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Diabetes mellitus (DM) is a highly prevalent chronic disease that is accompanied with
serious complications, especially cardiac and vascular complications. Thus, there is an
urgent need to identify new strategies to treat diabetic cardiac and vascular complications.
Nuclear factor erythroid 2-related factor 2 (NRF2) has been verified as a crucial target for
the prevention and treatment of diabetic complications. The function of NRF2 in the
treatment of diabetic complications has been widely reported, but the role of NRF2-
related epigenetic modifications remains unclear. The purpose of this review is to
summarize the recent advances in targeting NRF2-related epigenetic modifications in
the treatment of cardiac and vascular complications associated with DM. We also discuss
agonists that could potentially regulate NRF2-associated epigenetic mechanisms. This
review provides a better understanding of strategies to target NRF2 to protect against
DM-related cardiac and vascular complications.

Keywords: NRF2, epigenetic modifications, NRF2 activators, diabetic cardiac complication, diabetic
vascular complication
INTRODUCTION

Diabetes mellitus (DM) is a metabolic disorder caused by genetic and environmental factors. DM is
the third-largest non-communicable disease, following only cardiovascular diseases and malignant
tumors (1, 2). The majority of DM-related morbidity and mortality is due to cardiac and vascular
diseases triggered by long-term exposure to high blood glucose (3). These negative effects of
hyperglycemia may persist even after achieving glycemic control, known as “metabolic memory”,
which is related to epigenetic modifications (4, 5). Thus, it is an urgent requirement to find novel
epigenetics-related treatment strategies to prevent and protect against DM-induced cardiac and
vascular complications.

The pathological characteristics of DM and its related complications have been extensively
investigated. Specifically, oxidative stress, apoptosis, and inflammation have been reported to be
involved in the development of DM-induced complications. Notably, oxidative stress is regarded as a
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major factor in the pathogenesis of diabetic complications (6).
Strong evidence indicates that epigenetics plays a significant role in
regulating oxidative stress. Nuclear factor erythroid 2-related factor
2 (NRF2), encoded by nfe2l2 (7), is one of the major regulators of
oxidative stress (8). Numerous studies have explored the key role of
NRF2-related epigenetic modifications in various disease models (9,
10). NRF2-correlated epigenetic modifications have been proposed
to decrease the occurrence and progression of DM-related cardiac
and vascular complications via inhibiting oxidative stress (11, 12).
However, the exact effects of NRF2-related epigenetic modifications
in DM and its related complications require further investigation.
To date, there is limited literature focused on NRF2-related
epigenetic modifications and NRF2 agonists in the treatment of
DM-related cardiac and vascular complications (13–15). The
purpose of this review is to provide a retrospective summary
of NRF2-associated epigenetic modifications in DM-related
cardiac and vascular complications and discuss NRF2 agonists
that could potentially be used to regulate NRF2-associated
epigenetic mechanisms.
THE EFFECTS OF NRF2-RELATED
EPIGENETIC MODIFICATIONS ON THE
REGULATION OF OXIDATIVE STRESS

Many studies have demonstrated that oxidative stress is a major
risk factor in multiple diseases (16, 17). Changes in epigenetic
modifications can control phenotype and progression of diseases
by modulating oxidative stress (18). Here, we review the literature
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regarding the effects of NRF2-related epigenetic modifications on
the regulation of oxidative stress (summarized in Figure 1).

DNA methylation is a dynamically equilibrated process that is
controlled by DNA methyltransferases (DNMTs) and DNA
demethylation enzymes (19). A growing number of studies indicate
that altered DNA methylation of nfe2l2 plays an important role in
regulating oxidative stress induced by various diseases. For example,
in 12-O-tetradecanoylphorbol-13-acetate-induced carcinogenesis of
mouse skin epidermal JB6P+ cells, reduced DNAmethylation of the
first 15 CpG sites in the Nfe2l2 promoter region by taxifolin could
suppress cellular oxidative stress via inhibiting the expression of
DNMT1, DNMT3a, and DNMT3b (18). Consistent with this study,
Zhao et al. reported that sulforaphane plays an antioxidative role by
reducing DNA methylation of the Nfe2l2 promoter through
decreasing the levels of DNMTs in a cellular Alzheimer’s disease
model (20). Conversely, in human ovarian cancer cells, increased
DNA methylation on the NFE2L2 promoter by the combined
administration of trastuzumab and pertuzumab inhibited the
expression of NRF2 and weakened its antioxidant function to
perform an anti-cancer effect (21).

Apart from DNA methylation, histone modifications are key
epigenetic mechanisms in the regulation of oxidative stress, as
they affect gene expression by modifying the chromatin structure
(22, 23). Recently, Yang et al. found that the administration of
corosolic acid has an antioxidant effect in TRAMP-C1 prostate
cells, which might be associated with increased acetylation of
histone H3 lysine 27 (H3K27ac) and decreased trimethylation of
H3K27 (H3K27me3) in the Nfe2l2 promoter region. The authors
proposed that corosolic acid exerts its effect by inhibiting protein
FIGURE 1 | NRF2-related epigenetic mechanisms in the regulation of oxidative stress. Taxifolin and sulforaphane reduce DNA methylation of the Nfe2l2 promoter
region to exert antioxidant effect by inhibiting the expression of DNMTs. Corosolic acid increases acetylation of H3K27 in the Nfe2l2 promoter region to exert
antioxidant effect by inhibiting the expression of HDACs. Dexamethasone enhances GR recruitment to AREs to block NRF2-dependent CBP recruitment and histone
acetylation at AREs, which inhibits the transcriptional activation of NRF2 target genes and reduces its antioxidant function. miR-140-5p, miR-153, and miR-144 bind
to the 3’ UTR of NRF2 to aggravate oxidative stress by inhibiting NRF2 expression. NRF2, nuclear factor erythroid 2-related factor 2; miR, microRNA; DNMTs, DNA
methyltransferases; HDACs, histone deacetylases; GR, glucocorticoid receptor; CBP, CREB-binding protein; ARE, antioxidant response element; SOD, superoxide
dismutase; CAT, catalase; Gclm, glutamate-cysteine ligase modifier; G6pdx, glucose-6-phosphate dehydrogenase X-linked; 3’ UTR, 3’ untranslated region.
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expression of histone deacetylases (HDACs) (9). Another study
using human embryonic kidney (HEK293T) and mouse
hepatocellular carcinoma (Hepalclc7) cells pointed out that
dexamethasone treatment enhanced glucocorticoid receptor
(GR) recruitment to antioxidant response elements (AREs)
region and subsequently blocked NRF2-dependent CREB-
binding protein (CBP) recruitment and histone acetylation at
AREs, which inhibited the transcriptional activation of NRF2
target genes and reduced its antioxidative function (23).

MicroRNAs (miRNAs) are 18–26 bp non-coding RNAs
(ncRNAs) that have been reported to play a significant role in
regulating oxidative stress (24, 25). Moreover, miRNAs have
been verified to be involved in NRF2 regulation. Zhao et al.
reported that miR-140-5p aggravated adriamycin-induced
myocardial oxidative stress by inhibiting the expression of
NRF2 (25). Similarly, miR-153 can increase reactive oxygen
species production to further aggregate oxygen-glucose
deprivation and reoxygenation-induced cardiomyocyte
apoptosis by repressing the NRF2/heme oxygenase-1 (HO-1)
signaling pathway (26). Furthermore, a reduction in NRF2
expression caused by miR-144 can exacerbate oxidative stress
in erythrocytes from patients with homozygous sickle cell disease
(27). Thus, therapeutic strategies targeting NRF2-associated
Frontiers in Endocrinology | www.frontiersin.org 3
epigenetic mechanisms may serve as effective approachs for
treating various diseases related to oxidative stress.
NRF2-RELATED EPIGENETIC
MODIFICATIONS IN DIABETIC CARDIAC
COMPLICATIONS

As one of the major complications of DM, diabetic cardiac
complications are closely related to the occurrence of heart failure
and poor prognosis ofDMpatients (28, 29). In recent years, a series
of studies have confirmed that NRF2-related epigenetic
modifications play a vital role in the prevention and treatment of
diabetic cardiac complications (summarized in Figure 2).

Diabetic Myocardial Ischemia-Reperfusion
Injury
Sirtuin1 (Sirt1) is a nicotinamide adenine dinucleotide (NAD+)-
dependent deacetylase that plays a vital role in regulating NRF2
expression in the treatment of diabetic myocardial ischemia-
reperfusion (I/R) injury. For instance, Zhang et al. demonstrated
that Sirt1 can enhance NRF2 nuclear translocation to prevent
diabetic myocardial I/R injury in a diabetic Sprague Dawley rat
FIGURE 2 | NRF2-related possibly epigenetic mechanisms in diabetic cardiac complications. Inactivation of the Sirt1/NRF2/HO-1 pathway by miR-34a might cause
ER stress in diabetic myocardial I/R injury. miR-24-3p might activate NRF2 by inhibiting the expression of Keap1 to exert an anti-apoptosis effect in diabetic
myocardial I/R injury. CPDT can activate the NRF2/HO-1 pathway by inhibiting miR-503 to reduce oxidative stress in DCM. Methylation of the nfe212 promoter might
inactivate NRF2 and its downstream targets SREBP-1c and FAS to cause lipid accumulation in DCM. NRF2, nuclear factor erythroid 2-related factor 2; miR,
microRNA; Sirt1, Sirtuin1; HO-1, heme oxygenase-1; SREBP-1c, Sterol regulatory element-binding transcription factor 1c; FAS, fatty acid synthase; CPDT, 5,6-
dihydrocyclopenta-1,2-dithiole-3-thione; Keap1, Kelch-like ECH-associated protein 1; ER, endoplasmic reticulum.
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model (30). Another study reported that Sirt1 deacetylated and
reduced the ubiquitination of NRF2 in advanced glycation-end
products-treated glomerular mesangial cells (GMCs) (31). These
studies imply that deacetylation of NRF2 by Sirt1 might be a
potential mechanism underlying NRF2 nuclear translocation.
miRNAs have also been verified as common regulators of Sirt1.
For example, crocin can relieve myocardial I/R-related
endoplasmic reticulum (ER) stress through modulating the
miR-34a/Sirt1/NRF2 signaling pathway in primary neonatal
mouse cardiomyocytes (32). Thus, we further speculate that
the miR-34a/Sirt1/NRF2 pathway might be involved in the
prevention and treatment of diabetic myocardial I/R injury.
Moreover, Xiao et al. further demonstrated that luteolin
modulates the Kelch-like ECH-associated protein 1 (Keap1)/
NRF2 axis to inhibit oxidative stress, thus attenuating diabetic
myocardial I/R injury (33). miR-24-3p has also been shown to
regulate the Keap1/NRF2 pathway in myocardial I/R injury (34).
Thus, it is possible that miR-24-3p may act upstream of Keap1/
NRF2 pathway to alleviate diabetic myocardial I/R injury.

Diabetic Cardiomyopathy
NRF2-associated epigenetic modifications have been shown to act
as crucial mechanisms in diabetic cardiomyopathy (DCM), with
some literature indicating that epigenetic modifications can
promote DCM, while other studies suggest that they inhibit DCM.

Methylation of the nfe2l2 promoter might be a potential
contributor to the incidence and development of DCM. Wang
et al. reported that cardiac NRF2 expression was significantly
decreased in a DMmouse model (35). Meanwhile, another study
showed that the methylation level of the Nfe2l2 promoter was
increased but the gene and protein expression of NRF2 was
decreased under high glucose (HG) condition (36). Thus, we
speculate that decreased expression of NRF2 may be related to
methylation of the nfe2l2 promoter in DCM.

ncRNAs also play a major role in DCM through targeting
NRF2. In HG-stimulated rat and mouse cardiomyocytes models,
the inhibition of miR-144, miR-155, and miR-503 can active
NRF2 to attenuate cellular oxidative stress and reduce
cardiomyocyte apoptosis to prevent DCM (12, 37, 38).
Recently, Gao et al. found that long ncRNA (lncRNA) HOX
transcript antisense RNA (HOTAIR) and Sirt1 were
downregulated but miR-34a was upregulated in diabetic hearts
and HG-stimulated H9c2 cells, while overexpression of lncRNA
HOTAIR protected against DCM via increasing Sirt1 expression
by sponging miR-34a (39). Furthermore, the Sirt1/NRF2
pathway was shown to play a role in improving DCM via
alleviating myocardial oxidative stress (40). However, whether
NRF2 can be regulated by the lncRNA HOTAIR/miR-34a/Sirt1
pathway in the treatment of DCM needs to be further explored.
NRF2-RELATED EPIGENETIC
MODIFICATIONS IN DIABETIC VASCULAR
COMPLICATIONS

Diabetic vascular complications can be divided into
macrovascular and microvascular complications. The
Frontiers in Endocrinology | www.frontiersin.org 4
macrovascular complications include cardiovascular diseases,
cerebrovascular diseases, and peripheral vascular diseases. The
microvascular complications include diabetic retinopathy (DR)
and diabetic nephropathy (DN). NRF2-related epigenetic
modifications have been verified to exert a key role in diabetic
vascular complications (summarized in Figure 3).

DM-Related Arterial Injuries
Arterial injury is a common vascular complication in patients with
DM.Endothelial dysfunction is the criticalmanifestationofdiabetic
vascular complications, followed by increased oxidative stress and
inflammation (41). Sodium butyrate (NaB) is an HDAC inhibitor
that has been shown to increase the occupancy of both Nfe2l2’s
transcription factor aryl hydrocarbon receptor (AHR) and histone
acetylase P300 at thepromoter regionof theNfe2l2. Bindingof these
factors promotes the transcriptional activation of Nfe2l2, thus
protecting against aortic endothelial dysfunction in HG-treated
endothelial cells (ECs) (41). Some studies also revealed that NRF2
regulation by miRNAs may play a critical role in diabetic arterial
injuries. For instance, miR-24 has been shown to stimulate the
NRF2/HO-1 signaling pathway to prevent oxidative stress in HG-
stimulated vascular smooth muscle cells (VSMCs) (42). In human
umbilical vein ECs treated with oxidized low-density lipoprotein,
miR-140-5p can suppress the expression of NRF2 to aggravate
atherosclerosis (AS)-related oxidative stress (43). Additionally,
Hur et al. have shown that the NRF2/ARE axis can activate
the downstream antioxidant enzyme NADPH quinone
oxidoreductase-1 (NQO-1) in VSMCs treated with HG and in a
rat model of DM-induced AS (44). These studies provide evidence
that upregulation of the NRF2/ARE axis by the inhibition of miR-
140-5p may emerge as a potential therapeutic strategy for treating
diabetic AS.

In both HG-treated GMCs and diabetic mice, upregulation of
Sirt1 expression can activate NRF2 (45). Meanwhile, another
study indicated that the inhibition of miR-217 could enhance
Sirt1 expression in oxidized low−density lipoprotein treated
THP-1 cells (46). Therefore, we speculate that miR-217 might
modulate the Sirt1/NRF2 pathway in diabetic AS progression.
Furthermore, a study by Xie et al. showed that Keap1
sulfhydrylation at Cys151 and NRF2 activation by hydrogen
sulfide could inhibit oxidative stress to attenuate DM-induced
AS both in vitro and in vivo, which indicates that Keap1/NRF2
signaling is a critical regulator of diabetic AS (47). The Keap1/
NRF2 pathway has also been reported to be regulated by miR-
200a to ameliorate oxidative stress in a type II DN rat model,
which highlights the important function of miR-200a in the
regulation of Keap1/NRF2 pathway (48). Based on the literature
reviewed here, we suppose that the miR-200a/Keap1/NRF2
signaling pathway could be a new pharmacological target to
prevent diabetic AS.

Diabetic Blood-Brain Barrier Disruption
The blood-brain barrier (BBB) is the main internal barrier of the
human body. It is responsible for regulating the neural
microenvironment, as well as maintaining the stability of the
intracerebral environment and the normal physiological state of
the central nervous system (49, 50). Recently, a series of studies
June 2021 | Volume 12 | Article 598005
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suggested that NRF2-related epigenetic modifications may exert
antioxidant and anti-inflammatory effects to prevent diabetic
BBB injury. Zhao et al. found that the inhibition of HDAC3
activated the miR-200a/Keap1/NRF2 signaling pathway to
attenuate the inflammatory response, thus ameliorating
diabetic-induced BBB permeability (51). Besides, the Keap1/
NRF2 axis has been reported to be regulated by miR-200a-3p/
141-3p in diabetic renal mesangial cells, suggesting that these
miRNAs are involved in reducing oxidative stress and protecting
against DN (52). However, whether miR-200a-3P/141-3P can
regulate the Keap1/NRF2 axis to prevent diabetic BBB
damage needs to be further explored.

Diabetic Retinopathy
DR is one of the most common diabetic microvascular
complications, which is a major cause of severe vision loss in
individuals with DM due to retinal microangiopathy (53).
ncRNAs have been reported to be associated with a risk of DR,
and an increasing number of studies have focused on the effects
of ncRNAs on NRF2 in the progression of DR. A recent study
showed that expression of the lncRNA MEG3 and NRF2 was
reduced, but the expression of miR-93 was elevated in blood
samples from DR patients as well as in HG-treated human retinal
pigment epithelium (RPE) and ARPE-19 cells. However,
Frontiers in Endocrinology | www.frontiersin.org 5
overexpression of lncRNA MEG3 inhibited apoptosis of RPE
cells treated with HG via downregulating miR-93. This study also
indicated that NRF2 is negatively regulated by miR-93 (54). In
contrast, knockdown of the lncRNA Sox2OT plays an anti-
oxidative role via upregulating NRF2/HO-1 signaling in retinal
ganglion cells exposed to HG (55). Besides, histone modifications
at the promoter regions of the retinal genes are important in
regulating NRF2. Mishra et al. investigated the role of epigenetic
modifications at Keap1 promoter in regulating NRF2 function.
They found that hyperglycemia increased the binding of
stimulating protein-1 (Sp1) at the Keap1 promoter, increased
monomethylation of H3K4 (H3K4me1), and activated
methyltransferase enzyme Set7/9. Further analysis showed that
the inhibition of histone methylation of the Keap1 promoter
region decreased Keap1 expression and subsequently enhanced
the activity of NRF2 to attenuate DR (56). They also investigated
the role of epigenetic modifications in the decreased NRF2
binding at glutamate-cysteine ligase catalytic subunit (Gclc)-
ARE4 and showed that H3K4me2 at Gclc-ARE4 was elevated,
H3K4me3 and H3K4me1 as well as NRF2 binding at Gclc-ARE4
were reduced in DM. Histone demethylase (LSD1) siRNA
increased H3K4me1 at Gclc-ARE4 and enhanced NRF2
binding at Gclc-ARE4 and Gclc transcripts (57). However, the
relationship between H3K4me1 at Gclc-ARE4 and NRF2 binding
FIGURE 3 | NRF2-related epigenetic mechanisms in diabetic vascular complications. Inhibition of HDAC activity by NaB increases the occupancy of AHR and P300
at nfe2l2 promoter to promote the transcriptional activation of nfe2l2, thus protecting against diabetic arterial injuries. miR-24 stimulates the NRF2/HO-1 signaling
pathway to prevent oxidative stress induced by diabetic arterial injuries. miR-200a regulates the Keap1/NRF2 axis to prevent inflammation, thus improving diabetic
BBB damage. The lncRNA MEG3 inhibits DR-induced apoptosis via downregulating the miR-93/NRF2 pathway. Histone methylation of the Keap1 promoter region
increases Keap1 expression and subsequently inhibits the activity of NRF2 to aggravate oxidative stress in DR. C66 upregulates NRF2 expression to protect against
DN-induced oxidative stress by increasing miR-200a expression. The upregulation of miR-200a-3p/141-3p modulates the NRF2 to protect against DN. Omentin-1
downregulates miR-27a and subsequently increases NRF2 expression to inhibit oxidative stress and inflammation in DN. The lncRNA MIAT improves DN by
stimulating NRF2. The lncRNA Blnc1 reduces NRF2 expression to cause oxidative stress and inflammation in DN. NaB, sodium butyrate; HDAC, histone
deacetylase; AHR, aryl hydrocarbon receptor; NRF2, nuclear factor erythroid 2-related factor 2; miR, microRNA; lncRNA MIAT, long non-coding RNA myocardial
infarction-associated transcript; HO-1, heme oxygenase-1; Keap1, Kelch-like ECH-associated protein 1; BBB, blood-brain barrier.
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at Gclc-ARE4 needs to be further investigated. The above findings
provide a novel perspective for the treatment of DR.

Diabetic Nephropathy
DN is a complication of type I and type II DM caused by
microvascular changes (58, 59). In recent years, accumulating
studies have confirmed that NRF2 prevents DN progression via
epigenetic modifications. Inhibition of HDAC by NaB has been
proposed to activate Nfe2l2 gene transcription to ameliorate DN
by enhancing transcription factor binding to the promoter region
of the Nfe2l2 gene (60). Song et al. demonstrated that omentin-1
can decrease the expression of inflammatory markers interlukin-
8, monocyte chemotactic protein 1, and tumor necrosis factor-a,
and the oxidative stress marker malondialdehyde, as well as
elevate antioxidant enzymes catalase and superoxide dismutase
(SOD). Further mechanistic analysis revealed that omentin-1 can
downregulate miR-27a to increase the expression of NRF2 by
reducing miR-27a binding at the NRF2 3’ untranslated region
(UTR) in type II DN (61).

Another study by Wu et al. indicated that miR-200a is a
pivotal factor that mediates the expression of NRF2 in the
treatment of DN. They reported that renal expression of NRF2
and miR-200a was downregulated, but the expression of Keap1
was upregulated in diabetic mice. However, C66 downregulated
Keap1 expression and subsequently upregulated NRF2
expression to protect against DN-induced albuminuria,
oxidative damage, and fibrosis by increasing miR-200a
expression (62). Opposite with the above finding, Civantos
et al. found that the miR-200a/Keap1/NRF2 pathway was
diminished following treatment with sitagliptin to ameliorate
oxidative stress induced by DN (48). However, more studies
regarding these controversial findings are needed to achieve a
more comprehensive understanding. Moreover, aldose reductase
deficiency was shown to upregulate miR-200a-3p/141-3p to
regulate Keap1/NRF2 signaling pathway to protect against DN
(52). LncRNAs have also been found to regulate NRF2 in DN.
The lncRNAmyocardial infarction-associated transcript (MIAT)
has been shown to improve HG-induced renal tubular epithelial
injury by stimulating NRF2 (63). To the contrary, the expression
of NRF2 was decreased by the lncRNA Blnc1 in HK-2 cells
exposed to HG (64). Thereby, the regulation of NRF2 by
lncRNAs should be further explored as potential therapeutics
to reduce the burden of DN.
EPIGENETIC MODIFICATIONS OF NRF2
BY PHARMACOLOGICAL AGENTS

Emerging studies have indicated that aberrant DNA methylation
of nfe2l2 serves as a crucial driving factor in the occurrence and
development of various diseases (36). Many antioxidant
compounds have been proposed to regulate nfe2l2 expression
by modulating DNA methylation at the CpG sites of the
promoter sequence of nfe2l2. Resveratrol, widely found in
grapes, mulberries, peanuts, and red wine, is a natural phenolic
compound with strong anti-inflammatory, antioxidant, and
Frontiers in Endocrinology | www.frontiersin.org 6
anti-cancer properties (65–68). Resveratrol was shown to
prevent HG-induced oxidative stress in HepG2 cells via
suppressing methylation of Nfe2l2, which attenuated HG-
induced triglyceride accumulation (36). Sulforaphane (SFN),
found in cruciferous vegetables like broccoli, bok-choy, and
cabbage, has also been reported to block methylation of the
Nfe2l2 promoter, thereby enhancing its transcriptional activity
(20, 69–72). For instance, SFN can decrease the protein
expres s ion o f DNMT1 and DNMT3a and induce
demethylation of the first 5 CpGs in the Nfe2l2 promoter
region. This finding was corroborated by increased mRNA and
protein expression of NRF2 and its downstream target gene
NQO-1 in TRAMP-C1 cells, suggesting that SFN might protect
against prostate cancer-induced oxidative stress (72). In addition,
luteolin, a flavonoid compound that is isolated from bird’s eye
chilli, onions, carrots, and olive oil (73), can enhance DNA
demethylation of the NFE2L2 promoter to protect against
oxidative stress in human colorectal cancer HCT116 cells (74).
Moreover, pelargonidin, fucoxanthin, tanshinone IIA, reserpine,
and delphinidin have been used in the treatment of skin cancer,
while curcumin, g-tocopherol-rich mixture of tocopherols (g-
TmT) and 3,3’-diindolylmethane (DIM) have been proposed to
prevent prostate cancer; all of these protective effects are
mediated by decreasing methylation of the Nfe2l2 promoter
(75–82). Therefore, therapeutic strategy targeting the
demethylation of the nfe2l2 promoter region may be an
effective method to attenuate oxidative stress.

As a potential treatment strategy for many diseases, histone
modifications-based therapies have gained significant interest.
The protection conferred by HDAC inhibition may be
associated with the upregulation of histone acetylation at the
promoter region of nfe2l2. NaB, a natural short-chain fatty acid, is
an HDAC inhibitor that affects proliferation, differentiation, and
apoptosis of cell (83). Dong et al. demonstrated that NaB may
activate Nfe2l2 at the transcriptional level to ameliorate DN
possibly by inhibiting HDAC activity (60). They subsequently
found that NaB can decrease oxidative stress and inflammatory
response in the aorta. Specifically, NaB suppressed the activity of
HDAC and increased the interaction of AHR and P300 at the
Nfe2l2 promoter to increase the expression of NRF2, alleviating
DM-related aortic endothelial dysfunction (41). Additionally,
corosolic acid, a triterpenoid found in various plants, such as
Schisandra chinensis, Lagerstroemia speciosa L., and Weigela
subsessilis (84), is reported to have anti-cancer activity. One
study investigated the effects of corosolic acid on NRF2 via
epigenetic modifications and found that it exerts its antioxidant
effect by increasing H3K27ac and decreasing H3K27me3 at the
Nfe2l2 promoter region in TRAMP-C1 prostate cells (9). Another
study investigated the effect of the epigenetic regulator Set7/9 in
modulating NRF2 expression and found that Set7/9 knockdown
reduced H3K4me1 enrichment at the promoter region of
NFE2L2, while treatment with two phytochemicals, phenethyl
isothiocyanate (PEITC) and ursolic acid (UA), elevated the
enrichment (85). Collectively, the above findings emphasize the
importance of NRF2 agonists and their epigenetic effects on
the Nfe212 promotor in the prevention of multiple diseases.
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NRF2 agonists could confer their protection via targeting
miRNAs. For example, NRF2 agonists could reduce the direct
effect of miRNAs on NRF2. Song et al. revealed that omentin-1, a
novel adipocytokine (86), reduced oxidative stress and
inflammatory response to improve the deterioration of DN via
downregulating the expression of miR-27a, reducing the binding
of miR-27a at the 3’ UTR of NRF2, and significantly increasing
NRF2 expression (61). As a complex enzyme, the phase II
enzyme inducer (CPDT) promotes the expression of HO-1
through activating NRF2 to ameliorate DCM. Specifically,
CPDT treatment was shown to decrease miR-503 expression
and then upregulate the expression of NRF2 (12). However,
miRNAs can also indirectly regulate NRF2. For example, C66
and zopolrestat act on the 3’UTR of Keap1, further impeding
transcriptional activity of Nfe2l2 (52, 62). Thus, treatment
strategy targeting miRNA-related epigenetic modifications of
NRF2 could potentially prevent the progression of various DM-
related diseases. Pharmacological agents reported to regulate
NRF2 signaling epigenetically have been summarized in Table 1.
CONCLUSION

Epigenetic regulation plays a crucial role in DM-related cardiac
and vascular complications. NRF2-related epigenetic
modifications have evolved as a novel research direction for
the treatment of multiple diseases. Therefore, this review
highlights the effects of NRF2-associated epigenetic
mechanisms (DNA methylation, histone methylation and
Frontiers in Endocrinology | www.frontiersin.org 7
acetylation, and regulation of miRNAs and lncRNAs) on DM-
induced cardiac and vascular complications. However, the
literatures focused on DNA methylation of nfe2l2 in the
treatment of DM-related cardiac and vascular diseases are
limited, and the mechanisms by which miRNAs exert their
direct effects on NRF2 have been largely lacking. Current
literatures indicate that NRF2 agonists have anti-cancer effects,
but more studies are needed to understand the role of these
agonists in treating DM-induced cardiac and vascular diseases.
In conclusion, this review highlights the importance of the
NRF2-related epigenetic regulation in diabetic cardiac and
vascular complications.
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TABLE 1 | Pharmacological agents reported to regulate NRF2 signaling epigenetically.

Reference Pharmacological agents Cell/Animal type Epigenetic mechanism

(36) Resveratrol HepG2 cells and C57/BL6 mice decrease methylation of Nfe2l2
(72) SFN TRAMP-C1 cells decrease methylation of Nfe2l2
(76) Curcumin TRAMP-C1 cells decrease methylation of Nfe2l2
(81) g-TmT TRAMP-C1 cells and TRAMP mice decrease methylation of Nfe2l2
(82) DIM TRAMP-C1 cells and TRAMP mice decrease methylation of Nfe2l2
(74) Luteolin HCT116 cells decrease methylation of Nfe2l2
(75) Pelargonidin JB6 P+ cells decrease methylation of Nfe2l2
(77) Fucoxanthin JB6 P+ cells decrease methylation of Nfe2l2
(78) Tanshinone IIA JB6 P+ cells decrease methylation of Nfe2l2
(79) Reserpine JB6 P+ cells decrease methylation of Nfe2l2
(80) Delphinidin JB6 P+ cells decrease methylation of Nfe2l2
(41) NaB ECs and C57BL/6 mice inhibit HDAC activity
(60) NaB C57BL/6 mice inhibit HDAC activity
(9) Corosolic acid TRAMP-C1 cells increase H3K27ac and decrease H3K27me3 at the

promoter region of Nfe2l2
(85) PEITC and UA PCa LNCaP and PC3 cell lines increase H3K4me1 enrichment at the promoter region of

NFE2L2
(61) Omentin-1 NRK-52E, HK-2, HBZY-1 cell lines and C57BLKS/JNju mice decrease miR-101 targeting 3’ UTR of NRF2
(12) CPDT Primary myocardial cells and Wistar rats decrease miR-503 targeting 3’ UTR of NRF2
(62) C66 C57BL/6 mice increase miR-200a targeting 3’UTR of Keap1 to activate

NRF2 signaling
(52) Zopolrestat Mouse mesangial SV40-Mes13 cells and C57BL/6 mice increase miR-200a-3p/141-3p targeting 3’UTR of Keap1

to activate NRF2 signaling
SFN, sulforaphane;g-TmT, g-tocopherol-rich mixture of tocopherols;
DIM, 3,3’-diindolylmethane; NaB, sodium butyrate; PEITC, phenethyl isothiocyanate; UA, ursolic acid; CPDT, phase II enzyme inducer; NRF2, nuclear factor erythroid 2-related factor 2;
HDAC, histone deacetylase; H3K27ac, acetylation of histone H3 lysine 27; H3K27me3, trimethylation of H3K27; H3K4me1, monomethyl H3K4; 3’ UTR, 3’ untranslated region; Keap1,
Kelch-like ECH-associated protein 1; ECs, endothelial cells; miR, microRNA.
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