3 and B3 are hydrolyzed by sEH into trioxilins
A3 and B3, respectively (318). Hepoxilin A3 can also be
conjugated with glutathione via LTC4S producing hepoxilin
A3-C, which can be converted into a hepoxilin A3-D by GGT
(319). The occurrence of hepoxilin A3-E (cysteinyl conjugate)
has also been proposed but not confirmed. Hepoxilin A3 is
proposed to regulate mucosal inflammation by recruiting
neutrophils across the epithelial junction into the gut
lumen (320).

CYPs generate various midchain R- and S-HETEs as well as 20-
HETE through hydroxylation of AA (Figure 5A). Alternatively,
epoxyeicosatrienoic acids (EET) are produced from AA through
epoxidation of its double bonds. Major mammalian CYP
epoxygenases include CYP2C8, CYP2C9, and CYP2J2 (15). EETs
are further metabolized by sEH (and potentially other epoxide
hydrolases) into dihydroxyeicosatrienoic acids (DiHETrE). Note
that EPA and other PUFA are also targets of CYP-mediated
reactions, which generate the corresponding hydroxy-, epoxy-,
and dihydroxy- derivatives.

“E-resolvins”, another class of eicosanoids, are proposed to be
generated from EPA (Figure 5B). COX-2 and CYPs have both been
proposed to act on EPA to produce 18R-hydroxyeicosapentaenoic
acid (18R-HEPE), which is in turn a proposed precursor for lipids
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termed resolvins E1, E2 and E3 (E-resolvins). It is known that the
acetylation of COX-2 shifts its activity into favoring the
lipoxygenase-type reaction over the cyclooxygenase activity, and
that acetylated COX-2 generates 18R-HEPE from EPA (321).
However, acetylated COX-2 is not a physiologically relevant form,
and 18R-HEPE could be potentially generated through othermeans.
COX-2 is theoretically capable of generating 18R-HEPE from EPA
in a lipoxygenase-type reaction followed by peroxidase activity.
However, whether the generation of 18R-HEPE from EPA occurs in
vivo and in sufficient amounts without COX-2 acetylation is
unknown. Microbial CYPs have also be proposed as sources of
18R-HEPE during infection. E-resolvins are proposed to be
produced through a transcellular mechanism involving microbial
and mammalian cells (322). Alternatively, mammalian CYPs are
also potential sources of 18R-HEPE, although the exact isoforms
involved are unknown.

18R-HEPE can be metabolized by 5-LOX into a 5S-
hydroperoxy intermediate and further into a 5S,6S-epoxy
intermediate (323). The former is proposed to be converted
into resolvin E2 by a peroxidase, whereas the latter is proposed to
be hydrolyzed into resolvin E1 by LTA4H (324). 18S-analogues
of resolvin E1 and E2 have also been described and are proposed
to be generated from 18S-HEPE through a similar pathway
(Figure 5B), although the enzymatic sources of 18S-HEPE
(aside from acetylated COX-2) are also unknown. 18R-HEPE
is also proposed to be a precursor to two stereoisomers
collectively called resolvin E3 generated by 15-LOX-1 (325).
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E-resolvins are proposed to exhibit anti-inflammatory effects and
promote the resolution of inflammation (325, 326).

Both lipoxins and E-resolvins have been classified as specialized
pro-resolving mediators (SPMs), a term which currently describes
families of oxygenated PUFAmetabolites with proposed roles in the
resolution of inflammation and tissue regeneration generated at
extremely low levels in biological samples.

Biosynthesis of Docosanoids
Oxygenation of DHA by LOXs and CYPs forms oxygenated
docosanoids (hydroxy-, epoxy-, and dihydroxy derivatives). DHA
is also the precursor to several classes of multiply oxygenated
docosanoids, including additional SPMs which have been named
maresins, D-resolvins, and protectins (Figure 6). Maresin
biosynthesis has been proposed to start with action of 12S-LOX,
generating 14S-hydroperoxy-DHA (14S-HpDoHE) then a 13S,14S-
epoxy intermediate. Hydrolysis of this epoxy intermediate by sEH
or an unidentified hydrolase is proposed to generate maresin 2 and
maresin 1, respectively (93, 327). The biosynthesis of protectin and
D-resolvins both begin with 15-LOX-1 which generates a 17S-
hydroperoxide (17S-HpDoHE). Further conversion of this
hydroperoxide into a 16S,17S-epoxy intermediate by 15-LOX-1
followed by hydrolysis (unidentified hydrolase) is proposed to
generate protectin D1 (328). Alternatively, 17S-HpDoHE could be
reduced into an alcohol by a peroxidase, which then serves as a
precursor for D-resolvins. In this route, 5-LOX is proposed to
generate two distinct products hydroperoxides (4S or 7S), which
FIGURE 6 | Biosynthesis of specialized pro-resolving mediators (SPMs) derived from docosahexaenoic acid. HDoHE, hydroxy-docosahexaenoic acid; Hp,
hydroperoxy; Ep, epoxy; CTR, conjugate in tissue regeneration (M: maresin, P: protectin, R: resolvin); sEH, soluble epoxide hydrolase; LTC4S, leukotriene C4

synthase; GGT, g-glutamyl transpeptidase; DPEP2, dipeptidase 2.
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undergo further transformations leading to several D-resolvins
(Figure 6). Additionally, epoxide intermediates in the previously
described pathways are proposed to undergo glutathione
conjugation by LTC4S, generating peptide conjugates of maresin,
protectin and D-resolvin named MCTR1, PCTR1, and RCTR1,
respectively (CTR = conjugate in tissue regeneration). These
conjugates are proposed to be metabolized by GGT and DPEP2,
similar to leukotrienes (329).

Oxygenation of Esterified PUFA and Biosynthesis of
Oxidized Phospholipids
The classical pathway for the biosynthesis of oxidized
phospholipids starts with the release of PUFA from membranes
through the action of PLA2. PUFA are then oxygenated by the
enzymes discussed earlier. This is followed by acylation of
oxygenated PUFA with CoA and esterification into a lysoPL via
the action of an sn-2 acyltransferase.

The generation of PL-esterified eicosanoids is well-
documented in mammalian cells such as epithelial, endothelial
and immune cells (330). HETE-PLs are acutely generated by
activated neutrophils, platelets and monocytes (331–333).
Similarly, PGD2 and PGE2 generated from COX-1-derived
PGH2 in activated platelets are rapidly incorporated into PE-
lysoPLs (334). Also, EET-PLs have been detected in rat liver
(335). For most of these, the mechanism of formation requires
endogenous generation of an oxylipin, which is then rapidly
esterified into membrane PL pools (e.g., on a timescale of
minutes) via Lands cycle enzymes (336).

15-LOXs also contribute to the formation of oxPL by two
other pathways. The first involves direct oxygenation of
membrane PLs (331, 337). In the second pathway, 15-LOXs
oxygenate the PUFA moiety of CEs, then hydrolysis of
oxygenated PUFA from CE liberates oxygenated PUFA which
can be esterified to lysoPL (87).

Recent studies found that COX-2, 15-LOX-2, and platelet
12S-LOX can catalyze the oxygenation of 2-AA-lysoPL released
by iPLA2g in response to calcium ionophore stimulation (88, 94).
These reactions generate 2-eicosanoid-lysoPLs which are
proposed to be a source of free eicosanoids as well as acting as
signaling mediators themselves. 2-eicosanoid-lysoPLs can also be
converted into oxPLs through the action of sn-1 acyltransferase
(338). Cytochrome c has been recently been identified as a
plasmalogenase, and is proposed to be a source of 2-
eicosanoid-lysoPLs under conditions of oxidative stress (339).
These findings describe novel pathways for the biosynthesis of
oxPLs (Figure 7). Further research is required to assess the
contribution of these pathways to the formation of oxPLs and
other mediators in vivo.
Biosynthesis of Oxysterols, Bile Acids, and
Steroid Hormones
Oxysterols
Oxysterols are formed in the first steps of cholesterol
metabolism: they are oxidized forms of cholesterol and also of
its precursors (340). 7a-Hydroxycholesterol (7a-HC) is formed
from cholesterol by CYP7A1 and represents the first metabolite
Frontiers in Endocrinology | www.frontiersin.org 18
in the neutral pathway of bile acid biosynthesis (Figure 8) (219,
220). (25R)26-Hydroxycholesterol (26-HC), more commonly
called 27-hydroxycholesterol, and 3b-hydroxycholest-5-en-
(25R)26-oic acid (3b-HCA) are both formed from cholesterol
by CYP27A1 and are the first members of the acidic or
alternative pathway of bile acid biosynthesis (219–221). While
CYP7A1 is an endoplasmic reticulum and liver specific protein,
CYP27A1 is mitochondrial and expressed in many tissues.
CYP46A1 is almost exclusively expressed in neurons, its
function is to maintain cholesterol balance in the brain,
converting cholesterol from a molecule unable to pass the
blood brain barrier to 24S-hydroxycholesterol (24S-HC), a
more polar molecule which can cross the barrier (222, 223,
341). CYP11A1, like CYP27A1, is a mitochondrial inner
membrane protein. It is highly expressed in steroidogenic
tissue and will oxidize cholesterol to pregnenolone in a three
step process involving 22R-hydroxycholesterol (22R-HC) and
20R,22R-dihydroxycholesterol as intermediates (20R,22R-diHC)
(342, 343) (Figure 9). The pathways of bile acid biosynthesis are
discussed in more detail below.

While most “primary” oxysterols are formed from cholesterol
in CYP catalyzed reactions, cholesterol 25-hydroxylase
(CH25H), the dominating enzyme that generates 25-
hydroxycholesterol (25-HC) is an exception, in that is not a
CYP, but a member of a family of enzymes that utilize di-iron
cofactors to catalyze the hydroxylation (344). CH25H is
expressed in activated immune cells and 25-HC has both anti-
bacterial and anti-viral activities (345–348). 25-HC is
metabolized by CYP7B1 to 7a,25-diHC, a ligand to the GPCR
Epstein Barr virus induced gene 2 (EBI2 or GPR183). 7a,25-
diHC acts as a chemoattractant to GPR183 expressing immune
cells (349, 350). An alternative route to 7a,25-diHC production
is through CYP3A4 oxidation of 7a-HC (190), while the same
enzyme has also been reported to act as a second cholesterol 25-
hydroxylase and also a 4b-hydroxylase of cholesterol (189, 351).

Oxysterols can also be formed from cholesterol precursors in
reactions catalyzed by CYP enzymes (202, 352). These reactions
may be important in patients suffering from inborn errors of
cholesterol biosynthesis such as Smith-Lemli-Opitz syndrome
(SLOS, 7-dehydrocholesterol reductase deficiency) and
desmosterolosis (3b-hydroxysterol-D24-reductase deficiency) or
where there is very high expression of sterol hydroxylases, e.g.,
CYP7A1 in cerebrotendinous xanthomatosis, where CYP27A1
is deficient.

Bile Acid Biosynthesis
There are two quantitatively major and at least five minor
pathways of bile acid biosynthesis and all pathways involve
multiple oxidation reactions (219, 220, 353–358). Besides CYP
enzymes, key oxidation reactions are carried out by
hydroxysteroid dehydrogenase (HSD) members of the short
chain dehydrogenase/reductase (SDR) family and reductions
by aldo-keto reductases (AKR) enzymes. One of the minor
pathways that results in the formation of 3b ,5a ,6b-
trihydroxycholan-24-oic acid involves of cholestane-3b,5a,6b-
triol which is likely formed via the cholesterol peroxidation
product 5,6-epoxycholesterol (219, 354).
November 2020 | Volume 11 | Article 591819

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Hajeyah et al. Biosynthesis of Oxidized Lipids
While the acidic pathway may be most important in infants
(359), at later stages of life the neutral pathway is dominant. This is
initiated by CYP7A1 oxidation of cholesterol to generate 7a-HC in
the liver. Further oxidation may occur at C-12 by CYP8B1 to
generate 7a,12a-dihydroxycholesterol (7a,12a-diHC), whichmay
be preceded or succeeded by oxidation and isomerization of the 3b-
hydroxy-5-ene structure to a 3-oxo-4-ene by HSD3B7, giving 7a-
hydroxycholest-4-en-3-one (7a-HCO) and 7a ,12a-
dihydroxycholest-4-en-3-one (7a,12a-diHCO), respectively
(Figure 8). A general feature of bile acid biosynthesis is that many
of the enzymes involved in the pathways accept multiple substrates
resulting in variations in the order of reactions depending on the
tissue in which they proceed (360). The next steps involve A-ring
reductions which may be succeeded or preceded by (25R)26-
hydroxylation and (25R)26-carboxylation to ultimately give
3a,7a,12a-trihydroxy-5b-cholanestan-(25R)26-oic acid. The A-
ring reductions are carried out by AKR1D1 and AKR1C4, while
CYP27A1 carries out the (25R)26-oxidations. Side-chain
shortening of the cholestanoic acid proceeds in the peroxisome
through the CoA-thioester formed by bile acid Co-A synthetase
(BACS, SLC27A5) or very long chain acyl-CoA synthetase (VLCS,
SLC27A2). Following C-25 racemization by a-methylacyl-CoA
racemase (AMACR) the next oxidation involves the introduction
of D24 double bond by the enzyme acyl-CoA oxidase 2 (ACOX2).
The D24 double bond is then hydrated by D-bifunctional protein
Frontiers in Endocrinology | www.frontiersin.org 19
(DBP), which then oxidizes the C-24 hydroxy to a C-24 ketone via
HSD17B4 activity. The resulting product 3a,7a,12a-trihydroxy-
24-oxo-5b-cholestan-(25R)26-oyl-CoA is then oxidized by the
enzyme peroxisomal thiolase 2 (SPCx) to the thioester of cholic
acid ready for conjugationwith glycine, taurine, or hydrolysis to the
free acid by peroxisomal acyl-CoA thioesterase (ACOT) (219, 220).

The acidic pathway starts with (25R)26-hydroxylation and
(25R)26-carboxylation of cholesterol by CYP27A1 and this and
many other steps may proceed extrahepatically (Figure 8). Most
of the enzymes involved in the neutral pathway are also involved
in the acidic pathway although not in the same order (361). An
exception is CYP7A1, which is replaced by CYP7B1 as the 7a-
hydroxylase in the acidic pathway. CYP7B1 is expressed in many
tissues, not just liver (362, 363), and unlike CYP7A1 uses side-
chain oxysterols as its substrate. The acidic pathway mostly
generates chenodeoxycholic acid rather than cholic acid, so
CYP8B1 has minor involvement. The order of A-ring
reduction and side-chain cleavage can be reversed in the acidic
pathway with the formation of bile acid intermediates possessing
3-oxo-4-ene or 3b-hydroxy-5-ene functions.

Steroid Hormone Biosynthesis
The classical steroid hormones aldosterone (mineralocorticoid),
cortisol (glucocorticoid), testosterone (male sex hormone) and
17b-estradiol (female sex hormone) are all formed from
FIGURE 7 | Biosynthetic pathways of oxidized phospholipids. (1) The classical pathway involves the action of PLA2 on membrane phospholipids, releasing sn-2 PUFA which
are oxygenated by cyclooxygenases (COXs), lipoxygenases (LOXs), and cytochrome P450s (CYPs) then re-esterified. *Oxygenated PUFA can be also be esterified with
plasmalogen lysophospholipids (2) Direct oxygenation of membrane phospholipids by 15-LOXs. (3) 15-LOX-mediated oxygenation of PUFA in cholesteryl esters followed by
hydrolysis of oxygenated PUFA provides substrates for the classical pathway. (4) An alternative pathway involves the action of PLA1, forming 2-PUFA-lysophospholipids which
are oxygenated by COX-2, 12S-LOX, and 15-LOXs then re-esterified with FA. (5) Cytochrome c releases 2-PUFA-lysophospholipids by cleaving the vinyl ether bond in
plasmalogen phospholipids, providing substrates for the alternative pathway. PLA, Phospholipase A; oxPUFA, oxygenated PUFA; ACS, acyl-CoA synthase; CE, cholesteryl
ester; CEH, neutral cholesterol ester hydrolase; FA, fatty acid/acyl; lysoPL, lysophospholipid.
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FIGURE 8 | A simplified view of the major bile acid biosynthesis pathways. The “neutral” pathway (highlighted in blue) starts with 7a-hydroxylation of cholesterol by
CYP7A1, the “acidic” pathway with (25R)26-hydroxylation then (25R)26-carboxylation of cholesterol by CYP27A1. In the “acidic” pathway (highlighted in red)
CYP7B1 is the 7a-hydroxylase.
Frontiers in Endocrinology | www.frontiersin.org November 2020 | Volume 11 | Article 59181920

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Hajeyah et al. Biosynthesis of Oxidized Lipids
cholesterol through multiple oxidation reactions (Figure 9) (364,
365). Pregnenolone formed via CYP11A1 oxidation of
cholesterol represents an intermediate between oxysterol and
steroid hormone biosynthesis. It is oxidized by HSD3B2 to
progesterone on the pathway to aldosterone or by CYP17A1 to
17a-hydroxypregnenolone on the route to cortisol. Both these
pathways use CYP21A2 as a C-21 hydroxylase and CYP11B
Frontiers in Endocrinology | www.frontiersin.org 21
enzymes as the 11b-hydroxylase. Note, HSD3B1 is the enzyme
which generates progesterone from pregnenolone in the
placenta, when progesterone acts as the hormone of
pregnancy. Further oxidation of 17a-hydroxypregnenolone by
CYP17A1 leads to dehydroepiandrosterone on the road to
testosterone and17b-estradiol. In this pathway additional
oxidations and reductions are carried out by HSD3B2 and
FIGURE 9 | Simplified view of steroid hormone biosynthesis. Highlighted in red are the classical steroid hormones, progesterone, aldosterone, cortisol, testosterone,
and 17b-estradiol.
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HSD17B3, respectively, while CYP19A1 is required to generate
estrogens. Besides being synthesized in the adrenal gland and sex
organs it is noteworthy that steroids can be synthesized in the
brain and are then named neurosteroids (366, 367). A more
general term for brain steroids which may be synthesized in the
brain or imported from the periphery and exert rapid non-
genomic effects is neuroactive steroids. It is beyond the scope of
this review to discuss steroid hormone biosynthesis and
metabolism in greater detail and the reader is directed to the
excellent reviews of Shackleton and colleagues (364, 368–370).
CONCLUDING REMARKS

Enzymatically oxidized lipids are derivatives of PUFA or cholesterol
with critical functions in cellular and physiological processes as
signaling mediators and hormones. Their biosynthesis is highly
regulated and carried out by enzymes that include LOXs, COXs,
CYPs, and AKRs. Advances in our understanding of these enzymes
have led to the discovery of novel lipid mediators and their
biosynthetic routes. Many functional aspects of these enzymes
and their products remain unclear, requiring further investigation.
These include elucidating the function of 15-LOX-2 (ALOX15B) in
macrophages, the regulatory mechanisms of 12-LOXs and eLOX3,
the mechanistic details of transcellular biosynthesis, the origin of 18-
HEPE required for E-resolvin biosynthesis, the biological functions
of orphan CYPs, and the bioactivities/functions of oxygenated
endocannabinoids. The relative physiological importance of some
multiply oxygenated PUFA mediators, which are generated in
extremely low amounts, also needs to be further clarified. This is
also true for multiply oxygenated derivatives of cholesterol.

Research on oxygenated PUFA and oxysterols has been
carried out largely in parallel, and both areas have benefited
greatly from advances in analytical methods. However, there are
still major questions to be answered in terms of their proposed
roles in human disease including atherosclerosis and
neurodegeneration. Here, we presented biosynthetic pathways
of oxygenated PUFA and oxysterols, highlighting their (known)
functions to show the diversity of products but also to draw
connections between the two groups. An integrated approach
encompassing the analysis of both lipid groups could be useful in
examining the etiology of disease. Despite their involvement in
the progression of disease such as atherosclerosis and
Frontiers in Endocrinology | www.frontiersin.org 22
neurodegenerative disease, the two lipid groups are rarely
analyzed together. We propose that oxygenated PUFA and
oxysterols are more connected than previously thought,
especially as 15-LOX is being increasingly recognized as a
regulator of cholesterol metabolism. The immune and nervous
systems are both of particular interest as major sites of
cholesterol metabolism and 15-LOX expression. Further work
on the enzymology of 15-LOX with cholesteryl substrates could
lead to the discovery of novel oxidized lipids. For example, 15-
LOX oxygenation of PUFA esters of oxysterols could generate
novel lipids that link both classes directly in cell types that
possess the enzymatic machinery for oxysterol and oxylipin
biosyntheses (e.g., macrophages). An alternative biosynthetic
route could be through the esterification of oxylipins with free
oxysterols. That said, the detection of these proposed molecules
could be challenging due to low abundance and sensitivity to
alkaline conditions commonly used in analysis. Finally, the
substrate promiscuity of many of the enzymes involved in
production of oxidized lipids provides a technical challenge for
dissection of (patho)physiological function of specific oxidized
lipids. Clearly, there is plenty of scope for ongoing exploration of
the molecular, cellular, and physiological functions of
oxidized lipids.
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