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Type 2 diabetes (T2D) is a major public health disease which is increased in incidence and
prevalence throughout the whole world. Insulin resistance (IR) in peripheral tissues and
insufficient pancreatic b-cell mass and function have been recognized as primary
mechanisms in the pathogenesis of T2D, while recently, systemic chronic inflammation
resulting from obesity and a sedentary lifestyle has also gained considerable attention in
T2D progression. Nowadays, accumulating evidence has revealed extracellular vesicles
(EVs) as critical mediators promoting the pathogenesis of T2D. They can also be used in
the diagnosis and treatment of T2D and its complications. In this review, we briefly
introduce the basic concepts of EVs and their potential roles in the pathogenesis of T2D.
Then, we discuss their diagnostic and therapeutic potentials in T2D and its complications,
hoping to open new prospects for the management of T2D.
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INTRODUCTION

In 2019, there were approximately 463 million adults with diabetes worldwide, among whom 90%–
95% had type 2 diabetes (T2D) (1). T2D is characterized by peripheral insulin resistance (IR) and
insufficient pancreatic b-cell mass and function (2–4). These disorders then disrupt systemic
metabolic homeostasis, placing an enormous burden on diabetic patients and the healthcare system.

The specific mechanisms underlying the pathogenesis of T2D are complex and largely unknown.
Current clinical therapeutic interventions for T2D mainly rely on hypoglycemic drugs, insulin
supplementation, or other symptomatic treatments, which are invalid in treating the root of the
disease. Thus, a deeper understanding of the pathological process of T2D might provide new ideas
for treating T2D by modulating the disturbed ways, but not only alleviating symptoms. Extracellular
vesicles (EVs) are small vesicles released by nearly all cell types. They can deliver various kinds of
cargos such as proteins and nucleic acids to nearby or distant recipient cells (5, 6), thus mediating a
new cell-to-cell communication (7). Recently, it was discovered that a number of abnormal EVs can
play important roles in the pathogenesis of T2D. In 2018, Freeman et al. observed altered levels of
insulin signaling proteins in EVs and increased secretion of EVs from patients with severe IR and b-
cell dysfunction (8). A consistent trend was also reported in which the levels of circulating EVs were
positively related to homeostasis model assessment b-cell function (HOMA-b) (9). Low grade
chronic inflammation has been gradually recognized as a universal mechanism in the pathogenesis
of T2D (10). Thanks to their ability to carry pro-inflammatory molecules, EVs can also act on
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different tissues to induce systemic inflammation. Considering
their important functions, increasing attentions have focused on
EVs as attractive diagnostic and therapeutic tools for T2D and its
complications (Figure 1). In this review, we summarized the
current advances concerning the roles of EVs in T2D and discuss
their prospects to be used in the management of T2D and
its complications.
BIOGENESIS OF EVS

The term “EVs” describes lipid bilayer enclosed structures
typically ranging in size from ~30 to 400 nm that contain
various biomolecules, such as proteins, lipids, RNAs, and
DNA. These small vesicles can be released by almost all cell
types (11) in response to various types of stimulation, and their
altered expressions have been showed to play essential roles in
regulating a number of biological processes such as angiogenesis,
inflammation, immune responses, and so on (12, 13).

According to their biogenesis, EVs can be classified into three
distinct subtypes, apoptotic bodies, microvesicles (MVs), and
exosomes (14). The traditional strategy used to isolate each type
of EV is differential ultracentrifugation. In recent years, new
approaches have been established, such as density-gradient
ultracentrifugation, which enables the separation of more
specific EV populations. According to current views, MVs are
defined as EVs with a diameter of 200–2,000 nm generated by
plasma membrane evaginations. They were originally described
Frontiers in Endocrinology | www.frontiersin.org 2
as subcellular material derived from serum/plasma platelets (15).
Apoptotic bodies, with a diameter of 500–2000 nm, are formed
by outward budding of the plasma membrane of apoptotic cells,
and some nucleic materials and proteins from apoptotic cells can
also be included (16). Unlike other EVs, exosomes, with a
diameter of 30–100 nm, are generated within cells through the
endosomal pathway. First, the cellular contents form
intraluminal vesicles (ILVs) which aggregate to form larger
vesicles known as multivesicular bodies (MVBs). The
mechanisms mediating this process can be divided into two
distinct pathways: the endosomal sorting complex required for
transport (ESCRT)-dependent pathway (17), and the ESCRT-
independent pathway (18). The ESCRT-dependent pathway
requires the formation of a complex by ESCRT, the sorting
protein, Vps4, and the constitutive heat-shock protein, Hsp-70
(19). In contrast, the ESCRT-independent pathway regulates
MVBs assembly and requires Hsp70-phospholipid interactions
and the activity of acid sphingomyelinase (nSMase), which can
hydrolyze sphingomyelin in the absence of ESCRTs (20). After
the formation of MVBs, some of them fuse with lysosomes to
degrade cellular components, whereas others fuse with the
membrane and are secreted into the extracellular milieu to
become exosomes (21). These exosomes then flow with the
body fluids, or act in autocrine and paracrine manners to
impact recipient cells (22) (Figure 2). To date, studies have
showed that exosomes can enter the recipient cell cytosol via
phagocytosis, endocytosis, or micropinocytosis, and
subsequently release their cargos to interact with the recipient
FIGURE 1 | The clinical potentials of EVs in T2D and its complications. We showed the clinical potentials of EVs described in our review. First, EVs can influence the
pathogenesis of T2D by regulating inflammation, insulin signaling and b cell mass. Second, EVs isolated from various body fluids may have huge potentials to be
novel biomarkers of T2D and its complications. Some exosomal cargos altered following different treatments may open new prospects for monitoring the efficacy of
therapeutic interventions and favor machinery discovery. The therapeutic potentials of EVs have also been presented. Using EVs or their mimics as suitable drug
delivery system and MSC-derived EV-based therapy have been exploited a lot, in addition, some EVs possessed beneficial effects can also serve as potential
therapeutic agents for T2D and its complications.
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cell surface in a protein–protein interaction and induce
internalization, or activate intracellular signaling cascades
without being internalized. In the future, more investigations
are needed to comprehensively identify how exosomes can be
produced, released and internalized into cells to exert
their effects.
ROLE OF EVS IN T2D BY REGULATING
INFLAMMATION

Inflammation as an Important Factor
in T2D Pathogenesis
Inflammation has the physiological purpose to maintain tissue
homeostasis. However, uncontrolled inflammation leads to tissue
damage and diseases (23). It is well-known that chronic
inflammation is a universal and potentially unifying mechanism
of metabolic diseases (24–27), and some experts have considered
T2D as an inflammatory disease (10). Many systemic
inflammatory markers, including white blood cell counts, acute-
phase proteins (C-reactive protein), and pro-inflammatory
cytokines and chemokines are elevated in patients with obesity
and T2D. In contrast, when their expressions reduced because of
Frontiers in Endocrinology | www.frontiersin.org 3
lifestyle changes, pharmacological drugs or other factors, both IR
and b-cell failure were significantly improved (28–32). In addition,
some studies also showed that inflammation can mediate IR
independently from the degree of obesity (33–35).

As the major immune cells, macrophages have been identified
as key determinants of local inflammation and insulin sensitivity
during adiposity and T2D. In adipose tissue, the accumulation of
activated macrophages promoted the expression of pro-
inflammatory cytokines (e.g., TNF-a), which then impaired
local insulin signaling (24, 36). When these cytokines were
sufficient, they were released into circulation, thereby targeting
distant sites and worsening systemic IR. In contrast, when the
number of macrophages is reduced, the expression of pro-
inflammatory cytokines in both adipose tissue and circulation
decreased, alleviating IR. Except for adipose tissue, macrophages
activated in other major metabolic tissues, such as liver, muscle,
and islet, may exert similar effects to aggravate diabetic damage
during T2D (37–39). These studies highlight the important role
of inflammation in T2D. Here, we suggest that EVs participate in
the induction of inflammation in T2D thanks to their abilities to
activate macrophages or carry various pro-inflammatory factors,
and that modulating EVs or their cargos may be a promising
approach for relieving inflammation in T2D.
FIGURE 2 | Biogenesis of EVs and target cell interactions. Microvesicles are generated by plasma membrane budding. Apoptotic bodies are formed by outward
budding of the plasma membrane of apoptotic cells. Exosomes are generated within the cells through the endosomal pathway. The cellular contents form
intraluminal vesicles which aggregate to form larger vesicles known as MVBs. Some of these MVBs then fuse with lysosomes to degrade cellular components,
whereas others fuse with the membrane and are secreted into the extracellular milieu. Subsequently, these exosomes travel to neighboring and distant organs and
impact the cellular function of recipient cells.
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Role of Adipose Tissue-Derived EVs in
T2D by Regulating Macrophage Activation
Excessive accumulation of fat in adipose tissue has been
considered as a major risk factor for obesity and obesity-
related T2D (40, 41). Subsequently, the damaged adipocytes
change the expressions of exosomal cargos, resulting in low-
grade and chronic inflammation, and ultimately systemic IR.

It has been demonstrated that adipose tissue-derived EVs can
modulate inflammatory states in T2D by activating macrophages
in recipient cells. In 2009, Deng et al. reported that intravenous
injection of retinal binding protein 4 (RBP4)-containing EVs
isolated from the adipose tissue of obese mice into lean mice
facilitated the differentiation of monocytes into macrophages,
which led to increased IL-6 and TNFa secretion followed by the
development of IR. And this process requires the TLR4/TRIF
pathway (42). Zhang et al. observed that adipocyte-derived EVs
from obese mice significantly enhanced M1 macrophage
polarization and caused IR in adipocyte, probably due to the
upregulation of miR-155 (43). Subsequently, sonic hedgehog
(Shh), a protein that can stimulate the secretion of
inflammatory cytokines from macrophages, has been detected
in EVs derived from 3T3-L1 adipocytes. Injecting these EVs into
bone marrow (BM)-derived macrophages significantly mediated
M1 polarization of macrophages via the Ptch/PI3K signaling
pathway, which then led to IR in adipocytes (44). However, the
roles of EVs in activating other immune cells, such as
neutrophils, to promote inflammation have not been identified,
which require further exploration.

Role of Liver-Derived EVs in T2D by
Regulating Macrophage Activation
The liver is densely packed with macrophages, known as Kupffer
cells, which can be activated during obesity to mediate
inflammation and IR in the liver (38). In a recent study,
Hirsova et al. (45) reported that fatty acid palmitate promoted
the secretion of hepatocyte EVs in a death receptor 5 (DR5)
signaling-dependent manner, which then activated an
inflammatory macrophage phenotype and increased the release
of pro-inflammatory cytokines. In contrast, suppressing the
mediators of the DR5 signaling reversed these effects and
decreased liver injury. Since obesity-induced inflammation and
hepatocyte dysfunction have been confirmed as essential events
during the progress of T2D, these EVs may also play important
roles in T2D by activating macrophages.

Role of EVs in T2D by Targeting Effector
Organs or Carrying Pro-Inflammatory
Factors
In addition to targeting macrophages, EVs can regulate
inflammation by directly acting on effector organs. In this
regard, altered expressions of 55 miRNAs have been detected
in adipose tissue-derived EVs isolated from patients with obesity,
leading to altered TGF-b and Wnt/b-catenin signaling in lung
epithelial cells, which are important regulators of obesity-
induced inflammation (46). Additionally, human M1
macrophage-derived EVs incubated with adipocytes
Frontiers in Endocrinology | www.frontiersin.org 4
significantly reduced the abundance of differentiated
adipocytes, as well as insulin signal transduction and glucose
uptake through NF-kB activation (47). Similarly, macrophages
pretreated with high glucose showed increased expression of
miR-21-5p in macrophage-derived EVs, which promoted the
activation of inflammation and regulated podocyte injury in
diabetic nephropathy (DN) mice (48). Notably, EVs can also
transport cytokines or other pro-inflammatory mediators to
modulate the inflammatory state. Wu et al. observed altered
levels of inflammatory proteins in plasma-derived EVs from
individuals with diabetes, which were strongly associated with
the severity of diabetes. And higher levels of vascular endothelial
growth factor A (VEGF-A) in EVs play important roles in T2D-
related peripheral vascular disease (49). These findings exactly
reveal new mechanisms for activating inflammation in T2D.
ROLE OF EVS IN T2D BY REGULATING
INSULIN SIGNALING

Multiple organs participate in regulating glucose levels in T2D
patients, wherein adipose tissue, liver, and muscle have been
considered as primary targets of insulin and are vital in the
regulation of glucose/fat homeostasis (45, 50–53). After binding
of insulin to its receptors on the surface of target sites, numerous
insulin signaling pathways can be activated, which promote the
synthesis of glycogen and fat and decrease blood glucose levels.
Recently, studies showed that abnormal EVs in T2D can alter the
activation of insulin signaling in these tissues, which then
disrupted normal metabolic responses of recipient sites to
insulin and eventually led to IR. Here, we introduce the effects
of EVs on metabolic functions and insulin sensitivity of these
target organs through disrupting insulin signaling (Figure 3).

Role of Adipose Tissue-Derived EVs in
T2D
As a major metabolic site, adipocyte can secrete a variety of EVs,
which can be transferred to insulin target cell types, such as
hepatocytes, muscle cells and neighboring adipocytes, resulting
in impaired insulin signaling and metabolic dysfunction. For
example, in a mouse model in which the miRNA-processing
enzyme Dicer was specifically knockout in adipocytes, circulating
exosomal miRNAs levels were significantly decreased,
accompanied with impaired glucose tolerance, whereas
transplantation of brown adipose tissue or injection of normal
serum EVs restored its expression and improved insulin
sensitivity. These effects were partly associated with inhibition
of hepatic fibroblast growth factor 21 (FGF21) mRNA and
circulating FGF2 expression mediated by serum exosomal
transfer of miR-99b from adipose tissue to the liver (54).
Besides, lean mice treated with EVs isolated from the adipose
tissue macrophages of obese mice also caused glucose intolerance
and IR, which was mediated by the upregulation of exosomal
miR-155 and downregulation of peroxisome proliferator-
activated receptor g (PPARg), whereas miR-155 knockout in
obese mice reversed these effects (55). Additionally, exosomal
January 2021 | Volume 11 | Article 596811
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miR-29a transported from adipose tissue macrophages to
adipocytes, myocytes and hepatocytes reduced the expression
of PPARd and led to IR in vitro and in vivo, whereas the PPAR d
agonist GW501516 partly reversed miR-29a-mediated IR (56).
Furthermore, crosstalk between adipose tissue and skeletal
muscle mediated by EVs has also been reported. In patients
with obesity-related prediabetes and T2D, circulating exosomal
miR‐27a is highly expressed, which is mainly released from
adipose tissue and positively associated with IR. Incubation
with adipose tissue-derived exosomal miR-27a from obese
mice significantly impaired local insulin sensitivity in skeletal
muscle C2C12 cells, partly by suppressing the expression of
PPARg and its downstream obesity-related genes (57).

Impaired activation of AKT in response to insulin is a central
event in the development of IR and T2D (58), besides, it’s also an
important target gene for adipose tissue-derived EVs. An in vitro
study reported that EVs released from human adipose tissue can
stimulate or inhibit insulin-induced AKT phosphorylation in
hepatocytes, which may depend on the amount of pro-
inflammatory adipokines, thereby modulating systemic IR (59).
Frontiers in Endocrinology | www.frontiersin.org 5
Similarly, another study using hypoxic adipocytes-derived EVs
identified significantly impaired insulin-stimulated 2-
deoxyglucose uptake and phosphorylation of AKT in recipient
adipocytes (60).
Role of Liver-Derived EVs in T2D
The liver is another critical endocrine organ regulating glucose
metabolism by releasing or storing glucose. Almost all cell types in
the liver can release EVs and are targets of systemic EVs derived
from other tissues (61). Hepatic EVs-derived miR-130a-3p was
showed to attenuate glucose intolerance by inhibiting the PHLPP2
gene in adipocytes (62). Besides, incubation of hepatic stellate cells
with EVs derived from hepatocytes undergoing palmitic acid
challenge efficiently mediated cell activation and increased the
expression of profibrogenic genes, which may be attributed to the
alterations in exosomal miRNAs, including miR-128-3p, miR-122,
and miR-192 and downregulation of PPARg (63). Interestingly,
recent researches showed that the insulin receptor b-subunit in
hepatocytes was sequentially cleaved by calpain 2 and g-secretase
FIGURE 3 | Roles of EVs in regulating diabetic pathological process. In diabetes, altered EVs carrying nucleic acids and proteins can be internalized by various cell
types, such as macrophages, adipocytes, hepatocytes, skeletal muscle cells and pancreatic b cells, mediating intercellular communications. 1) Exosomal cargos
(such as Shn protein) were modified in the diabetic model and targeted macrophages via regulating various cytokines (IL-6, IL-1b, TNFa, and NF-кB). Then, these
altered pathways modulated inflammatory responses in T2D. 2) Exosomal cargos (such as miR-99b, miR-155, miR-29a, miR-26a, adipokine, and calpain 2 g-
secretase) were modified in the diabetic model and targeted hepatocytes via regulating various cytokines (FGF21, FGF2, PPARg, PPARd, p-AKT, IR b-subunit,
GSK3b, G6pase, PEPCK). Exosomal cargos (such as miR-155, miR-29a, miR-122, miR-192, miR-27a-3p, miR-27b-3p, and miR-26a) were modified in the diabetic
model and targeted adipocytes via regulating various cytokines (PPARg, PPARd, p-AKT, 2-deoxyglucose, Cpt1b, Cpt2, and PPARa). Exosomal cargos (such as
miR-155, miR-29a, miR-29c, miR-27a, miR-23b, miR-27b, and miR-20b-5p) were modified in the diabetic model and targeted skeletal muscle cells via regulating
various cytokines (PPARg, PPARd, PGC-1a, HK2, PI3K, IRS1, AKTIP, STAT3, and p53). Exosomal cargos (such as miR-26a, and peptide) were modified in the
diabetic model and targeted b cells via regulating various cytokines (p-ERK1/2, p-FAK, IAPP, and actin). These altered pathways modulated insulin signaling in T2D.
3) Exosomal cargos (such as miR-16, miR-106b, miR-222, IncRNA-p3134, NCDase, miR-26a, and peptide) were modified in the diabetic model and targeted b cells
via regulating various cytokines (PTCH1, CD31, IAPP, Cip/Kip, Cer/S1P, Pdx-1, MafA, GLUT2, and Tcf712). These altered pathways modulated b cell function in
T2D. The modifications in inflammation, insulin signaling, and b cell function promoted IR and b cell failure, contributing to the pathology of T2D.
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of hepatocyte-derived EVs under hyperglycemic conditions (64),
suggesting a novel approach for EVs in regulating T2D by
influencing insulin receptors.
Role of Muscle-Derived EVs in T2D
Skeletal muscle has been showed to secrete various molecules,
generally called exerkines to regulate metabolic functions. In
T2D conditions, the secretory function of skeletal muscle can be
destroyed, which may alter the expression of exerkines,
impairing glucose tolerance and causing IR. Recently,
increasing studies have proposed that altered EVs are partially
responsible for these metabolic dysfunctions (65, 66). Consistent
with these findings, a significant increase in the release of EVs
from skeletal muscle cells has been reported in high-fat-fed mice.
These changes can also alter the expression of genes involved in
cell cycle regulation and muscle differentiation in vitro (67).

Currently, studies have identified that a sedentary lifestyle can
lead to a rapid IR through influencing the expression of genes
involved in insulin signaling; and cause systemic mild
inflammation, which can be reversed by physical activity (68,
69). Further studies reported that exercise can affect the secretion
of muscle-derived EVs, and the contents of circulating EVs
increase in an intensity-dependent manner in response to
exercise, which suggest potential roles of EVs in the benefits of
exercise (70). Moreover, a recent review argued that most
multisystemic responses to endurance exercise that relieve the
negative effects of obesity and/or T2D are mediated by exerkines
released within EVs, and the discovery that 75% of reported
myokines and exerkines were present within EVs supports this
hypothesis (70).

All these findings suggest that muscle-derived EVs could be
involved in the regulation of insulin signaling and metabolic
homeostasis in T2D; and that they may also be responsible for
the systemic health benefits of exercise.
Role of b Cell-Derived EVs in T2D
Pancreatic b cells, which secrete insulin, are critical for
maintaining glucose homeostasis. Traditionally, b cell
secretions were thought to modulate glucose metabolism
mainly by regulating insulin level and b cell functions;
however, recently, these cells were also showed to play
important roles in regulating peripheral insulin sensitivity. For
example, the level of miR-26a in b cell-derived EVs was found to
be decreased in obese animals, whereas upregulation of miR-26a
expression in b cells improved obesity-induced IR in a paracrine
manner through circulating EVs (71). Islet amyloid polypeptide
(IAPP) is the major component of amyloid deposits found in the
islets of patients with T2D. It can be secreted in conjunction with
insulin by b cells to regulate glucose metabolism. A recent study
discovered that b cell-derived EVs from healthy controls
suppressed the aggregation of IAPP by peptide scavenging,
whereas T2D b cell-derived and circulating-derived EVs had
no such effect (72). These observations provide a new insight for
studying the role of b cell-derived EVs in T2D.
Frontiers in Endocrinology | www.frontiersin.org 6
Role of Circulating EVs in T2D
Additionally, some circulating exosomal miRNAs whose secretory
sites are unclear have also been discovered to play important roles
in T2D. For example, one study showed that EVs isolated from the
plasma of obese mice induced glucose intolerance and
dyslipidemia in lean mice. These dysfunctions may be caused by
increased levels of exosomal miR-122, miR-192, miR-27a-3p, and
miR-27b-3p, since incubation with these miRNAs mimicked their
effects in lean mice (73). In human studies, circulating EVs derived
from obese patients significantly impaired insulin signaling by
downregulating the expression of phosphorylated glycogen
synthase kinase 3b (GSK3b) and upregulating the mRNA
expression of glucose 6-phosphatase (G6pase) and
phosphoenolpyruvate carboxy kinase (PEPCK) in HepG2 cells,
as well as decreased FGF21 secretion (74). In addition, the
circulating level of EV-derived miR-20b-5p has been observed
upregulated in T2D. Incubation with circulating miR-20b-5p
significantly increased glycogen accumulation and impaired
insulin-stimulated glucose metabolism in human skeletal muscle
cells, partially by regulating the expressions of AKT-interacting
protein (AKTIP) and transporting signal transducer and activator
of transcription 3 (STAT3) (75). Other researchers observed that
circulating EVs obtained from obese individuals impaired insulin-
induced 2-deoxyglucose uptake in 3T3-L1 adipocytes (60).
Moreover, modified miRNAs contained in circulating EVs of
T2D patients have been considered to participate in regulating
the adiponectin pathway (76). As a decrease in plasma adiponectin
level can inhibit the expression of adenosine monophosphate
kinase (AMPK), which are supposed to improve insulin
sensitivity (77), these EVs may also be involved in regulating
insulin sensitivity in T2D.
ROLE OF EVS IN T2D BY REGULATING
b CELLS MASS

The pancreas is a critical endocrine organ responsible for insulin
secretion and maintaining metabolic homeostasis. Emerging
studies have indicated that several diabetes-derived EVs can
specifically target pancreatic b-cells, thereby modulating b-cell
mass. For example, injection of EVs isolated from the skeletal
muscle of obese mice specifically targeted the mouse pancreatic
cells and induced pancreatic b-cell proliferation in MIN6B1 cells.
These effects may be attributed to upregulation of miR-16, which
affected the expression of proliferative genes, such as proliferation
suppressor protein patched homolog 1 (PTCH1) (78).
Additionally, two miRNAs (miR-106b and miR-222) derived
from BM cells were found to be increased in islet cells, which
may be responsible for BM transplantation-induced b-cell
regeneration, and accompanied by downregulation of the Cip/
Kip family (79). In islets of streptozotocin (STZ)-induced diabetic
mice, EVs isolated from b-cells also improved IR, increased insulin
secretion, and preserved the architecture and enhanced the
angiogenesis of islets (80). Furthermore, experiments using
insulin-secreting INS-1 cells found that the secretion of neutral
ceramidase (NCDase) via EVs was increased, whereas treatment
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with EV-packaged-NCDase derived from INS-1 cells effectively
inhibited palmitate-induced b-cells apoptosis by regulating the
sphingolipid-induced signaling pathway (81). Previous studies
have demonstrated that the formation process of IAPP may
promote b-cell dysfunction in T2D patients (82). Since b cell-
derived EVs from healthy controls suppressed the aggregation of
IAPP by peptide scavenging, whereas T2D b cell-derived and
circulating-derived EVs have no effect, the aggregation of IAPP in
T2D may lead to b cell failure (72). Long noncoding RNAs
(lncRNAs) secreted by EVs can also exert critical effects. In T2D
patients, the circulating level of exosomal lncRNA-p3134 were
found to be increased; this lncRNA is associated with fasting blood
glucose and homeostasis model assessment b-cell function
(HOMA-b) levels , whereas its level in b-cel ls was
downregulated. As lncRNA-p3134 can help preserve b-cell
function and positively regulate glucose-stimulated insulin
secretion (GSIS) by upregulating key factors (Pdx-1, MafA,
GLUT2, and Tcf7l2) in b cells, these results provide a new
mechanism for b cell regulation via lncRNAs (83) (Figure 3).
CLINICAL THERAPEUTIC POTENTIAL OF
EVS

With the increased understandings of the crucial roles of EVs in
pathogenesis of T2D, their potentials for clinical use in T2D
patients as diagnostic and therapeutic tools have attracted
increased attentions. Here, we summarize the current advances
in the potential applications of EVs in biomarker discovery,
intervention monitoring and machinery discovery, therapeutic
strategy discovery and drug delivery in T2D and its complications.

Biomarker Discovery
Total circulating molecules have great potential to serve as T2D
biomarkers since they are easily detected in body fluids. In this
regard, several serum/plasma miRNAs levels have been identified
to be strongly associated with T2D pathology (84–89), and even
associated with prediabetes (84, 85, 90). In recent years,
characterizing EVs containing various cellular molecules from
human biofluids has also gained increased attentions, thanks to
their ability to resist enzymatic degradation through a lipid
bilayer protection (75, 76, 91, 92). So far, numerous EVs
circulating in the body fluids have been found altered in T2D,
which are closely related to immunity and metabolic
dysfunctions, while some were found altered in T2D
complications. Here, we briefly summarize the molecules
currently discovered to be altered in T2D and its complications
(Table 1). Further in-depth studies aimed at characterizing EVs
and their functional cargos are needed to promote the discovery
of novel biomarkers, thereby assisting in T2D diagnosis and
timely implementation of personalized therapies.

Interventions Monitoring and Machinery
Discovery
Antidiabetic drugs currently in use mainly include
thiazolidinediones (TZDs), metformin, sulfonylureas, and
Frontiers in Endocrinology | www.frontiersin.org 7
sodium-glucose cotransporter 2 (SGLT2) inhibitors. Recently,
studies suggested that some metabolic drugs can influence the
generation, release, and composition of EVs in T2D patients,
indicating EVs as a possible platform for intervention monitoring.
In this regard, metformin has been found to suppress cleavage of
the insulin receptor and inhibit calpain 2 release in EVs, thus, re-
establishing insulin signaling and enhancing insulin sensitivity
(64). It can also decrease the levels of multiple T2D-affected
miRNAs in EVs even close to those in healthy controls, which
may help monitor the metformin response in T2D patients (99).
In a randomized controlled trial, the levels of circulating
endothelial microparticles and endothelial progenitor cells, as
well as their ratio showed greater changes following treatment
with pioglitazone treatment versus metformin, representing a
better endothelial repair capacity in newly diagnosed T2D
patients (100). However, it remains unclear whether these
alterations resulted from modulation of the related
pathophysiology or were caused by improved glucose levels.

In addition to drug treatments, other important approaches to
T2D treatment, such as dietary changes, exercise and bariatric
surgery, can also modulate EV levels and subtypes. For example,
intervention with an oat-enriched diet in T2D subjects reduced
fibrinogen- and tissue factor-related platelet microparticles and
CD11b-positive monocyte microparticles, which can serve as
markers of metabolic health, and assess the effects of a well-
controlled diet in T2D (101). Exercise can reverse T2D
inflammation and IR related to T2D and triggers rapid release of
EVs into the circulation, which may participate in intercellular
communication and act as important mediators of adaptation
processes to exercise (102). The beneficial effects of bariatric
surgery via regulating EVs have also been explored. Transient
alterations in circulating EV- and plasma-derived fatty acid binding
protein 4 (FABP4)has beendetected after bariatric surgery, reflecting
changes in adipose tissue homeostasis (103). It also reduced CD36-
bearing EVs of endothelial and monocyte origin, suggesting
improvements in ectopic fat deposition, oxidative stress, and low-
grade inflammation (104). Additionally, weight loss following gastric
bypass surgery led to modification of the circulating adipocyte-
derived exosomal miRNA profile, correlating with improvements
in both IR and glucose homeostasis (105). To date, since more and
more EVs have been identified to be influenced by therapeutic
intervention, a deeper understanding of EV biogenesis and their
functional cargos might open new prospects for monitoring the
efficacy of therapeutic interventions and favor machinery discovery.

Therapeutic Agents Discovery
Though a number of EVs have been identified to participate in
the pathogenesis of T2D, actually, there are also some EVs
possessed beneficial effects and can served as therapeutic
agents for T2D and its complications. For instance, miR-26a is
reduced in serum EVs from patients with obesity and is inversely
correlated with the clinical features of T2D. Using miR-26a
knockin and knockout mouse models, researchers found that
overexpression of miR-26a in b cells significantly enhanced
peripheral insulin sensitivity in a paracrine manner through
circulating EVs (71). Additionally, EVs derived from mouse
brain endothelial cells promoted neurorestorative effects after
January 2021 | Volume 11 | Article 596811
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stroke in T2D mice, which were mediated by upregulation of
miR-126 (106). In addition, overexpression of heat shock protein
20 (Hsp20) in Hsp20-transgenic cardiomyocytes improved
cardiac function and angiogenesis in diabetic hearts by
releasing instrumental EVs. Hsp20-engineered EVs may be a
new therapeutic approach for diabetic cardiomyopathy (107).
More studies on the therapeutic effects of EVs in T2D and its
complications are listed in Table 2.

Therapies Based on Mesenchymal Stem/
Stromal Cell-Derived EV
MSC therapy is a novel therapeutic strategy emerging in recent
years. It can differentiate into diverse cell types and produce a
variety of molecules, including EVs (134). Recently, studies
Frontiers in Endocrinology | www.frontiersin.org 8
found that MSC-derived EVs successfully mimicked the
therapeutic effects of MSCs, providing an alternate to MSC
transplantation. Compared to the transplantation of live cells,
cell-free therapy has many advantages (135), such as lost cost
related to storage and maintenance, greater safety, better
assessment and control of drug dosage and potency,
economical mass-production in specific cell lines due to their
stability and modifiability. It also avoids immune compatibility,
tumorigenicity, embolism formation, and transmission of
infections after MSC transplantation. Moreover, small vesicles
easily circulate through the thin capillaries and pass through the
blood-brain barrier. Nowadays, MSC-derived EV-based therapy
is considered as a promising therapeutic tool for various diseases,
including liver injury, myocardial infarction, drug addiction,
TABLE 1 | Molecules in cirulating EVs as biomarkers of T2D.

Cargo Expression Circulating
source

Compared subject Effect Reference

miR-375-3p Increased Serum STZ-injected mice vs. vehicle-
injected mice
newly diagnosed T2D patients vs.
NGT subjects

Exosomal miR-375-3p increased in circulation of STZ-injected
mouse prior to hyperglycemia and in new-onset T2D patients,
serving as a potential biomarker of islets damage

Fu et al.
(91)

miR-20b-5p Increased Serum T2D patients vs. subjects with
impaired glucose tolerance vs. NGT
subjects

MiR-20b-5p overexpression reduced expression of AKTIP, STAT3
and insulin-stimulated glycogen accumulation in human skeletal
muscle cells

Katayama
et al. (75)

miR-320a
miR-197, miR-
509-5p

Increased
Decreased

Serum
Plasma

Metabolic syndrome patients vs. T2D
patients vs. hypercholesterolemia
patients vs. hypertension patients vs.
healthy controls

Differentially expressed exosomal miRNAs are involved in T2D
related pathways, and they could also be dysregulated in collective
metabolic disorders

Karolina
et al. (92)

Leptin receptor,
p-insulin
receptor,
p-S6RP,
p-GSK3b,
p-AKT
FGF21

Decreased
Increased

Plasma T2D patients vs. euglycemic subjects
T2D patients vs. obesity-matched
euglycemic subjects

Exosomal leptin receptor and p-insulin receptor levels are negatively
correlated with the risk of developing T2D. Exosomal p-AKT,
phospho-GSK3b and phospho-S6RP levels are negatively
associated with HOMA-B or HOMA-IR

Freeman
et al. (8)

miR-326
let-7a, let-7f

Increased
Decreased

Plasma Treatment-naïve and poorly
controlled T2D patients vs.
nondiabetic subjects

Poorly controlled T2D is associated with the aberrant levels of let-
7a/let-7f and miR-326 in circulating EVs. Circulating exosomal miR-
326 levels are inversely correlated with its putative target
adiponectin

Santovito
et al. (76)

miR-133b, miR-
342, miR-30a

Increased Urine T2D patient with microalbuminuria
and macroalbuminuria vs. T2D
patient with normoalbuminuria vs.
healthy control

These urinary exosomal miRNAs could be potential biomarkers for
T2DN and have a synergistic effect in T2DN pathogenesis, though
they could also altered in some normoalbuminuria cases

Eissa et al.
(93)

let-7c-5p
miR-29c-5p,
miR-15b-5p

Increased
Decreased

Urine T2D patient with DN vs. T2D patient
without DN vs. healthy controls

Urinary exosomal let-7c-5p is correlated with both renal function
and progression of T2DN

Li et al.
(94)

miR-362-3p,
miR-877-3p,
miR-150-5p,
miR-15a-5p

Increased
Decreased

Urine T2D patient with no renal disease vs.
T2D patient with macroalbuminuria

These urinary miRNAs might be novel biomarkers for incipient
diabetic kidney disease, and might regulate DN through p53,
mTOR, and AMPK pathways

Xie et al.
(95)

Aquaporin 5
and 2

Increased Urine T2D patient with DN vs. T2D patient
with proteinuric nondiabetic
nephropathy vs. T2D patient with
normal renal function

Aquaporin 5 and 2 could be potential biomarkers to help in
classifying the clinical stage of DN and positively correlated with the
progression of the DN

Rossi et al.
(96)

miR-320c, miR-
6068

Increased Urine T2D patient with DN vs. T2D patient
without DN vs. healthy controls

Deregulated miR-320c might be indirectly involved in TGF-b
signaling via targeting TSP-1 and may represent a novel candidate
marker for early progression of T2DN

Delić et al.
(97)

miR-15b, miR-
34a, miR-636

Increased Urine T2D patient with albuminuria vs. T2D
patient with normoalbuminuria vs.
healthy control

These urinary exosomal miRNAs might be novel biomarkers for
early diagnosis of T2DN. A significant correlation is existed between
the three selected miRNAs

Eissa et al.
(98)
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T2D, type 2 diabetes,; EVs, extracellular vesicles; IR, insulin resistance; NGT, normal glucose tolerance; T2DN, T2D nephropathy.
icle 596811

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Liu et al. Role of EVs in T2D
TABLE 2 | The application of EVs and mimics in the therapy of T2D and its complications.

Active molecule Source Disease Effect Reference

Therapeutic agents
MiR-26a b cells T2D MiR-26a in b cells significantly enhanced peripheral insulin sensitivity in a paracrine

manner through circulating EVs
Xu et al. (71)

MiR-126 and miR-
296

Endothelial
progenitor cells

T2D EVs released from endothelial progenitor cells activated the PI3K-AKT and eNOS
signaling pathways, promoted insulin secretion, survival as well as induced islet
angiogenesis

Cantaluppi et al.
(108)

MiR-106b and miR-
222

BM cells T2D MiR-106b and miR-222 were secreted by BM cells and increased in islet cells
after BMT, inducing b-cell regeneration, probably through Cip/Kip family down-
regulation

Tsukita et al. (79)

MiR-16 Skeletal muscle
cells

T2D EVs isolated from obese mice targeted pancreas and induced b-cell proliferation
via the upregulations of miR-16, which affected the expression of proliferative
genes, such as PTCH1

Jalabert et al. (78)

Unrevealed b cells T2D EVs derived from b-cells play a role in preserving pancreatic islet architecture and
its function, and in inducing islet angiogenesis

Sun et al. (80)

NCDase INS-1 cells T2D Treatment with EV-packaged-NCDase derived from INS-1 cells effectively inhibited
b-cells apoptosis through regulating the sphingolipid-induced signaling pathway

Tang et al. (81)

MiR-126 Brain
endothelial cells

Stroke EVs derived from brain endothelial cells promoted neurorestorative effects after
stroke

Venkat et al. (106)

Hsp20 Cardiomyocytes DCM Overexpression of Hsp20 in cardiomyocytes improved cardiac function and
angiogenesis via the release of instrumental EVs

Wang et al. (107)

MiR-146a Brain
endothelial cells

Cognitive impairment The delivery of brain endothelial cell-derived EVs loaded with miR-146a
downregulated PrP(c) levels and restored short term memory function

Kalani et al. (109)

bFGF, PDGFBB, and
TGF-b

PRPs Diabetic wound PRP-derived EVs induced proliferation and migration of endothelial cells and
fibroblasts to improve angiogenesis and re-epithelialization in chronic wounds

Guo et al. (110)

MSC-derived EV-based therapy
Unrevealed ADSCs Obesity ADSC-derived EVs alternatively polarized M2 macrophages, reduced inflammation

and promoted white adipose tissue beiging by STAT3 to the macrophages, and
finally improved insulin sensitivity

Zhao et al. (111)

Unrevealed MSCs T2D MSC-derived EVs improved hepatic glucose and lipid metabolism by activating
autophagy via the AMPK pathway

He et al. (112)

Unrevealed MSCs T2D MSC-derived EVs reversed IR and increase b-cell survival, accompanied with the
increased phosphorylation of IRS-1 and AKT and the increased expression of
GLUT4 in muscle

Sun et al. (113)

Unrevealed MSCs DN MSC-derived EVs exerted an anti-apoptotic effect and protected tight junction
structure in tubular epithelial cells

Nagaishi et al.
(114)

Unrevealed MSCs and
HLSCs

DN Stem cell-derived EVs inhibited fibrosis and prevented the progression of
diabetes-induced chronic kidney injury

Grange et al.
(115)

Unrevealed MSCs DN MSC-derived EVs improved renal function and showed histological restoration of
renal tissues via inducing autophagy

Ebrahim et al.
(116)

MiR-486 ADSCs DN ADSCs-derived EVs relieved DN symptom by promoting autophagy flux and
reducing podocyte apoptosis via regulating miR-486/Smad1/mTOR signaling
pathway

Jin et al. (117)

MiR-26a-5p ADSCs DN ADSC-derived EVs transferred miR-26a-5p to glomerular podocytes, which
ameliorated DN pathology

Duan et al. (118)

MiR-126, miR-130a,
miR-132, miR-let7b,
and miR-let7c

ADSCs Erectile dysfunction ADSC-derived EVs induced the proliferation of endothelial cells and restored
erectile function in vivo, as well as decreased fibrosis of corpus cavernosum

Zhu et al. (119)

Unrevealed ADSCs Erectile dysfunction ADSC-derived EVs rescued corpus cavernosum endothelial and smooth muscle
cells by inhibiting apoptosis and promoted the recovery of erectile function

Chen et al. (120)

MiR-146a MSCs Cognitive impairment Exosomal miR-146a secreted by MSCs exerted anti-inflammatory effects on
damaged astrocytes and prevented diabetes-induced cognitive impairment

Kubota et al.
(121)

Unrevealed MSCs Cognitive impairment MSC-derived EVs recovered diabetes-induced cognition impairment and histologic
abnormity

Zhao et al. (122)

Unrevealed MSCs Cognitive impairment MSC-derived MVs improved cognitive impairment and histological abnormalities Nakano et al.
(123)

Unrevealed MenSCs Diabetic wound MenSCs-derived EVs accelerated re-epithelialization through activating the NF-kB
signaling way, thereby promoting cutaneous healing process

Dalirfardouei et al.
(124)

MiR29c and miR150 nAT-MSCs Diabetic wound MSC-derived MVs improved their migration ability and wound healing ability by
altering the expression of genes associated with cell migration, survival,
inflammation, and angiogenesis as well as miR29c and miR150

Trinh et al. (125)

lncRNA H19 MSCs Diabetic wound MSC-derived exosomal lncRNA H19 prevented the apoptosis and inflammation of
fibroblasts by impairing miR-152-3p-mediated PTEN inhibition, leading to the
stimulated wound-healing process

Li et al. (126)

(Continued)
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immunoregulation and cancer (136), and recent studies also
suggested that these EVs can play important roles in the
treatment of T2D and its complications (Table 2). In this
regard, human umbilical cord MSC-derived EVs were found to
improve hepatic glucose and lipid metabolism in T2D by
enhancing autophagy in an AMPK-dependent manner (112).
They can also reverse IR and increase b-cell survival in high-fat
diet-fed or STZ-induced T2D rats, accompanied with the
increased phosphorylation of the insulin receptor substrate 1
(IRS-1) and AKT, as well as increased expression of GLUT4 in
the muscle (113). Furthermore, directly injecting MSC-derived
EVs into the blood of diabetic mice exerted protective effects by
inhibiting b-cell apoptosis (113). Adipose-derived stem cells
(ADSCs) are key regulators of obesity-induced inflammation.
A recent study showed that EVs derived from ADSCs significantly
polarized M2 macrophages, reduced inflammation, and promoted
white adipose tissue beiging, at least partially through the effects of
STAT3 on the macrophages, which eventually improved insulin
sensitivity (111). Furthermore, EVs released from the endothelial
progenitor cells activated the PI3K-AKT and eNOS signaling
pathways, promoted insulin secretion and cell survival; and
induced islet endothelial cell proliferation, differentiation, and
angiogenesis; which are associated with packaged proangiogenic
miR-126 and miR-296 (108).

MSC-derived EVs can also mediate the protection from
diabetic complications. For example, in a mouse model of
diabetes, both human ADSCs and their secreted EVs reversed
neuropathic pain, maintained the pro/anti-inflammatory
cytokine balance, and inhibited skin innervation loss, revealing
a promising approach for treating diabetic neuropathic pain
(137). Besides, ADSC-derived EVs relieved DN symptoms by
promoting the expression of miR-486, which inhibited the
Smad1/mTOR signaling pathway in podocytes, increased
autophagy flux, and reduced podocyte apoptosis (117).
Frontiers in Endocrinology | www.frontiersin.org 10
Diabetic peripheral neuropathy (DPN) is an important
complication of diabetes. Treatment of DPN with MSC-
derived EVs successfully attenuated neurovascular dysfunction
and promoted functional recovery in diabetic mice through
inhibiting proinflammatory cytokines (128). Moreover, in a
diabetes-induced cognitive disorder mouse model, EVs derived
from BM-MSCs recovered cognition impairment and histologic
abnormities (121, 122).

Regenerative medicine refers to the application of different
approaches to promote the regeneration process of lost or
damaged tissues, so as to completely replace damaged tissues.
In the past few years, emerging studies have indicated that MSC-
derived EVs are promising tools for regeneration and repairment
of damaged cells, particularly given their high biocompatibility
restrictions and cost-effectiveness. To support this idea, EVs
released from menstrual blood-derived MSCs were showed to
accelerate re-epithelialization, possibly through activating the
NF-kB signaling pathway, thereby promoting the cutaneous
healing process in diabetic mice (124). Besides, transfection of
T2D ADSCs with EVs derived from non-diabetic ADSCs also
enhanced their mobility in vitro and promoted wound healing in
vivo (125). In diabetic foot ulcer, MSC-derived exosomal lncRNA
H19 promoted fibroblast proliferation and migration, as well as
prevented apoptosis and inflammation by upregulating miR-
152-3p-mediated PTEN (126). These studies reveal attractive
roles of MSC-derived EVs in tissue regeneration and provide a
promising method for regenerative medicine.

Despite the encouraging results of the studies on MSC-
derived EVs, most studies were preclinical. Thus, additional
research is needed to optimize MSC-derived EV-based
therapies. First, it is critical to control the source of MSCs and
their optimal culture conditions to produce desired cargos in
large amounts. Second, the methods used to isolate and purify
the desired EVs from MSCs must be improved, since a large
TABLE 2 | Continued

Active molecule Source Disease Effect Reference

DMBT1 protein USCs Diabetic wound USC-derived EVs treated diabetic soft tissue wound healing by promoting
angiogenesis via transferring DMBT1 protein

Chen et al. (127)

Unrevealed MSCs DPN MSC-derived EVs attenuated neurovascular dysfunction and promote functional
recovery in mice with DPN through inhibiting proinflammatory cytokines

Fan et al. (128)

MiR-126 MSCs Retinal inflammation MSC-derived EVs alleviated hyperglycemia-induced retinal inflammation by
transferring miR-126 and suppressing the HMGB1 signaling

Zhang et al. (129)

Unrevealed MSCs Myocardial injury MSC-derived EVs improved diabetes-induced myocardial injury and fibrosis via
inhibiting TGF-b1/Smad2 pathway

Lin et al. (130)

EV mimics-based delivery system
Unrevealed ESC-derived

EV-mimetic
nanovesicles

Erectile dysfunction ESC-derived EV-mimetic nanovesicles completely restored erectile function by
promoting penile angiogenesis and neural regeneration

Kwon et al. (131)

miR-21-5p Engineered
ADSCs

Diabetic wound Engineered human ADSC-derived EVs loaded with miR-21-5p promoted diabetic
wound healing through increasing re-epithelialization, collagen remodeling,
angiogenesis, and vessel maturation

Lv et al. (132)

lncRNA-H19 EV-mimetic
nanovesicles

Diabetic wound EV-mimetic nanovesicles with a high content of lncRNA-H19 neutralized the
suppression of regeneration of hyperglycemia as well as accelerated the chronic
wounds healing

Tao et al. (133)
January 2021 | Volume 1
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stem cell; nAT-MSCs, non-diabetic adipose tissue-MSCs; USCs, urine-derived stem cells; HLSCs, human liver stem-like cells; PRPs, platelet-rich plasma; ESC, embryonic stem cell;
PTCH1, proliferation suppressor protein patched homolog 1; BMT, bone marrow transplantation; NCDase, neutral ceramidase; DMBT1, deleted in malignant brain tumors 1.
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number of EVs could be released by MSCs. Third, investigations
of the molecular bases underlying different EVs are important,
which contribute to the future specific design of artificial EVs.
Finally, how to control the dosage of EVs secreted by MSCs to
maximize their therapeutic effects and detect their contents in
target tissues also require more basic and clinical practice.

Drug Delivery
Gene therapy is an emerging therapeutic strategy for treating
numerous diseases by modulating the expression of target genes.
However, the absence of suitable delivery systems greatly hinders
its clinical applications. The abilities of EVs to transfer various
bioactive molecules to nearby or distant recipient cells provide a
novel approach for drug delivery across different organs and
target specific sites. Compared to other nucleic acid drug carriers,
EVs not only deliver nucleic acid or proteins in an active form,
but also prevent immunological damage (138, 139). Besides, EVs
contain a double-layer membrane structure that protects their
contents from RNases, as well as a supposed recognition system
that favors targeting of recipient cells, thereby improving the
efficiency and precision of transportation (140). Nowadays, EVs
containing desired cargos or drugs have been proposed as
promising tools for T2D treatment. Except for natural EVs
secreted by various tissues or MSCs, several strategies have
been exploited to generate ideal EVs, such as genetically or
chemically modifying genes of donor cells to alter EV cargos,
or directly loading exogenous nucleic acids or proteins into
purified EVs. For example, engineered human ADSC-derived
EVs loaded with miR-21-5p mimics by electroporation
significantly promoted diabetic wound healing through
increasing re-epithelialization, collagen remodeling, angiogenesis,
and vessel maturation in vivo (132). In addition, due to their high
tolerance to the body’s endogenous system, EVs are considered
promising natural carriers for small interfering RNA (siRNA)
delivery, which has emerged as a therapeutic candidate for gene
therapy, without a visible immune response (139).

Given the considerable complexity of exosomal components,
wherein most are unidentified and may cause unexpected effects,
as well as the related high risk of off-target effects, these events
significantly hinder the clinical application of EVs (141). Recently,
artificially synthesized EV-mimics, such as liposomes (141) and
EV-mimetic nanovesicles (142) have been developed to contain
only crucial components of natural EVs, thereby limiting the
negative effects of unwanted cargos and enhancing the therapeutic
efficiency of the delivered drugs. In vitro, studies showed that using
EV-mimetic nanovesicles with a high content of lncRNA-H19 as a
delivery vehicle neutralized the suppression of regeneration of
hyperglycemia and accelerated chronic wound healing (133). In
diabetic mice, embryonic stem cell-derived EV-mimetic
nanovesicles completely restored the erectile function by
promoting penile angiogenesis and neural regeneration, while
embryonic stem cell only partly restored erectile function (131).
In addition, Sato et al. developed hybrid EVs by fusing their
membranes containing specific membrane proteins with
liposomes using the freeze-thaw method. This membrane-
engineering approach facilitated cellular uptake of the modified
EVs and also reduced their circulation time in the blood, enabling
Frontiers in Endocrinology | www.frontiersin.org 11
the development of an advanced drug delivery system (143).
Recent advances in the application of EVs and their mimics in
the therapy of T2D and its complications are showed in Table 2.
CONCLUSIONS AND PROSPECTS

In this review, we summarized the important roles of EVs in the
pathogenesis of T2D through regulating inflammation,
influencing insulin signaling or directly modulating b cell mass.
Besides, they could also serve as attractive diagnostic and
therapeutic tools for T2D and its complications. However, there
are still a lot of challenges before the clinical use of EVs (144). First,
clinical applications of EVs serving as biomarkers or therapeutic
agents require high-purity EVs, which are difficult to obtain using
the current isolation techniques. Current separation methods have
many limitations: inability to prepare a large number of high-
purity EVs from biological fluids due to lipoprotein
contamination, inability to distinguish between the subtypes of
EVs, inability to isolate EVs containing only the expected cargos,
and inability to separate EVs targeting specific cells. Besides, it
remains unclear how EV biogenesis pathways are implicated in
T2D individuals, which then influence the release of EVs and their
contents. Third, exosomal cargos and their expressions are not
always consistent with their expressions in donor cells, and how
these cargos are selected from donor cells is unclear, which
increase the difficulty of controlling the type and dosage of
components and therapeutic effects of EVs. Moreover, the type
of EVs and their cargos are still largely unidentified, as well as their
molecule bases in promoting or reversing the T2D pathogenesis.
Further investigations aimed at identifying functional molecules in
EVs and their underlying mechanisms to influence target cells will
be of high impact for the development of EV-based therapeutics.
Finally, although altered EVs have been identified as important
factors promoting the pathogenesis of T2D, whether their changes
are consequences of T2D inflammation, IR, and b cell dysfunction,
or these effects are caused by EVs changes remains unclear. In the
future, additional efforts are needed to characterize EVs to
promote their clinical applications in T2D.
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89. Pescador N, Pérez-Barba M, Ibarra JM, Corbatón A, Martıńez-Larrad MT,
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