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Porto, Portugal, 3 Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Porto, Portugal, 4 Institute of
Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal, 5 Department of General
Surgery, Centro Hospitalar de Entre o Douro e Vouga, Santa Maria da Feira, Portugal, 6 Department of Biomedical Sciences,
Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark, 7 Novo Nordisk Foundation
Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen,
Denmark, 8 Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark

Obesity and obesity-related diseases are major public health concerns that have been
exponentially growing in the last decades. Bariatric surgery is an effective long-term treatment
to achieve weight loss and obesity comorbidity remission. Post-bariatric hypoglycemia (PBH)
is a late complication of bariatric surgery most commonly reported after Roux-en-Y gastric
bypass (RYGB). PBH is the end result of postprandial hyperinsulinemia but additional
endocrine mechanisms involved are still under debate. Our aim was to characterize
entero-pancreatic hormone dynamics associated with postprandial hypoglycemia after
RYGB. Individuals previously submitted to RYGB (N=23) in a single tertiary hospital
presenting PBH symptoms (Sym, n=14) and asymptomatic weight-matched controls
(Asy, n=9) were enrolled. Participants underwent a mixed-meal tolerance test (MMTT) to
assess glucose, total amino acids (total AA), insulin, C-peptide, glucagon, glucose-
dependent insulinotropic polypeptide (GIP), glucagon-like peptide-1 (GLP-1), and
neurotensin (NT). We found that hypoglycemia during the MMTT was equally frequent
in Sym and Asy groups (p=1.000). Re-grouped according to glucose nadir during theMMTT
(Hypo n=11 vs NoHypo n=12; nadir <3.05 mmol/l vs ≥3.05 mmol/l), subjects presented no
differences in anthropometric (BMI: p=0.527) or metabolic features (HbA1c: p=0.358), yet
distinct meal-elicited hormone dynamics were identified. Postprandial glucose excursion
and peak glucose levels were similar (p>0.05), despite distinct late glycemic outcomes (t=60
min and t=90 min: p<0.01), with overall greater glycemic variability inHypo group (minimum-
to-maximum glucose ratio: p<0.001). Hypo group meal-triggered hormone profile was
characterized by lower early glucagon (t=15 min: p<0.01) and higher insulin (t=30
min: p<0.05, t=45 min: p<0.001), C-peptide (t=30 min: p<0.01, t=45 min: p<0.001, t=60
min: p<0.05), and GLP-1 (t=45 min: p<0.05) levels. Hyperinsulinemia was an independent
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risk factor for hypoglycemia (p<0.05). After adjusting for hyperinsulinemia, early glucagon
correlated with glycemic nadir (p<0.01), and prevented postprandial hypoglycemia
(p<0.05). A higher insulin to glucagon balance in Hypo was observed (p<0.05). No
differences were observed in total AA, GIP or NT excursions (p>0.05). In sum, after
RYGB, postprandial hyperinsulinemia is key in triggering PBH, but a parallel and earlier rise
in endogenous glucagon might sustain the inter-individual variability in glycemic outcome
beyond the effect of hyperinsulinism, advocating a potential pivotal role for glucagon in
preventing hyperinsulinemic hypoglycemia.
Keywords: glucagon, glucagon-like peptide-1, hyperinsulinemia, hypoglycemia, Roux-en-Y gastric bypass
INTRODUCTION

Bariatric surgery is the most effective long-term treatment for
obesity and related disorders (1). Despite the health benefits from
weight loss surgical interventions, post-bariatric patients
management is essential to avoid nutrient deficiencies as well
as for timely detection of other less frequent surgical or medical
complications (1).

Meal-triggered hypoglycemia can occur after several upper
gastrointestinal surgical procedures (2, 3). A reduction in
postprandial glucose nadir has also been reported after non-surgical
weight loss interventions (4–6). Post-bariatric hypoglycemia (PBH) is
a late complication of bariatric surgery (7), for which there is a lack of
consensus on diagnostic criteria, since etiology is still a matter of
debate (2).

Postprandial hyperinsulinemia is a common finding and
considered to be the ultimate trigger of postprandial hypoglycemia
(7). However, the leading cause for the hyperinsulinemia observed
remains to be elucidated. Structural pancreatic changes, such as
nesidioblastosis, insulinoma or other insulinotropic neuroendocrine
tumors, responsible for autonomous hyperinsulinemia are rarely
found to be the cause (8), although these entities must be ruled out
before assuming PBH diagnosis (9). Alternatively, altered gut
hormone dynamics (10, 11) or lack of putative unidentified “anti-
incretin” factors (12) were also hypothesized to have a role in
triggering the hyperinsulinemic response observed in PBH.

The fact that PBH frequency can be mitigated by dietary
interventions (2, 13, 14) and pharmacological interventions that
reduce carbohydrate digestion or absorption, delay gastro-intestinal
transit time, limit insulin secretion or suppress incretin effects (10,
15, 16), suggests a role for entero-pancreatic hormone dynamics in
this condition.

Thus, the goal of this study was to characterize the entero-
pancreatic hormone dynamics associated with PBH in patients
previously submitted to Roux-en-Y gastric bypass (RYGB).
MATERIALS AND METHODS

Patient Selection
Participants were recruited from our single center cohort of post-
bariatric patients submitted to RYGB by the same surgical team
using a standardized technical procedure as previously described
n.org 2
(17). Patients enrolled in the study (N=23) included subjects that
spontaneously reported autonomic and neuroglycopenic symptoms
suggestive of PBH, (Sym, n=14; reported as “Self-reported
hypoglycemia symptoms” in Table 1), matched to asymptomatic
surgical controls (Asy, n=9) recruited from the patient cohort under
routine follow-up at our center. Reports of sweating, tremor,
palpitations, anxiety, hunger, or paresthesia/tingling were
recognized as autonomic symptoms, while headache, slurred
speech, drowsiness, weakness, visual disturbances, concentration
difficulties, confusion, seizures, or altered consciousness were
assumed as neuroglycopenic symptoms (2). All participants
reporting consistently at least one of the previous symptoms at
enrolment were allocated into the Sym group. Inclusion criteria
comprised previous RYGB surgery, being weight stable—defined as
less than 10% body weight variation over the previous 6 months—
and having an HbA1c <6.5% and fasting plasma glucose <7.0
mmol/l at the time of screening visit. Exclusion criteria were
current pregnancy, taking glucose-lowering drugs or prior
diagnosis of any medical condition that could be responsible for
hypoglycemia after comprehensive workout.

The study protocol was reviewed and approved Local
Institutional Ethics Committee (Comissão de Ética para a
Saúde CHEDV, Epe). Patients provided their written informed
consent to participate in this study. No potentially identifiable
human images or data is presented in this study.

Study Design
After an overnight 12-h fast, patients underwent a mixed-meal
tolerance test (MMTT) with a standardized liquid meal (Fresubin
Energy Drink, 200 ml, 300 kcal [50E% carbohydrate, 15E% protein
and 35E% fat]; Fresenius Kabi Deutschland, Bad Homburg,
Germany), based on macronutrient composition in accordance to
post-bariatric surgery nutritional recommendations, as well as to
allow comparisons with previous studies (15, 17). Patients were
instructed to abstain from alcohol consumption and strenuous
physical activity the day before trial-days. Patients were requested
to slowly drink the liquid meal over the first 15 min of the MMTT
(grey shade in Figures), to assure consistency among subjects.

Peripheral venous blood sampling was performed using
EDTA tubes (S-Monovette® 9.0 ml, K2 EDTA Gel, 1.6 mg/ml,
Sarstedt) at pre-established timepoints before and after the start
of meal ingestion (baseline and 15, 30, 45, 60, 90, and 120 min),
with simultaneous monitoring of pulse and blood pressure (BP).
November 2020 | Volume 11 | Article 608248
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Samples were kept refrigerated until separation and plasma was
stored at -20°C until analyzed.

Study Groups
Study subjects were recruited and initially grouped according to
symptomatic status at presentation (Sym, n=14 and Asy, n=9).
Subjects were then re-allocated into two different groups
according to the glucose profile during the MMTT, into an
Hypo (n=11) group, including patients with a glycemic nadir
<3.05 mmol/l (<55 mg/dl) during the MMTT, and a NoHypo
(n=12) group, comprising the participants with glucose ≥3.05
mmol/l (≥55 mg/dl) during the entire test.

Biochemical Measurements
Whole blood glucose was assessed using a commercially available
glucometer (Freestyle Precision Neo Glucose meter, Abbott,
USA). Plasma insulin and C-peptide levels were measured by
electrochemiluminescence sandwich immunoassay (ECLIA)
(Cobas 8000, model e602, Roche Diagnostics, USA), against
two liquid human serum-based controls: Liquichek™

Immunoassay Plus Control, Level 1 #361 and Level 3 #363,
Bio-Rad for insulin and Liquichek™ Specialty Immunoassay
Control, Level 1 #364 Level 3 #366, Bio-Rad for C-peptide. Other
plasma hormone levels were quantified by radioimmunoassay
(RIA), using analytical methods previously described (17),
namely glucagon, with no cross-reactivity with GLP-1, glicentin,
or oxyntomodulin (antibody code no 4305) (18), total glucose-
dependent insulinotropic polypeptide (GIP) (antibody code no
867) (19), total glucagon-like peptide-1 (GLP-1) (antibody code no
89390) (20) and neurotensin (NT) (antibody code no 3D97) (21).
Sensitivity for all assays was below 1 pmol/l and intra-assay
coefficient of variation below 10%. Total amino acids (total AA)
were assayed as previously described (22) in plasma samples from
19 subjects (Hypo n=8 and NoHypo n=11).
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Calculations
Percentage of total weight loss (%TWL) and of excess body mass
index (BMI) loss (%EBMIL) were determined, respectively, as
[(preoperative weight – weight at MMTT) ÷ (weight at MMTT)
x 100] and [(preoperative BMI – BMI at MMTT) ÷ (preoperative
BMI - 25) × 100], with 25kg/m2 as target BMI.

Updated homeostasis model assessment indexes (HOMA2)
were determined using the HOMA Calculator version 2.2.3
(http://www.dtu.ox.ac.uk, accessed April 2018) as surrogate
measures of beta cell function (HOMA2-B) and peripheral
insulin sensitivity (HOMA2-S) and resistance (HOMA2-IR).

A pulse rise greater than 10 beats per minute during the first
30 min of the provocative test was assumed to be a sensitive and
specific early dumping sign (23) and referred to as “Dumping criteria”.

Incremental area under the curve (iAUC) was calculated
using the trapezoidal rule, with deduction of the fasting
hormonal levels from the subsequent time points. To assess
glycemic variability, minimum-to-maximum glucose ratio
(MMGR) was calculated as the ratio from maximum to
minimum glycemic values observed during the MMTT.
Insulinogenic index (IGI) was calculated by the ratio of
incremental C-peptide from fasting to 30 min of the MMTT to
glycemia variation in the same time window. Oral glucose insulin
sensitivity (OGIS) was determined (24, 25) and multiplied with
IGI to calculate the Disposition Index, as a measure of insulin
secretion adjusted for insulin sensitivity. Insulin secretion rate
(ISR) was obtained from C-peptide plasma levels (CV 5%) with
adjustment for sex, age and BMI by ISEC program (26). Insulin
clearance was then retrieved from tAUCISR/tAUCinsulin. Insulin:
glucagon ratio (IGR) was used to assess the variance between
catabolic and anabolic responses to the meal-stimulus (27). A gut
hormone incretin/glucagon ratio was post-hoc computed as the
product of GLP-1 and GIP divided by glucagon levels (GLP-
1*GIP/Glucagon).
TABLE 1 | Anthropometric, demographic and metabolic features of post-RYGB patients according to glucose profile during the MMTT (Hypo and NoHypo).

MMTT result

Hypo NoHypo p value

N (% of total) 11 (47.8%) 12 (52.2%) NA
Sex (male/female) 2/9 2/10 1.000
Age at surgery (years) 40.6 (32.5-48.5) 45.2 (39.0-47.8) 0.294
History of T2DM before surgery (yes/no) 0/11 3/9 0.217
Follow-up time after surgery (years) 5.1 ± 0.6 3.8 ± 0.7 0.159
BMI before surgery (kg/m2) 40.1 ± 1.5 41.5 ± 1.6 0.527
BMI after surgery (kg/m2) 27.6 ± 0.7 28.5 ± 1.0 0.502
%EBMIL (%) 83.2 ± 4.0 81.9 ± 6.1 0.864
%TWL (%) 30.6 ± 2.1 31.0 ± 2.1 0.884
HbA1c (mmol/mol) 34.4 ± 1.3 35.8 ± 1.0 0.365
HbA1c (%) 5.3 ± 0.1 5.4 ± 0.1 0.358
HOMA2-B (%) 77.9 ± 6.7 70.1 ± 5.6 0.376
HOMA2-S (%) 144.2 ± 11.6 152.3 ± 15.6 0.685
HOMA2-IR 0.8 (0.6-0.8) 0.6 (0.5-1.0) 0.618
Self-reported hypoglycemia symptoms (yes/no) 7/4 7/5 1.000
Dumping criteria (yes/no) 11/0 10/2 0.478
November 2020 | Volume 11 | Article
Results are presented as mean ± SEM, median (interquartile range) or proportions. MMTT, mixed-meal tolerance test; Hypo, individuals developing a glucose nadir <3.05 mmol/l during the
MMTT; NoHypo, subjects with glucose levels ≥3.05 mmol/l during MMTT; T2DM, type 2 diabetes mellitus; BMI, body mass index; EBMIL, excess BMI loss; TWL, total weight loss;
HOMA2-B, homeostasis model assessment for b-cell function; HOMA2-S, homeostasis model assessment for insulin sensitivity; HOMA2-IR, homeostasis model assessment for
insulin resistance.
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Statistical Analysis
Statistical analysis was performed using the GraphPad Prism
version 8.0.1 for Windows (GraphPad Software, La Jolla
California USA). Correlations and logistic regressions were
performed with IBM® SPSS® Statistics version 25 for
Windows. Differences between the two groups were considered
statistically significant when p value was below 0.05.

Normality of continuous variables was assessed using the
D’Agostino & Pearson test. For normally distributed variables,
the two groups were compared using unpaired two-tailed t-test
and results are presented as mean ± standard error of the mean
(SEM). Variables that do not follow a normal distribution are
represented as median (interquartile range) and were compared
using Mann-Whitney test. To assess dynamic changes during the
MMTT, changes of hormones and metabolites between time
points were compared using a two-way ANOVA with Sidak’s
post hoc test. Categorical variables are expressed as proportions
and were compared by Fisher’s exact test.

Preliminary bivariate Spearman’s rho correlations were
performed between postprandial hormonal excursions
(glucagon, insulin, GLP-1, GIP, and NT) and glycemic nadir
during MMTT (not-Gaussian distributed). For variables
that correlated with the glycemic nadir (p<0.05), partial
correlations and binary logistic regressions were performed to
assess whether these correlations were independent and to
disclose the potential of hormone excursions to predict
hypoglycemia respectively.
RESULTS

Subject Anthropometric and Clinical
Features
Subject groups initially enrolled on the basis of self-reported
symptoms suggestive of PBH (Sym, n=14) or as asymptomatic
controls (Asy, n=9) presented no significant differences in
anthropometric, demographic and metabolic features
(Supplementary Table 1). Glycemic profiles (iAUC0’-120’:
p=0.214) during the MMTT were not significantly
different between the two participants groups. In addition, the
frequency of postprandial hypoglycemia during the MMTT was
similar in two groups, with 50.0% (7 of 14) of the Sym and 44.4%
(4 of 9) of the Asy individuals developing hypoglycemia
(p=1.000, Supplementary Table 1).

Based on the glycemic response during the MMTT, study
participants were then re-grouped into Hypo group (glucose
nadir <3.05 mmol/l, n=11) or NoHypo (glucose ≥3.05 mmol/l
during MMTT, n=12).

Demographic Data
There were no differences in anthropometric or demographic
features between Hypo and NoHypo subjects. Three individuals
had been diagnosed with type 2 diabetes (T2DM) prior to RYGB
but were in remission and off any glucose lowering medications
at study entry (HbA1c = 5.2%, 5.9%, and 5.5%, 2.1, 2.6, and 8.2
Frontiers in Endocrinology | www.frontiersin.org 4
years after RYGB, respectively). None of the patients with T2DM
prior to RYGB presented glucose nadir <3.05 mmol/l during the
MMTT (NoHypo) (Table 1).

Comparing biochemical profiles ofHypo andNoHypo groups,
there were no differences in fasting glucose, HbA1c levels and
surrogate measures for beta cell function (HOMA2-B), hepatic
insulin sensitivity (HOMA2-S) and peripheral insulin resistance
(HOMA2-IR) (p>0.05, Table 1), which were also within the
normal physiological intervals (28).

Glucose, Total Amino Acids, and Hormone
Profiles During MMTT
Hypo and NoHypo groups presented distinctive glycemic
profiles, particularly at 60 and 90 min of the MMTT (p=0.003
and p=0.002 respectively), with Hypo group presenting a glucose
peak (p=0.049) and nadir (p<0.001) 11% and 38% lower,
respectively. Hypo subjects also presented a 40% higher
glycemic variability (MMGR: p<0.001) (Table 2, Figure 1A).
Total AA excursion during MMTT was not significantly different
in the two study groups (p>0.05) (Table 2, Figure 1B). No
differences in vasoactive response, as assessed by pulse rate and
BP curves, were observed (p>0.05, data not shown).

Hypo and NoHypo groups depicted significantly different
hormone profiles along the MMTT, despite no significant
differences at baseline were observed. Insulin and co-secreted C-
peptide postprandial levels were significantly higher in Hypo group
(insulin t=30min: p=0.015 and t=45min: p<0.001; C-peptide
t=30min: p=0.008, t=45min: p<0.001, and t=60min: p=0.018) and
throughout the MMTT (iAUC: p=0.019), yielding a significantly
higher Disposition Index (p=0.005), IGI (p=0.007), and ISR
(iAUC0’-120’: p=0.002; 15–30 and 30–45 min: p<0.001), even when
adjusted for glucose excursion (ISRiAUC/GlucoseiAUC: p=0.034)
(Table 2, Figures 2B–D). Hyperinsulinemia (insulin iAUC0’-45’),
with plasma insulin peak levels twice higher in the Hypo group
(Figure 2B), was a risk for hypoglycemia during MMTT (binary
logistic regression: p=0.042). Insulin excursion (iAUC0’-45’) was
inversely correlated with glycemic nadir even when adjusted for
the effect of early glucagon excursion (partial correlation:
r=-0.475, p=0.026).

In NoHypo group, peak glucagon levels occurred earlier and
were significantly higher when compared to Hypo ones (15 min:
p=0.002, Figure 2A). Early glucagon excursion (glucagon levels
at 15 min time point of the MMTT) was associated with the risk
of later hypoglycemia (binary logistic regression: p=0.045) and
correlated positively with glycemic nadir, even after suppressing
postprandial hyperinsulinemia effect (partial correlation:
r=0.628, p=0.002).

Higher post-peak GLP-1 levels were observed in Hypo when
compared toNoHypo group (45 min: p=0.049, Figure 3A). There
were no significant differences in GIP (Figure 3B) and NT
(Figure 3C) profiles between the study groups.

IGR was increased throughout the MMTT in the Hypo group
(iAUC: p=0.011, Figure 4A). Peak incretin/glucagon ratio,
computed from GLP-1, GIP, and glucagon levels, was found to
be significantly higher in Hypo group (30 min: p=0.008,
Figure 4B).
November 2020 | Volume 11 | Article 608248
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DISCUSSION

This study provides insights into hormonal dynamics involved in
PBH occurring as a late complication of interventions, as RYGB
(2). During a provocative meal test, a positive correlation
between early postprandial glucagon excursion and later
glycemic nadir was identified, disclosing a potential role for
glucagon in preventing hypoglycemia.

To conduct this study, subjects submitted to RYGB that
spontaneously reported symptoms suggestive of hypoglycemia
and asymptomatic controls underwent a mixed meal test. Our
herein study was designed to assess the hormonal dynamics
prompting hypoglycemia. Hence the test duration was set on
120 min, rather a longer duration that would be required to
assess counterregulatory responses to hypoglycemia (29).
Frontiers in Endocrinology | www.frontiersin.org 5
A glucose cut-off value of 3.05 mmol/l was selected to define
hypoglycemia, in line with previous studies (10, 11, 15). In
response to the meal stimulus, postprandial hypoglycemia
occurred in a similar proportion in Sym and Asy groups, as
previously reported (30). Thus, our findings further support that
the occurrence of reactive hypoglycemia per se during a
provocative meal test is not useful to diagnose PBH in patients
presenting suggestive symptoms.

Diagnosing PBH poses several challenges that span from the
clinical manifestations to diagnostic test selection and interpretation.
The very first obstacle is symptoms under- or mis-reporting, due to
partial overlap with dumping syndrome and/or hypoglycemia
unawareness (31–33). While we have previously shown that self-
reported symptoms compatible with PBH might be useful for PBH
diagnosis when paired along concurrent flash glucose monitoring
TABLE 2 | Meal induced glucose and hormone responses in post-RYGB patients according to MMTT glycemic response (Hypo and NoHypo).

MMTT result

Hypo NoHypo p value

N (% of total) 11 (47.83) 12 (52.17%) NA
Glucose
Fasting (mmol/l) 4.5 ± 0.1 4.7 ± 0.3 0.324
iAUC0’-120’ (mmol/l x min) 223.5 ± 13.2 263.7 ± 27.5 0.214
Peak (mmol/l) 8.5 ± 0.3 9.6 ± 0.4 0.049
Nadir (mmol/l) 2.5 ± 0.1 4.0 ± 0.3 <0.001
MMGR 3.5 ± 0.2 2.5 ± 0.1 <0.001
Total AA
Fasting (µmol/l) 1394 ± 151.7 1396 ± 141.5 0.992
iAUC0’-120’ (µmol/l x min) 92400 ± 16433 95334 ± 12932 0.889
Insulin
Fasting (pmol/l) 40.9 (29.4–45.7) 32.8 (27.2–52.9) 0.576
iAUC0’-120’ (nmol/l x min) 99.1 (60.8–113.8) 45.4 (37.4–53.6) 0.019
IGI 44.4 (32.8–54.6) 24.9 (16.6–36.2) 0.007
OGIS [ml/(min x m2)] 395.9 (380.3–448.1) 401.6 (376.6–424.2) 0.695
Disposition Index 17646.2 ± 1385.6 10848.6 ± 1630.5 0.005
C-peptide
Fasting (pmol/l) 492.3 (435.5–602.9) 505.0 (375.1–544.8) 0.910
iAUC0’-120’ (nmol/l x min) 235.7 ± 17.2 168.4 ± 15.3 0.008
ISR
Fasting [pmol/(kg.min)] 1.7 (1.5–2.0) 1.6 (1.3–1.8) 0.518
iAUC0’-120’ (pmol/kg) 1016 ± 67.3 694.2 ± 60.3 0.002
ISRiAUC/GlucoseiAUC 323.5 ± 23.7 226.3 ± 34.8 0.034
Insulin Clearance
Fasting 3.0 ± 0.2 3.4 ± 0.3 0.369
Postprandial0’-120’ 0.8 (0.7–1.0) 1.2 (0.8–1.7) 0.079
Glucagon
Fasting (pmol/l) 5.8 ± 0.8 6.3 ± 0.8 0.695
iAUC0’-120’ (pmol/l x min) 869.3 ± 121.3 758.3 ± 124.8 0.532
GLP-1
Fasting (pmol/l) 21.1 ± 2.5 14.8 ± 2.4 0.080
iAUC0’-120’ (pmol/l x min) 7717 ± 958.1 6558 ± 725.3 0.341
GIP
Fasting (pmol/l) 4.0 (3.0–6.0) 6.0 (2.6–9.0) 0.384
iAUC0’-120’ (pmol/l x min) 4298 (3353–5689) 3683 (2607–5665) 0.339
Neurotensin
Fasting (pmol/l) 20.0 (18.0–24.0) 20.0 (20.0–27.0) 0.653
iAUC0’-120’ (pmol/l x min) 13440 (8940–20100) 12765 (10774–18764) 0.833
November 2020 | Volume 11 | Article
Results are presented as mean ± SEM or median (interquartile range). Statistically significant differences (p value <0.05) are highlighted in bold. MMTT, mixed-meal tolerance test; Hypo,
individuals developing a glucose nadir <3.05 mmol/l during the MMTT; NoHypo, subjects with glucose levels ≥3.05 mmol/l during MMTT; MMGR, minimum-to-maximum glucose ratio;
Total AA, total amino acids; IGI, insulinogenic index; OGIS, oral glucose insulin sensitivity; iAUC, postprandial incremental AUC; ISR, insulin secretion rate; GIP, glucose-dependent
insulinotropic polypeptide; GLP-1, glucagon-like peptide-1.
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data, caution shall be taken when considering symptoms alone for
PBH diagnosis (33). Our current data reinforces the limited value of
symptom reports, as no correlation was observed between symptoms
and the glucose profile prompted by a standardized meal stimulus.
In the face of our findings, authors advise against establishing PBH
diagnosis solely based on patient symptom reports.

Moreover, postprandial hypoglycemia is highly dependent on
meal composition, size and texture (2, 13). So, despite the use of
standardized macronutrient-balanced meal stimulus, there is no
guaranty that a given meal will be able to replicate the conditions
leading to PBH in each individual patient or provide clinically
useful information.

After this initial observation, subjects were re-allocated according
to glucose profile during the meal test into two new groups
depending on the occurrence of postprandial hypoglycemia or not
(Hypo and NoHypo). No differences in clinical features that could
provide possible explanations for a distinct glucose meal test
response to the same stimulus were found between subjects of
A

B

FIGURE 1 | Peripheral levels of glucose (A) and total amino acids (B), in
post-RYGB patients according to the MMTT response (Hypo and NoHypo).
Data is presented as mean ± SEM. Statistically significant differences are
marked as **p < 0.01.
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FIGURE 2 | Circulating levels of glucagon (A), insulin (B), C-peptide (C), and ISR
(D), in post-RYGB patients grouped according to MMTT response (Hypo and
NoHypo). Data is presented as mean ± SEM. Statistically significant differences are
marked as *p < 0.05, **p < 0.01, and ***p < 0.001. ISR, Insulin secretion rate.
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Hypo and NoHypo groups. Then, the hormone dynamics that
ultimately lead to postprandial hypoglycemia were analyzed.

There are several levels of evidence in support of the role of
gut-hormone dynamics in triggering PBH (7). RYGB produces
major modifications in gut anatomy that invariably increase the
rate of intestinal nutrient exposure (34, 35) and occasionally
interfere with vagus nerve integrity potentially compromising
autonomic pancreatic and gastro-intestinal innervation (36, 37).
In order to minimize the impact of anatomical diversity on gut
hormone responses, only subjects that underwent a standardized
procedure performed by the same surgical team were enrolled in
this study (17). During the meal test, no significant differences in
meal-triggered vasoactive response (pulse and BP, data not shown)
were observed between subject groups. Hence, suggesting no major
variations in gastric emptying rate although not formally assessed.

Nevertheless, subjects with meal-triggered hypoglycemic
response had higher postprandial insulin and C-peptide
excursions, without altered insulin sensitivity or beta-cell function,
thus, reinforcing the role of hyperinsulinism, with peak levels 2-times
higher, as the central mechanism of PBH (8, 10).

Furthermore, our results suggest that a postprandial glucagon
excursion preceding insulin peak might increase glucose levels at
nadir, thus preventing hypoglycemia. Indeed, glucagon was
proposed to be involved in several physiological actions
beyond the classical insulin counter regulatory actions namely
mediating the liver-alfa cell axis (11, 38). Therefore, the
hypothesis that early glucagon response “primes” the liver to
maintain a sustained glucose production relevant at later time
points after the meal stimulus cannot be excluded. Moreover,
when insulin and glucagon levels were combined in the IGR,
lower IGR (27) was observed in the group without hypoglycemia,
suggesting a catabolic status with increased hepatic glucose
output and further stressing hypothesis. In a previous study by
Tharakan et al, higher glucagon levels 30 min after a meal
were associated with higher rates of later postprandial
hypoglycemia, which led the authors to propose that
pancreatic glucagon might contribute to an exaggerated insulin
response (11). However, in our study, an even earlier glucagon
response 15 min after the meal was associated with lower rates of
postprandial hypoglycemia, suggesting a protective role against
hypoglycemia. The fact that the “protective” glucagon peak was
observed 15 min after meal, while in the previous study glucagon
levels were first evaluated only 30 min after the meal, could
provide an explanation for the differences observed.

Still, despite this early glucagon excursion it should be noticed
that a late phase glucagon response to a glucose lowering trend
was also observed, along with insulin, C-peptide and incretins’
hormone suppression, in line with the well described glucagon
counter-regulatory role (10, 38).

After RYGB, the exaggerated postprandial glucagon
excursion in response to a mixed-meal was previously reported
(11, 35, 39). However, the anatomical origin and mechanisms
leading to postprandial glucagon excursion in these patients are
not fully disclosed. In fact, glucagon secretion was expected to be
suppressed by the simultaneous high glucose and GLP-1 levels
(40), although not observed. Post-prandial glucagon could be
A

B

C

FIGURE 3 | Plasma levels of GLP-1 (A), GIP (B), and NT (C), in post-RYGB
patients according to the MMTT response (Hypo and NoHypo). Data is
presented as mean ± SEM. Statistically significant differences are marked as
*p < 0.05. GIP, glucose-dependent insulinotropic polypeptide; GLP-1,
glucagon-like peptide-1; NT, Neurotensin.
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secreted either by intestinal L-cells (38, 41) or by cephalic phase
release from pancreatic alpha cells (42). Indeed, a subset of
L-cells co-secreting GLP-1 and glucagon was identified in
subjects after RYGB, but not before surgery (39). Overall, these
factors could contribute to modify GLP-1 and glucagon secretion
patterns, although these hypotheses require to be confirmed. The
physiological stimulus for postprandial glucagon secretion is also
a matter of debate. In addition to hypoglycemia, amino acids are
known to play a pivotal role in glucagon secretion (38). After
RYGB, earlier intestinal amino acid absorption is reported to
lead to higher and more precocious postprandial amino acid
plasma levels (43). Since no major differences in total amino
acids postprandial profiles were observed between groups, our
data does not support an amino acid contribution for the early
glucagonemic response observed. Nevertheless, specific
glucagonotropic amino acid levels, namely of alanine, tyrosine
Frontiers in Endocrinology | www.frontiersin.org 8
or glutamine, which might provide further insights into amino
acids-glucagon dynamics, were not measured (44). Thus, despite
total amino acid excursions did not provide evidence supporting
a potential role for amino acids in prompting the differential
glucagon excursions, it cannot be ruled out since the individual
amino acids’ levels were not quantified.

The next question is what to expect from a higher glucagon
response. Historically, according to the glucostatic theory of
appetite control, one could predict that postprandial
hyperglucagonemia observed after weight loss would not only
prevent hypoglycemia and raise glycemic nadir, but also reduce
hunger and suppress food intake, thus contributing to sustain
weight loss (5, 6). However, PBH is usually associated with
weight regain (45). Nevertheless, the potential use of glucagon
for treating patients with PBH was tested using low-dose closed-
loop infusion pumps that demonstrated to reduce the rates of
hypoglycemia and prevent rebound hyperglycemia (16).

GLP-1 and GIP are incretin hormones with well-
demonstrated insulinotropic effects (40). In the present study,
to minimize the impact of active hormone levels interindividual
variability derived from variable dipeptidyl peptidase 4 (DPP4)
activity according to individuals’ weight and circulating insulin
levels (46), total GLP-1 and GIP levels were measured. Subjects
that developed postprandial hypoglycemia presented higher
postprandial GLP-1 levels, consistent with some (2, 11) but not
all previous reports (30).

The demonstration that blocking GLP-1 receptor with
exendin 9-39 could mitigate the occurrence of postprandial
hypoglycemia (10, 47) lead the authors to hypothesize that
GLP-1 had a relevant role in mediating PBH. In contrast, in
our study the finding that GLP-1 levels preceding insulin peak
were similar in the two groups does not support a central role for
GLP-1 in triggering the distinct hyperinsulinemic response.
Moreover, no significant correlation between GLP-1 levels and
later hypoglycemia was found. Similarly, no significant
differences in fasting or postprandial GIP levels were observed
between the groups to suggest a direct involvement in mediating
PBH, a finding that is consistent with prior observations (11).
Nevertheless, the GLP-1 insulinotropic potential is well-
established and the possibility that a mismatch between
different hormonal excursions and the timepoints considered
cannot be ruled out and might sustain the similarities observed
for postprandial excursions. Lastly, since GIP was demonstrated
to induce glucagon secretion a potential contribution cannot be
fully excluded nor confirmed (48).

In an attempt to infer the putative impact of the combined
action of the different hormones that influence glucose
dynamics, taking into account the GLP-1 and GIP
insulinogenic action (40) and the counter regulatory effect of
glucagon (38), an incretin/glucagon ratio was computed. This
post-hoc exploratory analysis derived from the hypothesis that
PBH is the end result of the unbalance between early endogenous
glucagon insulin-antagonistic effect and insulinotropic stimuli.
Indeed, our results support our hypothesis by revealing a higher
incretin/glucagon ratio in those patients that develop
postprandial hypoglycemia.
A

B

FIGURE 4 | Insulin:glucagon ratio (A) and incretin:glucagon ratio (GLP-
1*GIP/Glucagon) (B) combining the two major incretin hormones (GLP-1 and
GIP), in post-RYGB patients according to the MMTT response (Hypo and
NoHypo). Data is presented as mean ± SEM. Statistically significant
differences are marked as **p < 0.01. Abbreviations: GIP, glucose-dependent
insulinotropic polypeptide; GLP-1, glucagon-like peptide-1.
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This study presents some limitations that must be
acknowledged. This was an exploratory observational study
which included a relatively small sample of patients submitted
to RYGB at a single hospital institution, therefore limiting data
extrapolations to other types of bariatric surgery interventions or
mechanistic interpretations. Additionally, subjects had no
dietary restrictions imposed on the days prior to the meal
challenge, which could have influenced the meal response.
Moreover, the larger time intervals between hormone assessments
after the 60 min timepoints against the performed in early
postprandial period, in addition to the 120 min for the total
duration of the meal test precluded a more detailed evaluation of
the hormone dynamics. The panel of hormones measured did not
include counter regulatory hormones, such as cortisol and growth
hormone, which could have limited the characterization of all
endocrine pathways involved. Finally, the incretin/glucagon ratio
herein computed for the first time with the rationale of assessing the
balance between hormones known to influence postprandial
glycemia, still requires further validation. Nevertheless, this study
major strength is to provide insights into the early gut-pancreatic
hormone dynamics associated with PBH, unravelling the importance
of glucagon and incretin/glucagon balance, thus setting the grounds
for further research over the molecular pathways leading to PBH.

Our study provides novel insights into the potential role of
glucagon in preventing postprandial hypoglycemia, which may
contribute to devising targeted medical or surgical interventions
to prevent and manage PBH.
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