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The masticatory system is a complex and highly organized group of structures, including
craniofacial bones (maxillae and mandible), muscles, teeth, joints, and neurovascular
elements. While the musculoskeletal structures of the head and neck are known to have a
different embryonic origin, morphology, biomechanical demands, and biochemical
characteristics than the trunk and limbs, their particular molecular basis and cell biology
have been much less explored. In the last decade, the concept of muscle-bone crosstalk
has emerged, comprising both the loads generated during muscle contraction and a
biochemical component through soluble molecules. Bone cells embedded in the
mineralized tissue respond to the biomechanical input by releasing molecular factors
that impact the homeostasis of the attaching skeletal muscle. In the same way, muscle-
derived factors act as soluble signals that modulate the remodeling process of the
underlying bones. This concept of muscle-bone crosstalk at a molecular level is
particularly interesting in the mandible, due to its tight anatomical relationship with one
of the biggest and strongest masticatory muscles, the masseter. However, despite the
close physical and physiological interaction of both tissues for proper functioning, this
topic has been poorly addressed. Here we present one of the most detailed reviews of the
literature to date regarding the biomechanical and biochemical interaction between
muscles and bones of the masticatory system, both during development and in
physiological or pathological remodeling processes. Evidence related to how
masticatory function shapes the craniofacial bones is discussed, and a proposal
presented that the masticatory muscles and craniofacial bones serve as secretory
tissues. We furthermore discuss our current findings of myokines-release from
masseter muscle in physiological conditions, during functional adaptation or pathology,
and their putative role as bone-modulators in the craniofacial system. Finally, we address
the physiological implications of the crosstalk between muscles and bones in the
n.org March 2021 | Volume 11 | Article 6069471
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masticatory system, analyzing pathologies or clinical procedures in which the alteration of
one of them affects the homeostasis of the other. Unveiling the mechanisms of muscle-
bone crosstalk in the masticatory system opens broad possibilities for understanding and
treating temporomandibular disorders, which severely impair the quality of life, with a high
cost for diagnosis and management.
Keywords: musculoskeletal system, masticatory muscles, craniofacial bones, paracrine communication,
bone biomechanical
INTRODUCTION

A strong positive-association between bone mass and muscle
mass throughout life has been attributed to their shared function
(1–5). This mechano-functional theory has been built upon
studies using different approaches. Among these, clinical
studies have shown simultaneous decreases in bone and muscle
mass when musculoskeletal activity decreases, as in neuronal
lesions leading to paralysis, neuromuscular dystrophies,
microgravity, immobilizations or prolonged rest (2, 6–8).
Likewise, the concomitant loss of both muscle and bone mass
in the elderly (sarcopenia and osteoporosis, respectively) leads to
a reduction in motility and increases the risk of falls and
fractures, heightening morbidity and mortality. How this
relationship occurs is not only relevant for basic science; due
to the progressive aging of the world population, musculoskeletal
disorders are reaching an epidemic status (9, 10). Thus,
providing knowledge on the topic can help to the development
of prevention and treatment strategies.

Muscle-bone crosstalk, long regarded as exclusively
biomechanical, has, over the last decades, been opened to the
idea of an additional biochemical component. Thus, muscles and
bones are considered secretory tissues capable of releasing
soluble molecules to regulate each other (3, 6, 11, 12).

The masticatory system is a highly organized group of
craniofacial structures, including bones (maxillae and
mandible), teeth, joints, neurovascular elements, and the
muscles responsible for moving the mandible. Mandibular
movements are required for vital functions such as
mastication. These are made possible by the coordinated action
of the masticatory muscles (jaw closing and jaw opening) that
displace the mandible in a wide range of motions in the tri-
dimensional space. That displacement is also guided by the
articular surfaces of the temporomandibular joint (TMJ) (13).
The biomechanical input from masticatory muscles is not only
required for mandibular movement but also for TMJ
maintenance (14, 15). The functional and/or structural
alterations in one or more of the structures of the TMJ are
recognized as temporomandibular disorders (TMDs), grouped
by muscular, articular, or developmental conditions (16, 17).

The masticatory system is a highly coordinated machine,
where minimal deregulation in one of the components evokes
dramatic alterations in the whole system. Because of this, it is an
exciting model to study muscle-bone crosstalk. To date, the
molecular basis for muscle plasticity or muscle-bone
interaction has not been studied in the masticatory system,
n.org 2
hindering the development of proper therapies against direct
targets in TMDs. Considering that jaw muscles are anatomically
and biochemically different to those of the trunk and limb (18–
20), it is essential to study them at the cellular and molecular
level. Some of the masticatory muscles unique features are: 1) In
the embryo, they develop from the mesoderm of the first
pharyngeal arch, while the trunk and limb muscles derive from
the somites; 2) They express a broader range of myosin heavy
chain (MyHC) in adulthood (in addition to type I-IIA-IIX), such
as neonatal and cardiac isoforms; 3) They have a high number of
hybrid fibers (one fiber expressing several MyHC subtypes),
which leads to the development of high force in a fatigue-
resistant mode; 4) Their fiber morphology is unusual, with
type II fibers smaller in diameter than type I; 5) The velocity
of shortening of their type I and type II fibers is even slower and
faster, respectively, than their counterparts in the trunk and
limbs (Figure 1) (20, 21). Moreover, masticatory muscles are
highly moldable, depending on genetic and environmental
factors (21).

Besides, compared to the postcranial skeleton, the jaws
present some unique developmental and morphological
features (Figure 2). They derive from the embryonic neural
crest cells instead of the embryonic mesoderm; they support
teeth, which means that they are exposed to additional
developmental processes (anatomical and molecular) until
young adulthood; they undergo pathologies that are not
present in other bones (many of them related to the presence
of teeth); as part of the axial skeleton, they contain more red bone
marrow than yellow bone marrow; their regeneration capacity is
higher than that of the other axial bones; and they are under the
constant mechanical stimulus produced by chewing, speech, and
swallowing (22–25) (Figure 2).

Most of the muscle-bone functional relationship has been
addressed through bone biomechanics, i.e. how loading and
movement impact bone shape through modeling and
remodeling. The cellular processes responsible of this
relationship were however not broadly studied. In addition, in
the last decade, the molecular crosstalk between bone and muscle
has received increasing attention. The present review gathers and
organizes for the first time the current evidence of the cross-
communication between muscles and bones in the masticatory
apparatus, starting from their intimate biomechanical
relationship to the current knowledge on molecular cross-talk
generated by our own work and the work of other researchers.
We propose that, as it occurs with other features of the
masticatory apparatus, the muscles and bones of this territory
March 2021 | Volume 11 | Article 606947
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hold a particular biochemical communication through secreted
molecules mediating auto/paracrine responses, in particular
“myokines” and “osteokines.” Finally, we address how the
dysregulation of the masticatory muscles affects the bone
component and vice versa, in pathologies, adaptations, or
interventions. The latter reinforces the functional interrelation
of the components of the masticatory apparatus and challenges
to elucidate the molecular bases that mediate this process.
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BIOMECHANICAL INTERACTION
BETWEEN MUSCLES AND BONES
IN THE MASTICATORY SYSTEM;
FROM FUNCTION TO SHAPE

Mechanical stimulation, which at a tissue level results in
microdeformation of the cells and the extracellular matrix, is
an essential factor for bone development and determining bone
A

B

C

FIGURE 1 | Particularities of masticatory muscles with respect to that of the
trunk and limbs. Differences between trunk and limb muscles (left panels) and
masticatory muscles (right panels) are depicted, as indicated at the top of the
figure. (A) While the trunk and limb muscles form from the mesoderm-derived
somites, the masticatory muscles are derived from mesodermic-derived cells
at the first pharyngeal arch (origin sites colored in dark-brown). (B) The trunk
and limb muscles express myosin heavy chains (MyHC) type I, IIA, or IIX.
Each myofiber expresses a single type of MyHC, and type II fast-fibers have a
larger diameter than type I slow-fibers. In masticatory muscles, apart from the
classic MyHC types (I, IIA, IIX), the neonatal and cardiac (atrial) types are
expressed. There is a large proportion of “hybrid” fibers, simultaneously
expressing several MyHCs types. This means that the fibers can have great
force-generating properties, with high resistance to fatigue. Additionally, in
masticatory muscles, type I fibers are larger in diameter than type II. (C) In
masticatory muscles, type I myofibers are even 10-fold slower than in trunk
and limbs. Moreover, the velocity of shortening of type II myofibers is faster in
masticatory muscles as compared to the trunk and limbs ones.
A

B
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FIGURE 2 | Particularities of the mandibular bone with respect to the trunk
and limb bones. Differences between long bones of the appendicular skeleton
(left panels) and mandible (right panels) are depicted, as indicated at the top
of the figure. (A) While long bones derive from embryonic mesoderm,
mandibular bone derives from cells of the 1st pharyngeal arch coming from
the neural crest (origin sites colored in dark-brown). (B) Mandible is the only
structure supporting the four main mineralized tissues: bone, cartilage,
enamel, and dentin. Instead, long bones only have bone and cartilage.
Because jaws support the teeth, they are exposed to additional
developmental processes until adulthood and undergo pathologies that are
not present in other bones. (C) While long bones contain both red and yellow
bone marrow, the jaws mainly have red bone marrow. (D) Mesenchymal stem
cells (MSC) derived from mandible have better osteogenic potential than
derived from long bones; they have a higher proliferation rate and
mineralization, with an increased regeneration capacity. OB: osteoblasts.
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https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Buvinic et al. Muscle-Bone Crosstalk in Masticatory System
shape in adults. The mechanostat hypothesis by Harold Frost
(26, 27), is still widely accepted among researchers in
biomechanics. It proposes that when mechanical stimulation
produces bone strains in or above the 1,500-3,000 microstrain
range, bone modeling increases bone mass. In comparison,
strains below the 100-300 microstrain range activate bone
resorption, which reduces unnecessary bone that is
metabolically expensive. Low strain magnitudes acting at high
frequency are also important in promoting bone formation (28,
29). For this to occur, bone cells responsible for bone deposition
and resorption must sense such changes in mechanical stimuli.
During muscle contraction and during loading due to e.g., body
weight, the deformation of bone tissue, intertrabecular spaces,
bone canaliculi and movement of interstitial fluids cause
mechanica l s t imul i that os teocytes sense through
mechanoreceptors. This signal is then transduced to different
parts within the cell until a target molecule is activated (30).

Although research in this field of mechanoreception and
mechanotransduction is still ongoing, some aspects have been
elucidated. Among the mechanoreceptors, there are
mechanosensitive ion channels that change the polarization
status of a cell; integrins that connect the cell membrane with
the extracellular matrix and have the inherent capacity to initiate
signal transduction; connexins that allow cells in a network to
“inform” the others about the mechanical milieu; lipid rafts
associated to cytoplasmic second-messengers; and the same cell
membrane and primary cilia which during deformation causes
conformational changes in molecules that cause the transduction
of signals (30–33). During mechanotransduction the
cytoskeleton is deformed, which moves organelles and
proteins, deforms the nucleus, and activates ion channels and
G-protein receptors; in addition, second messengers are
activated following the activation of a mechanoreceptor (30,
31). Mechanotransduction ends with the expression of genes
and synthesis of proteins such as the receptor activator of nuclear
factor kappa-B ligand (RANKL), sclerostin, osteopontin, and
fibroblast growth factor 23, among others relevant for bone
homeostasis (30, 33).

The masticatory apparatus produces loads of variable
magnitude and high frequency on the teeth and jaws. Unlike
in the appendicular skeleton, the loads cause complex patterns of
bone deformation during normal function. These cause bone
modeling and remodeling, which ultimately shapes the adult
form of the jaw to a mechanically fit morphology. These loads are
produced directly by tension in the entheses, but perhaps more
markedly, by microdeformation of the entire structure as a result
of the different force vectors acting on it. During the power
stroke of mastication, maximal muscle activity and bone strain
occur. Forces acting on the jaw during the power stroke can be
represented in a simplified manner using lever mechanics, where
the TMJ acts as the fulcrum, the distance of muscle insertion to
the TMJ is the force arm, and the biting force is the resistance
arm. The more anterior the biting point, the lower the resulting
biting force, and vice versa. In a frontal plane, a more laterally
placed biting point (e.g., at the posterior teeth of animals with
wide palates like humans) is close to the TMJ, reducing the length
Frontiers in Endocrinology | www.frontiersin.org 4
of the resistance arm and increasing bite force. The logical
conclusion is that biting in posterior teeth is more efficient in
terms of the use of muscle force. A more detailed review on the
mechanics of biting in humans can be found in Hylander (34) and
Lieberman (35). In this simplified model, not only the biting point
and the entheses (at the cranium andmandible) are loaded, but also
the TMJ surfaces. The appliedmuscle forcemagnitude decomposes
at the biting point and the TMJ. Thus, if a large muscle force is
generated during contraction, a large bite force reduces the reaction
force at the TMJ. The resulting forces produced during biting cause
the deformation of the jaw (Figure 3). Due to its simpler anatomy
compared to the maxilla, the mandible has undergone most of the
studies in this regard. Using experimental and theoretical
approaches in humans and non-human primates, it has been
shown that the mandible deforms in three main patterns: bending
of the sagittal plane, transversal bending (also called “wishboning”),
and twisting of the corpus and symphysis (37–40) (Figure 3).
Studies byDaegling (37) andFukase (41) analyzing themorphology
of the mandible in macaques and humans, respectively, concluded
that a thick cortical bone is located in the anterior part of the
mandible and towards the posterior end of the corpus, precisely
where strains during biting are the largest.

The study of the primate cranium has presented a comparable
level of evidence regarding the impact ofbiting forces onbone strain
and, thus, morphology. Bromage found that the orientation of
collagen fibers in the circumorbital region of macaques follows the
directionsof strainsproducedon itduringbiting (42).These strains,
March 2021 | Volume 11 | Article 606947
FIGURE 3 | Schematic representation of the forces acting on the mandible
during static biting and the resulting bone deformation patterns described in
the literature. Image built using a three-dimensional reconstruction of CT-data
from an individual in Toro-Ibacache et al. (36).
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however, although enough to have an impact at the tissue level,
would not be the cause of presence of the supraorbital torus in these
animals (43). In a series of experimental and observational studies,
Toro-Ibacache et al. showed that during incisor andmolar biting in
humans, the most strained areas of the face are the alveolar process
in relation to the loaded tooth and the frontal and zygomatic
processes of the maxilla (44–46). These areas at the same time are
formed by dense bone that forms the cranial buttresses and also
show evidence of bone deposition (47). The deformation pattern in
the human cranium does not vary much from that of non-human
primates, consisting of a ventral bending of the anterior part of the
maxilla during incisor biting (45, 48), and compressionof the lateral
aspect of the orbit during molar biting (45, 49).

Considering the evidence above, it is then logical to assume
that a modification of masticatory forces also affects skull form.
Experimental work in animal models has shown that the
impairment of masticatory muscle activity and/or softening
food consistency leads to a reduction in the thickness of the
trabecular bone of the condylar process (50, 51), to a
reorganization of it (51, 52), and to a gracilization in the form
of the entire skull (53, 54). Observational studies in humans
agree with these results. Raphael et al. (55) showed in women
with TMJ disorders that those who had received intramuscular
injections of botulinum toxin had a decreased bone density of the
condylar process in compared to women who did not receive the
injections. Overloading of the TMJ could also lead to
degeneration of the joint components (56, 57). Egli et al. found
in people affected by Duchenne muscular dystrophy that they
progressively developed malocclusions, which are associated
with lowering bite forces and a detriment of the masticatory
function (58). Moreover, it has been proposed that the diet of the
modern, urban populations, based mainly on highly extraorally
processed food items, is the cause of a reduction in jaw size that
results in dental malocclusions in modern humans which are not
found in their ancestors (59–61). In addition, dental
malocclusions reduce masticatory efficiency (62), and altered
maxillomandibular relationships are at the same time associated
to broad ranges of craniofacial shape variation (36, 63, 64).

From a developmental perspective, an optimal masticatory
function should act by canalizing craniofacial form. However, this
does not seem to be the rule in modern humans. Although it is
possible to find a relationship between the intensity of masticatory
activity and the shape of the craniofacial skeleton, this seems
relatively modest, increasing only when functional limits are
reached, i.e. when either very high/low/infrequent force
magnitudes or altered force vectors are produced. In this regard,
Toro-Ibacache et al. found that modifying the patterns of
masticatory muscle activity (i.e. the relative force produced by
each jaw-closing muscle during biting) changes the peak strain
magnitudes, but not where these are located; only large, asymmetric
modifications were able to change the location of TMJ peak strains
from the balancing to the working side (45). Moreover, the same
author described a weak covariation between masticatory muscle
force and craniofacial shape inhumans (46) and founddifferences in
mandibular and cranial shape only among groups of individuals
withmarkeddifferences in diet consistency/dental occlusion pattern
Frontiers in Endocrinology | www.frontiersin.org 5
(36, 63). Shape covariation between the upper and lower jaws/dental
arches is also lower in humans when compared with other animals
(65), which has been associated with the comparatively lower
mechanical and kinetic constraints underwent by humans during
the normal masticatory function. Conversely, stronger covariation
has been found in individuals with malocclusions when compared
with those with normal occlusion (64, 66). Taken together, these
antecedents support the idea that in humans, there has been a
reduction in the constraining role of themasticatory function on the
shape of the craniofacial skeleton. This means that under
physiological conditions that do not involve intense nor too low
masticatory forces, the human cranium displays a broad range of
morphologies, which may be the result of other, non-mechanical
factors. However, outside these functional limits, there are
morphological consequences on craniofacial bones, as seen in the
aforementioned studies with congenital and induced muscle
paralysis and dental malocclusions. How this can be of use in the
clinical context has been in part explored; changes in how the
musculoskeletal system works is the basis of orthopedics and other
related disciplines, such as orthodontics and management of TMJ
disorders. However, achieving predictable, long-term results is
sometimes challenging. For example, some malocclusions relapse
after the end of orthodontic treatment, and some individuals do not
respond to the orthopedic management of TMJ disorders. At the
same time, the use of extreme functional settings or the use of large
external forces to induce bone changes can also cause tissue damage.
Thus, how toachieve afine-tuningof the relationshipbetween forces
and bone (and articular tissues)morphology is yet to be understood.

In conclusion, chewing generates forces that cause the
deformation of the skeleton. This deformation is sensed at the
cellular level, eliciting a response that can result in bone resorption
or deposition. These processesmodify the shape of the loaded bone,
turning it into a structure able to withstand the new loading
scenario. This relationship, however, is not always linear. In
humans, whose masticatory activity is less intense compared to
that of other mammals, the shape of the craniofacial skeleton is
remarkably variable, and it does not necessarily correlate to
masticatory function parameters. However, under extreme
functional situations, the form of the jaws is more prone to reflect
the loading scenario. Controlling this non-linear relationship
between form and function could be key in achieving predictable,
long-term results in clinical situations where functional or
externally applied forces are the therapeutic tools.
MASTICATORY MUSCLES AND BONES
AS SECRETORY TISSUES. MUSCLE-
BONE INTERACTION THROUGH
SIGNALING MOLECULES

Muscle-Bone Crosstalk; Looking
Beyond Mechanics
The relationship between muscles and bones in health and
disease has been mainly considered as a mechanical process in
which bone provides an attachment site for muscles and muscles
March 2021 | Volume 11 | Article 606947
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apply load to bone (67). It is known that bone adjusts its mass
and architecture to changes in mechanical load, so it is strongly
influenced by muscle contraction (68). In recent years, the idea
has emerged that beyond this mechanical coupling of muscle and
bones, there is a biochemical crosstalk through secreted
molecules (11). In effect, both muscle and bone produce
factors that circulate and act on distant tissues, the classical
definition of an endocrine signal. Therefore, molecular
communication with its adjacent tissue is even more likely to
occur. Understanding this apparent biochemical coupling
between muscles and bones is an exciting new avenue of
research (2, 3, 6, 69). Muscles and bones have been recently
defined as endocrine organs, secreting “myokines” and
“osteokines.” respectively. These molecules are secreted after a
wide range of stimuli and run autocrine, paracrine, and
endocrine effects in several tissues. A recent review by Kirk
et al. summarizes the current knowledge about molecules
involved in musculoskeletal communication, including not
only myokines and osteokines, but also adipokines (12). The
list of currently defined myokines includes myostatin, interleukin
(IL)-5,6,7,8,15, brain-derived neurotrophic factor (BDNF),
Irisin, Insulin-Like Growth Factor (IGF), b-aminoisobutyric
acid (BAIBA), matrix metalloproteinase-2, and Fibroblast
Growth Factor (FGF)-2, which mediate the crosstalk between
skeletal muscles and adipose tissues, blood vessels, central
nervous system, and/or bone (3, 6, 70–72). Muscle-derived
exosomes and miRNAs have been found in the circulation and
influenced by exercise and disease, but their paracrine/endocrine
role on other tissues has been not well-established (73, 74).
Actually, efforts are directed towards muscle secretome
elucidation (75, 76). Likewise, bone cells, which historically
have been considered a target of the endocrine system, have
been described in recent years as secretory entities of signaling
molecules for controlling local or long-distance processes (77–
79). Molecules suggested as osteokines include Osteocalcin (80),
Sclerostin (81), Prostaglandin-E2 (PGE2) (81), Fibroblast
Growth Factor 23 (FGF-23) (82), Transforming Growth Factor
b (TGF-b) (83), RANKL (84, 85), and Wnt3a (81, 86)

The intimal muscle-bone relation is strongly evidenced by the
fact that in open fractures, if muscle injury is also extensive, or if
muscle atrophy develops, healing of the fracture is significantly
impaired (11, 87, 88). In contrast, when the fracture area is
covered with muscle flaps, even without tendon attachment,
bone repair is significantly improved (88). This reinforces the
communication between muscles and bones through soluble
molecules, complementary to signaling by mechanical loading.
In a mouse model of deep penetrating bone fracture and muscle
injury, the exogenous administration of recombinant myostatin
significantly reduced bone callus formation, while increasing
fibrous tissue in skeletal muscle (87). Furthermore, assays
using conditioned media coming from C2C12 cultured
myotubes demonstrated that skeletal muscle-secreted factors
protect the osteocytes against apoptosis evoked by
glucocorticoids, by activating the b-catenin pathway (89). In
the opposite way, conditioned media derived from osteocytes
evokes calcium transients and myogenesis of a C2C12 cell line,
Frontiers in Endocrinology | www.frontiersin.org 6
mimicked by the bone-released factor prostaglandin E2
(PGE2) (81).

Biochemical Muscle-Bone Crosstalk
in the Masticatory System—From In Vitro
to Preclinical Evidence
As previously described, the muscle-bone relationship in the
masticatory system has been mostly studied from a
biomechanical perspective. However, differentiating the
mechanical component and the biochemical signaling by
secreted molecules is not straightforward. Nowadays, there are
no studies available that address biochemical crosstalk between
muscles and bones in the masticatory system. However, several
molecules described as myokines or osteokines in the
musculoskeletal system of the trunk and limbs have been
reported acting in the masticatory region, allowing to propose
their putative role in bone-muscle communication.

A common crit icism of the idea of biochemical
communication between muscles and bones is that the
molecules released from one of them must pass multiple tissue
barriers to move from one tissue to another. The presence of
physical barriers such as endomysium, perimysium, and
epimysium in muscle and periosteum in bone is always
mentioned. However, it has been demonstrated the presence of
vessels coming from muscle in bone, in direct relation to
osteocytes (3), which would allow a rapid endocrine effect
between them. In particular, the injection of bone marrow
mononuclear cells into rat masseter muscle has been shown to
help repair bone after mid-palate expansion procedures (90).
Therefore, if cell migration between the masseter and the palate
occurs, communication via molecules is highly probable.

Next, we list several molecules well-described as muscle-bone
interactors in the trunk and limbs and analyze the background
suggesting their involvement in the masticatory apparatus.

Myostatin
Myostatin (GDF-8) is a member of the TGF-superfamily. It is
released by muscle cells and acts as an autocrine negative
regulator of muscle mass (91). An increase in myostatin levels
is related to conditions of skeletal muscle injury, disuse, or
sarcopenia (92, 93), and limits the bone formation/resorption
index (94). In contrast, reduction of myostatin expression by
using genetic approaches or pharmacological inhibitors highly
increases skeletal muscle mass, bone formation, and bone
regeneration (95–98). The effect of myostatin on bone
remodeling has historically been attributed to its direct effect
on muscles and their biomechanical role on the skeleton.
However, it is currently known that myostatin has a direct
impact on bone cells, such as the acceleration of osteoclasts
formation evoked by RANKL (99) and the inhibition of
osteoblasts differentiation by controlling the content of the
exosomes derived from osteocytes (74). This is why myostatin
has emerged as one of the candidates in muscle-bone crosstalk.
Knockout mice lacking myostatin, called “mighty mice,” have
higher morphologic dimensions of the mandibular condylar
process, corpus, and symphysis (100). Moreover, they have
March 2021 | Volume 11 | Article 606947
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increased mineralization at the corpus (101), as well as in the
condylar subchondral bone and mandible neck (102). Myostatin-
deficient mice have longer and “rocker-shaped” mandibles, with
shorter and wider crania compared to controls (103).

Insulin-Like Growth Factor 1
IGF-1 is mainly produced in the liver, but it is also expressed in
skeletal muscle and highly increases after exercise (104). In
addition, IGF-1 is the main growth factor in the bone matrix
(105); it is expressed by osteocytes and upregulated in response
to mechanical loading (106). It is also well known that IGF-1 is a
relevant anabolic factor in muscle and bone and has been
proposed as a potential muscle- bone crosstalk molecule (107).
Several functional changes in skeletal muscle, such as unloading,
overloading, or denervation, modify the expression of proteins of
the IGF-1 signaling pathway, which relates to changes in muscle
fiber type (104, 108). When rats are fed with a soft diet
immediately after weaning, the mRNA levels for IGF-1, IGF-2,
IGF receptor (IGFR) 2, IGF binding proteins (IGFBP) four and
six in masseter muscle are reduced (109). Furthermore, in the
masseter muscles of mice feeding a soft diet after weaning, there
is a reduction in IGF-1, IGF-2, and IGFBP5 expression (110). In
parallel, murine models of masticatory reduction through soft
diet consumption show alterations in morphology and molecular
markers in masseter muscle and mandible (Table 1, Figure 4). A
decrease in masseter muscle activity has been reported (114,
115). Furthermore, a reduction in masseter muscle mass and
fibers diameter have been demonstrated in rats (110, 117) and
mice (111, 118, 124) after soft-diet consumption. MyHCIIB (fast
glycolytic) expression levels are increased in a 580%, and
MyHCIIA (fast-oxidative) mRNA levels are reduced in a 70%
in rats fed with a soft diet (109), consistent with observed in all
muscle disuse models. It has been established that the increased
expression of genes related to hypercatabolism works as a
molecular marker of muscle atrophy. Of these, the most
studied are the ubiquitin ligases muscle RING finger 1 (Murf1)
and muscle atrophy F-box (MAFbx or Atrogin), relevant
components of the ATP-dependent ubiquitin-proteasome
pathway (130). We have recently reported an increase in
atrophy markers Atrogin and Murf in the masseter muscle of
adult mice, as early as 2 days after start eating a soft-diet (4- and
20-fold increase, respectively). After 30 days of consuming the
soft diet, the levels of Atrogin and Murf expression were
increased by 35- and 150-fold, respectively, compared with
mice eating regular pellets (118, 124). In mice and rats, the
soft-diet consumption modifies both mandible and condylar
morphology, by reducing mandible ramus height and
robustness and condylar width (54, 57, 113, 115, 117). A
reduction in bone volume fraction of the mandibular condyle
and masseter muscle attachment sites have been observed, as well
as a reduction in articular cartilage thickness (112, 115, 116, 131).

On the other hand, it has been recently demonstrated that a
mouse model of increased mastication by hard-diet consumption
shows raised levels of IGF-1 and a decrease in sclerostin expression
in osteocytes. In this model, an increase in bone formation at the
enthesis of the masseter muscle was observed (132).
Frontiers in Endocrinology | www.frontiersin.org 7
Then, the IGF-1 signaling either decreases or increases after
hypo- or hyperfunction of the masticatory system, respectively.
IGF-1 is expressed by both the masseter muscle fibers and
mandibular osteocytes, which makes it a strong candidate for
mediating muscle-bone crosstalk in this territory (Figure 4).

Interleukin-6 (IL-6)
IL-6 family of cytokines comprises ten members, such as IL-6,
IL-11, leukemia inhibitor factor (LIF), and oncostatin M
(OSM). IL-6 synthesis and release have been historically
related to immune cells, for mediating B- and T-cells
development with a pro-inflammatory role (133). However,
nowadays, it is known that there are several sources of IL-6,
such as epithelial cells, fibroblasts, osteoblasts, synovial cells,
cancer cells, and skeletal muscle fibers, leading to either pro- or
anti-inflammatory events (134, 135). IL-6 is a 26 kDa
glycopeptide that binds a specific IL-6 receptor (IL-6R, either
membrane-associated or soluble (sIL-6R)) (134). IL-6 was the
first molecule defined as “myokine” when Pedersen and
colleagues demonstrated a link between IL-6 and exercise
(136). IL-6 is a myokine released from skeletal muscles during
exercise, with a plethora of physiological effects in autocrine,
paracrine and endocrine ways (135, 137, 138). The magnitude of
the plasma-IL-6 increase depends on the exercise duration,
intensity, and muscle mass involved. Plasma levels of IL-6
increase up to 100-fold after exercise, without any sign of
muscle damage, nor an associated inflammatory response.
Furthermore, the concentration of IL-6 in the interstice of the
exercised muscles, measured by microdialysis, is up to 100 times
higher than the plasma concentration, suggesting a possible local
role (139).

IL-6, in an autocrine-loop, improves insulin sensitivity in
skeletal muscle cells for increasing glucose uptake (140, 141). In
addition, IL-6 produced in response to strenuous and prolonged
exercises increases satellite cells proliferation, leading to
regeneration of damaged muscle myofibers and hypertrophy
(142, 143). However, a pivotal role of IL-6 in skeletal muscle
has been proposed, being related to both skeletal muscle renewal
and wasting. Under some pathological conditions, IL-6 leads to
muscular atrophy. During cachexia [muscle wasting associated
with underlying chronic diseases such as cancer, chronic heart
failure, and chronic kidney disease (144)] it has been proposed
that increased IL-6 plasma levels mediate proteolysis at the
skeletal muscle in patients. In a mice model of cancer-evoked
cachexia, activation of the IL-6 signaling pathway has been
demonstrated in skele ta l muscles , increasing both
phosphorylation and nuclear localization of STAT3 (145).
Moreover, pharmacological or molecular blockade of the IL-6/
STAT3 signaling pathway prevents tumor-induced muscle
atrophy in mice (146). Either IL-6 infusion in wild type mice
or the transgenic mouse models for IL-6 overexpression, evoke
muscle atrophy by reducing protein synthesis and promoting
catabolic pathways (147–149). Several pharmacological therapies
targeting the IL-6 signaling pathway, mainly by using anti-IL-6
or anti-IL-6R antibodies or blockers, have had preventive effects
in cancer-evoked cachexia (150, 151), restored muscle function
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TABLE 1 | Summary of adaptations in the masseter muscle and mandible in murine models of masticatory hypofunction.

A. Soft diet consumption

Reference Effect on masseter Effect on mandible Myokines/Osteokines

Vilmann et al
(111).

↓ Fibers diameter

Saito et al (109). ↓ Type IIA fibers
↑ Type IIB and type IIX fibers

↓ IGF-1 and IGF-2 expression

Urushiyama et al
(110).

↓ Muscle mass
↓ Fibers diameter

↓ IGF-2 expression

Tanaka et al
(112).

↓ Degree of mineralization in the trabecular
bone of the mandibular condylar process

Odman et al
(113),

↓ Posterior height of the mandibular corpus
and the height of the angular process

Kawai et al
(114).

↓ Muscle activity
↓ Type IIA fibers
↑ Type IIB fibers
↓ Cross-sectional area of type IIB and IIX fibers

Hichijo et al
(115).

↓ Muscle activity ↓ Condylar articular cartilage thickness
↓ Mandibular ramus height

Hichijo et al
(116).

↓ BV/TV of the mandibular condyle and the
masseter attachment sites

Spassov et al
(54).

↓ Muscle mass Horizontally-oriented coronoid process and
smaller mandibular condylar process articular
surface

Shi et al (117). ↓ Muscle mass ↓ Tb.Th and Tb.N of the mandibular condylar
process
↓ Condylar articular cartilage thickness

Rojas-Beato
et al (118).

↓ Muscle mass
↑ Atrophy markers (Atrogin/MuRF)

↑ IL-6 expression and synthesis

B. Masseter muscle intervention with BoNTA

Reference Animal
(age)

Effect on masseter Effect on mandible Myokines/Osteokines

Tsai et al (119). Male rats
(4 wks)

↓ Muscle mass ↓ Total mandibular length

Tsai et al (120). Male rats
(8 wks)

↓ Muscle mass ↓ Mandible dimensions, BMD, Cortical Bone
Thickness and Trabecular Bone Area to
Total Bone Surface

Tsai et al (121). Male rats
(10 wks)

↓ Muscle activity (transient, up to 4 wks)

Kün-Darbois et
al (122).

Male rats
(18 wks)

↓ B.Ar/T.Ar of the alveolar and the
mandibular condylar process

Dutra et al (123). Female mice
(5 wks)

↓ BV/TV, Tb.Th, width and tissue density of
the mandibular condylar process
↑ Apoptosis and ↓ proliferation in both
subchondral bone and articular cartilage of
the mandibular condylar process

Shi et al (117). Female rats
(5 wks)

↓ Muscle mass ↓ BV/TV, Tb.Th, Tb.N, width and length of
the mandibular condylar process
↓ Condylar articular cartilage thickness
↑ Tb.Sp of the mandibular condylar process

Balanta-Melo et
al (50).

Male mice
(8 wks)

↓ Muscle mass
↓ Fibers diameter
↑ Atrophy markers (Atrogin/MuRF) and
Myogenin mRNA expression

↓ B.Ar/T.Ar and Tb.Th of the mandibular
condyle

↑ RANKL mRNA expression in the
mandibular condylar process

Balanta-Melo
2018b (124).

Male mice
(8 wks)

↑ IL-6 expression

Balanta-Melo et
al (51).

Male mice
(8 wks)

↓ Muscle mass ↓ BV/TV, Tb.Th and shape changes of the
mandibular condylar process

Balanta-Melo et
al (125).

Male mice
(8 wks)

↓ BV/TV and Tb.Th in the middle portion of
the mandibular condylar process
↓ BMD of the mandibular condylar process

(Continued)
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in a mouse model of muscular dystrophy (152), and ameliorated
muscle atrophy induced by tail suspension in mice (153).

In bone physiology, IL-6 also shows a dual role. IL-6 influences
both osteoclasts and osteoblasts differentiation through
contradictory mechanisms. It sustains bone formation, but it also
drives bone loss in various osteolytic pathologies (134). Osteoblasts
express low levels of IL-6R; therefore, sIL6R is required for
maximum IL-6 effects. IL-6 family members increase osteoblasts
markers expression andmatrix mineralization nodules, all mediated
through the STAT3 activation (154, 155). In contrast, IL-6 type
cytokines (IL-6, IL-11, LIF, and OSM) inhibit bone formation in
vitro, with potent pro-apoptotic effects, all mediated by PKCd and
ERK1/2 pathways. IL-6 clearly stimulates the osteoblastic
production of RANKL and PGE2, both involved in differentiation
and activation of osteoclasts; this has been described as the critical
event leading to pro-resorption action evoked by IL-6, and is
mediated by STAT3 signaling (156–158). In contrast, other
research groups have described that IL-6 inhibits osteoclast
formation and bone resorption in pre-osteoclasts primary cultures
or cell lines (159, 160). By using genetic strategies, it has been
demonstrated that the IL-6 deficient mice have increased bone
formation, whereas IL-6 overexpression showed a decrease in
osteoblasts and osteoid, but also in osteoclasts and bone
resorption. Then, it has been proposed that IL-6 could contribute
to bone turnover in vivo (134). An essential role of IL-6 in
osteoarticular pathologies has been established. IL6-/- mice are
protected from joint inflammation and destruction in a mouse
model of arthritis, and from bone loss evoked by estrogen depletion.
Inhibition of IL-6R with the drug Tocilizumab improves the clinical
response and suppresses the biochemical markers of osteoclast-
mediated bone destruction in patients with rheumatoid arthritis
(161, 162). In contrast, IL-6 stimulates fracture healing and bone
resistance (163). All of this data suggests that IL-6 can lead to bone
formation or resorption, depending on its pathophysiological
context. The role of IL-6 in bone turnover is then indisputable;
however, it is not easy to directly associate it to a specific effect, due
to it appears as a double-edged sword.

At the masticatory system, the role of IL-6 in muscle
homeostasis has been demonstrated. An increase in masticatory
activity in a mice model of restrained/gnawing raises IL-6 mRNA
Frontiers in Endocrinology | www.frontiersin.org 9
and protein levels in the masseter muscle. The increase in IL-6
production and release is dependent on a previous rise in IL1a-b,
and then promotes the glucose uptake in the masseter muscle.
Authors suggest that a highly coordinated loop happens, where
masseter muscle activity releases some myokine that “calls to” IL-1
positive cells around blood vessels; then, IL-1 evokes IL6
expression and release from masseter muscle, improving the
glucose homeostasis and muscle performance and preventing
muscle fatiguability (164). Ono et al. also reported an increase in
IL-6 in rat masseter muscle when stimulated electrically in situ
(100 Hz for 200 ms, 800 ms between stimulations, 10-30-60 min
total stimulation time) (165). In masseter muscles isolated after the
electrical stimulation protocol, they observed a 3-fold increase in
IL-6 mRNA levels, with no changes in IL-1 bmRNA levels. These
authors propose that considering that IL-1 b is a well-known pro-
inflammatory cytokine, the increase in IL-6 in masseter muscle
would not respond to inflammatory infiltration, but a local
synthesis in muscle fibers. When carrageenan was directly
injected in rat masseter muscles, which is an inductor of local
acute inflammation, both IL-6 and IL-1 bmRNA levels increased.
When the electrical stimulation was performed after muscle
contraction blockade with dantrolene, the increase in IL-6
mRNA was blocked, suggesting that muscle contraction is
relevant to evoke IL-6 expression. The authors reinforce the idea
that masseter muscle contraction stimulates IL-6 expression,
independent on inflammation processes (165).

Some of us have recently demonstrated that electrical
stimulation of isolated masseter muscle in vitro (20 Hz, 270
pulses, 0.3 ms each), resembling motoneuron stimulation, evokes
an increase in IL-6 mRNA expression, as well as IL-6 protein
synthesis and release (118). Thus, masseter muscle synthesizes
and releases IL-6 during activity. However, as previously
described, IL-6 has a pivotal role, as it has either anabolic or
catabolic effects in the musculoskeletal system. We have recently
demonstrated basal increases in IL-6 production and secretion in
mouse models of masseter muscle atrophy. In the previously
described model of adult mice consuming a soft diet, a 2-fold
increase in IL-6 mRNA was observed in the masseter muscle, as
early as 2 days after soft-feeding. Two weeks later, resting levels
of IL-6 mRNA and protein increased 12-fold and 2-fold,
TABLE 1 | Continued

A. Soft diet consumption

Reference Effect on masseter Effect on mandible Myokines/Osteokines

Dutra and Yadav
(126).

Female mice
(6 wks)

↓ BV/TV and articular cartilage thickness of
the mandibular condylar process (not
transient, up to 8 wks)
↑ Apoptosis in articular cartilage of the
mandibular condylar process

Vásquez et al
(127).

Male mice
(8 wks)

↓ Muscle mass
↓ Fibers diameter
↑ Atrophy markers (Atrogin/MuRF) and
Myogenin mRNA expression

↑ IL-6 expression

Animal (age)

B. Masseter muscle intervention with BoNTA
M

Evidence regarding morphological and biochemical changes in the masseter muscle and/or the mandible in murine models of soft-diet consumption (A) or masseter paralysis evoked by
BoNTA injection (B) are listed. Changes in expression of molecules classically described as myokines or osteokines are highlighted.
wks, weeks; mo, months; BV/TV, bone volume fraction; Tb.Th, trabecular thickness; Tb.N, trabecular number; Tb.Sp, trabecular space; B.Ar/T.Ar, bone area per tissue area; BMD, bone
mineral density; IGF, Insulin Growth Factor.
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respectively, compared with mice eating regular pellets (118, 124,
166, 167). Thus, IL-6 is highly overexpressed in a mouse model of
masseter muscle atrophy by underuse. We also developed a
mouse model of unilateral injection of Botulinum Toxin type
A (BoNTA) in the masseter muscle, specifically to address
putative alterations in the associated bone (mandibular
condylar process) evoked by muscle paralysis. This is highly
relevant in dentistry because BoNTA is used as an off-label
therapeutic tool for the management of several TMDs (125, 168).
In adult mice, we injected the right masseter with 0.2U/10 µl
BoNTA, and the left masseter with saline solution. As early as 7
days after the intervention, an increase in molecular markers of
muscle atrophy (Atrogin and Murf1) was observed, with
histological signs of atrophy after 14 d (50, 127, 167, 169). A
reduction in masseter muscle activity, muscle mass and fibers
diameter have also been observed after BoNTA injection in
masseter muscles of rats and mice (50, 117, 119–121, 170).
Interestingly, we demonstrated an increase in IL-6 mRNA
levels in muscles as early as 2 days after BoNTA injection (50,
127, 167, 169). Just 2 days after BoNTA injection in masseter
muscle, a significant increase in a molecular marker of bone
resorption (RANKL) was also observed in the ipsilateral
mandibular condylar process. Two weeks after BoNTA
injection, qualitative bone loss was detected in the right
mandibular condyle (BoNTA-side), with highly impaired bone
parameters detected by microcomputed tomography (µCT). In
contrast, contralateral saline-injected masseter muscle and its
Frontiers in Endocrinology | www.frontiersin.org 10
adjacent condylar process remained as healthy as that in control
untreated mice (51, 125). Several other authors have observed
severe damages in mandibular morphology and microstructure
after BoNTA injection in masseter muscles of murine, with high
impact in the articular cartilage and subchondral bone (117, 119,
120, 122, 123, 126, 170). Then, BoNTA injection evokes both
muscle atrophy and bone loss at the mandibular condylar
process (as summarized in Table 1 and Figure 4). We are
currently studying the putative role of IL-6 myokine in both
muscle atrophy and bone loss evoked by BoNTA injection.
Taken together, these results support the idea that IL-6 is
released from masseter muscle either during activity and
during paralysis/atrophy, reinforcing its dual role in physiology
and pathology of the musculoskeletal system.

Interestingly, IL-6 level at the synovial fluid has been widely
associated with TMD (171). IL-6 level is undetectable in synovial
fluid from healthy controls (172, 173), but it is increased in that
from patients with chronic TMD (174). Moreover, in TMD
patients, IL-6 level at the synovial fluid is significantly higher
in the joints with bony changes in the condylar processes than
when these are not affected (175). Then, IL-6 could be associated
with bone remodeling during TMDs. It has always been
considered that, in TMD, the IL-6 at the synovial fluid comes
from synoviocytes, chondrocytes, or inflammatory cells as the
main source. But, depending on the TMD-type, masticatory
muscles should be a new source to keep in mind, considering
its great contribution to the biomass of the system.
FIGURE 4 | Hypothetical model of cross-communication between muscles and bones at the murine masticatory system. Here we relate in a graphic outline the
main changes described in rat/mouse models subjected to a reduction (Soft Diet) or an increase (Hard Diet) in diet consistency, as well as those described after
paralysis of the masseter muscle by injection of botulinum toxin type A (BoNTA). In the hypofunctional models (Soft-diet, BoNTA), an increase in interleukin-6 (IL-6)
expression and release, as well as a reduction in insulin-like growth factor 1 (IGF-1) in masseter muscle could mediate the muscle atrophy and bone loss, together
with the reduced mechanical stimulation. In addition, the increased levels of RANK ligand (RANKL) in mandibular condyle after BoNTA injection could mediate both
the osteoclastogenesis leading to bone loss and the muscle atrophy observed. On the other hand, consumption of a hard diet evokes an increase in IGF-1
expression in mandibular osteocytes, which could act as an anabolic factor in muscle and bone, leading to increased muscle mass and bone formation described in
this model. Technical information: 3D rendering of murine skull, mandible, and masseter muscles corresponds to PTA contrast-enhanced high-resolution microCT

data taken at the Max Planck Institute for Evolutionary Anthropology (Leipzig, Germany). Skull and mandible segmented with Avizo 9.2 (Thermo Scientific™, USA);
masseter muscles segmented with the Biomedical Segmentation App (Biomedisa) (128). 3D rendering of hard and soft tissues performed with DRAGONFLY 4.1
(Object Research Systems, Canada). Image built using data from an individual in Balanta-Melo et al. (129).
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MUSCLE-BONE CROSSTALK AT THE
MASTICATORY SYSTEM IN HEALTH
AND DISEASE—MOVING TO CLINICAL
EVIDENCE

In the present section, we discuss clinical data suggesting a
biochemical communication between muscle and bone at the
masticatory system. To this end, we reviewed the evidence on
several muscular pathologies or clinical interventions leading to
bone remodeling, as well as bone pathologies leading to muscle
remodeling. We focus on the presence of molecules described in
the previous sections as myokines or osteokines.

Muscular Conditions With Potential Bone
Implications in the Masticatory System
During prolonged tooth clenching, the masseter muscle exhibits
a lower recovery capacity for tissue reoxygenation (176, 177),
which favors the development of skeletal muscle inflammation.
Britto et al. have demonstrated that hypoxia-evoked
inflammation leads to skeletal muscle hypertrophy through the
IL‐6/STAT3 pathway in human legs (178). These results may
explain the potential mechanism behind the masseter
hypertrophy in patients with parafunctional masticatory
activity (179, 180). The expression of IL-6 is also increased
during other inflammatory conditions of the masticatory
system, such as myofascial pain (181), which is part of the
group of craniofacial musculoskeletal diseases known as TMDs
(182, 183). Increased levels of IL-6 have been reported in
masseter muscles of adult women with myofascial pain
compared to healthy controls, levels that are even higher
during tooth clenching (184). Considering the dual role of IL-6
in bone formation and resorption, is highly possible that muscle-
derived IL-6 mediate mandibular bone remodeling observed
in TMDs.

Masseter hypertrophy is often associated with parafunctional
activities such as bruxism (179), but it also may have an
idiopathic background (i.e., benign masseter hypertrophy)
(185). In both cases, the aesthetic impairment caused by the
increase of masseter volume mass can be solved either using
surgical techniques or by inducing muscle atrophy with
botulinum toxin type A (BoNTA) (186, 187). The BoNTA is a
neurotoxin that blocks the release of neurotransmitters in the
skeletal muscle, leading to hypofunction and atrophy (188).
Therefore, BoNTA-induced atrophy is effective in reducing the
thickness of the masseter muscle (189). This desired aesthetic
outcome, however, may involve deleterious consequences on
mandibular bone homeostasis (51, 125). In patients that
underwent repetitive BoNTA injections to treat masseter
hypertrophy, a reduction of bone volume at the mandibular
angle was found after 6 months (190). Another study found bone
loss in the anterior portion of the mandibular condylar process 1
year after a single injection of BoNTA in both the masseter and
the temporalis muscles (191). Using a similar design, a
retrospective study identified in adult women a cortical bone
thinning in the mandibular condylar processes after two BoNTA
injections within a 6-month interval (192). In this context, the
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BoNTA intervention resulted in a more deleterious effect at the
cortical bone of the mandibular condylar process of
postmenopausal women, when compared with premenopausal
women (192). In adult women with myofascial pain, a
randomized clinical trial demonstrated a significant reduction
of the volume of the mandibular condylar process at 3 months,
after a high BoNTA dose injection in both the temporalis (25 U)
and the masseter (75 U) muscles but not at lower doses (20 U
and 50 U, respectively) (193). These results are consistent with a
cohort study, which showed no bone loss at the mandibular
condylar process in adult women with myofascial pain that
underwent BoNTA interventions under 40 U in the masseter
muscles when compared to match control population (194).
These results support the hypothesis that masticatory muscle
hypofunction negatively impacts mandibular bone homeostasis
in humans, especially at the condylar process, when high doses of
BoNTA are used. Based on our results in a mouse model, it is
advisable to characterize how the negative effect of BoNTA-
induced masseter atrophy on the mandibular bone occurs. Is it
limited to a biomechanical interaction, or does it respond to
alteration on the secretory activity of soluble factors from the
injected muscles, such as IL-6? The answer to this question may
help to develop strategies to avoid BoNTA’s deleterious effect on
the mandible.

Bone Conditions With Potential Muscle
Implications in the Masticatory System
As mentioned above, the jaws undergo pathologies that are
specific to them, but they are also affected by more general
conditions such as bone loss during aging (195). Since bone also
works as an endocrine organ (12), pathological conditions that
affect the capacity of the mandibular bone to release osteokines
could also affect muscle-bone molecular crosstalk. Here we
analyze how mandible-changes could lead to masticatory
muscles remodeling during aging, microgravity, and
periodontal disease in humans.

In postmenopausal women, a lower mandibular bone density
and higher plasma levels of osteocalcin were determined when
compared with premenopausal women (195). These results
found as a consequence of aging are consistent with those
identified during space flight conditions (i.e., microgravity)
(196). In adults of both sexes, the use of simulated
microgravity promotes a reduction of bone mineral density in
the mandibular bone and an increase in the plasma and salivary
levels of osteocalcin (197). Interestingly, in an animal study
under microgravity conditions, the masticatory muscles were
not atrophied, in contrast with those from the hindlimbs (198).
The fact that the activity of the masticatory muscles seems not to
be affected by the lack of gravity may shed light on their
structural and physiological differences to postcranial muscles.

Osteocalcin has been linked to muscle hypertrophy (12). In a
mouse model of forceful mastication, an increase of osteoblasts
positive for osteocalcin in the enthesis between the masseter and
mandibular bone was observed (132). Even more, recently has
been described that a muscle-bone axis comprising IL-6 released
by muscles and osteocalcin released and processed by
osteoblasts/osteoclasts is relevant to improve muscle
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performance during exercise (80). It seems contradictory, then,
to observe increased plasma levels of osteocalcin in older adults
and hypogravity models, which present a clear decrease in
muscle mass in the trunk and limbs. One possibility is that,
since osteocalcin is regulating the levels of IL-6 secreted by the
muscle, it may also promote the adverse catabolic effects of IL-6
on muscles and bones. Probably a fine-tuned muscle-bone axis is
controlling anabolic or catabolic final effects, depending on
myokines/osteokines concentrations, or modulated by
additional microenvironment stimuli. It is still unknown how
these molecular pathways differentially affect masticatory versus
trunk and limbs musculoskeletal system. The existence of
features that appear contradictory, such as bone loss with an
increased osteocalcin production and a preserved muscle
activity, presents an exciting opportunity to investigate the
functional peculiarities of the musculoskeletal components of
the masticatory apparatus.

In addition, while mandibular osteocytes are activated during
high load masticatory activity (132), the aging process seems to
affect their number only in the bones of the hindlimbs but not in
those of the craniofacial skeleton, including the mandible (199,
200). In vitro, it has been shown that osteocytes also produce
osteokines that impair skeletal muscle homeostasis (12, 201).
One of these osteocyte-derived osteokines is sclerostin (202).
Since masticatory function suppresses the release of sclerostin
from mandibular osteocytes (132), a reduced masticatory
function during aging increases the levels of this osteokine,
which may impact the masticatory muscles negatively through
a molecular (and not purely mechanical) mechanism.

The inflammatory periodontal disease that causes alveolar
bone loss (i.e., periodontitis) increases the level of osteokines like
osteocalcin in the gingival crevicular fluid (GCF) of
postmenopausal women (203). This increase, however, was not
found in the saliva or plasma of the periodontally ill patients
(203). Moreover, there is a lack of correlation between the
presence of systemic bone disease (osteopenia and
osteoporosis) and osteocalcin levels in either salivary, plasma
or GCF samples (203–205). Another recognized osteokine,
sclerostin, is also increased in the GCF of periodontally ill
patients (12, 206). In bone tissue, sclerostin is a negative
regulator of bone mass through the inhibition of the Wnt
signaling in the osteoblast lineage (206). The osteoblast
population of the human mandible, however, exhibits a higher
Wnt signaling response to external vibration when compared
with osteoblast from the iliac bone (207). In adults with
moderate to severe periodontitis, a significant increase of
sclerostin in the GCF was determined when compared with
healthy patients (208). In contrast, Wnt proteins levels in the
GCF were no significatively different between periodontally ill
and healthy patients but were increased in individual sampled
sites (periodontally compromised) when compared with healthy
sites (208). Taken together, the results of this clinical study
suggest both sclerostin and Wnt proteins as a promising
diagnostic tool for periodontitis (208). Since sclerostin has
been presented as an osteokine with catabolic potential on
muscle cells, these results allow us to hypothesize a molecular
Frontiers in Endocrinology | www.frontiersin.org 12
(and not purely mechanical) link between periodontitis and the
reduction of the masticatory muscle thickness that has been
found in periodontally ill patients (209).

The osteocyte population is a crucial regulator of both
sclerostin and RANKL local expression during active
periodontal disease (210). The sclerostin and RANKL are
negative bone mass regulators by inhibiting Wnt signaling and
by inducing osteoclastogenesis, respectively (210–212).
Specifically, the receptor of RANKL, RANK, is expressed in the
skeletal muscle tissue (213) and a deleterious effect of RANKL on
muscle homeostasis has been suggested (212, 214). Although
periodontitis is known to increase the systemic inflammatory
burden affecting, e.g., the cardiovascular system (215), it is
reasonable to hypothesize that inflammatory diseases of the
jaws can affect masticatory muscle homeostasis, as these are
anatomically closer and linked through the vascular network.
CONCLUDING REMARKS
AND FURTHER PERSPECTIVES

In this review, we summarized and discussed the available
information regarding the muscle-bone interaction in the
masticatory apparatus, with an emphasis in the molecular
crosstalk between both tissues, an emerging research area that
shows promising applications in clinics. The structures of the
masticatory apparatus present biochemical, structural, and
functional characteristics that make them physiologically very
different from the musculoskeletal components of the trunk and
limbs. The bones in the masticatory apparatus also have a high
rate of remodeling, not only during development and postnatal
growth but well into adulthood. In addition, an essential
morphofunctional relationship between the muscles and bones
has been described in this region.

To date, the approach to study the muscle-bone crosstalk in
the masticatory apparatus has been mostly biomechanical. Here,
we present the evidence suggesting that the communication
between the jaws and masticatory muscles also occurs via
secreted molecules, which opens a new field of research.
Molecules defined as “myokines” (e.g., IGF-1 and IL-6) or
“osteokines” (eg, Osteocalcin, Sclerostin, RANKL) have been
described as expressed in the masticatory apparatus. The levels
of these mediators are altered both in animal models of use/
disuse of the masticatory apparatus, as well as in
pathophysiological conditions in humans. Due to the large
biomass component provided by the masticatory muscles, it is
highly probable that they contribute through myokines in the
pathogenesis of temporomandibular disorders. Molecules such
as IL-6, which have been reported elevated in the synovial fluid of
individuals affected by TMDs, and have been essentially
associated with chondrocytes or inflammatory cells, could well
be derived from masticatory muscles. Likewise, the molecules
that mediate bone resorption associated with periodontitis could
cross-affect masticatory muscles and contribute to the loss in
their volume.
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It is already challenging to experimentally separate the
biomechanical from the biochemical component in the
musculoskeletal system, but even more so in the masticatory
apparatus, which due to its structural characteristics makes it
difficult to work with isolated cells. For example, the culture of
isolated fibers is of common use to study limb muscles. It is,
however, very complex in multipennate muscles such as the
masseter, with fibers of very different lengths, orientations, and
firmly attached to bone and tendons. To our knowledge, obtaining
isolated masseter muscle fibers has been briefly described in only
one article (216), but to date, no cellular or biochemical studies have
been reported that use them in vitro. Likewise, obtaining bone
precursors for in vitro cultures, which is easy from long bones such
as the femur or the tibia, is operationally muchmore challenging in
the mandible (217). It therefore remains a challenge to find
experimental designs that allow for evaluating the biochemical
muscle-bone crosstalk in the masticatory apparatus. Probably,
genetic manipulation approaches, directed to proteins in specific
cell types, will be relevant in this mission.

The understanding of how the cells of themasticatory apparatus
(muscle, bone, cartilage, immune) communicate through
molecules, both in health and disease, will contribute to the global
understanding of how the masticatory apparatus remodels. More
importantly, it will allow for having precise therapeutic targets,
focused not only to alleviate the symptoms but to tackle some
prevalent orofacial pathologies from their bases.
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