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New approaches to ovarian stimulation protocols, such as luteal start, random start or
double stimulation, allow for flexibility in ovarian stimulation at different phases of the
menstrual cycle. It has been proposed that the success of these methods is based on the
continuous growth of multiple cohorts (“waves”) of follicles throughout the menstrual cycle
which leads to the availability of ovarian follicles for ovarian controlled stimulation at several
time points. Though several preliminary studies have been published, their scientific
evidence has not been considered as being strong enough to integrate these results into
routine clinical practice. This work aims at adding further scientific evidence about the
efficiency of variable-start protocols and underpinning the theory of follicular waves by
using mathematical modeling and numerical simulations. For this purpose, we have
modified and coupled two previously published models, one describing the time course of
hormones and one describing competitive follicular growth in a normal menstrual cycle.
The coupled model is used to test ovarian stimulation protocols in silico. Simulation results
show the occurrence of follicles in a wave-like manner during a normal menstrual cycle and
qualitatively predict the outcome of ovarian stimulation initiated at different time points of
the menstrual cycle.

Keywords: endocrinological networks, systems biology, follicular dynamics, ordinary differential equations,
assisted reproductive technologies
INTRODUCTION

Infertility is a worldwide problem. According to the World Health Organization, about 48.5 million
couples worldwide were affected by unwanted childlessness in 2010, and the number continues to
grow (1). Men and women are just as likely to contribute to the couple’s infertility (2). Infertility as a
disease of the female reproductive system affects approximately 10% of women of reproductive age
n.org March 2021 | Volume 12 | Article 6130481
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worldwide (3). Unbalanced hormone levels are one cause, in a
wide range of conditions, leading to infertility. For many couples,
unwanted childlessness is a burden. Assisted reproductive
technologies (ART) provide strategies to deal with infertility.
Both unwanted childlessness and ART increase the risk for
negative psycho-social functioning, such as depression and
anxiety disorders (4–6), whereby the treatment burden has
fallen mainly on women (2). Therefore, new ART approaches
deserve to be highlighted. We want to add further scientific
evidence for the efficiency of those new approaches by using
mathematical modeling and numerical simulations.

Female reproduction is essentially enabled by a feedback
mechanism between ovarian hormones, mainly progesterone
(P4) and estradiol (E2), and the pituitary hormones luteinizing
hormone (LH) and follicular stimulating hormone (FSH), see
Figure 1. The hormone interaction network is important for
regulating folliculogenesis. While the initial recruitment of
follicles does not depend on gonadotropins (7, 8), the growth
of cohorts of larger follicles relies on a stimulatory effect of FSH.
FSH signaling is mediated by the expression of FSH receptors on
granulosa cells (9, 10). The gonadodropins LH and FSH are
responsible for follicular estradiol production. LH stimulates
Frontiers in Endocrinology | www.frontiersin.org 2
androstenedione production, which is the substrate for the
FSH stimulated aromatase reaction producing estradiol (8, 11,
12). Around mid-cycle, usually one dominant follicle ovulates
and releases an oocyte. The remaining parts of the dominant
follicle transform into the corpus luteum, which has a key role in
preparing the body for a possible pregnancy. If the oocyte is not
fertilized, the corpus luteum decays and a new cycle starts (13–
15). Interruptions in the feedback system are one reason
for infertility.

Modern assisted reproductive technologies like in vitro
fertilization (IVF) or intracytoplasmic sperm injection (ICSI)
have increased the chance for pregnancy. Ovarian stimulation,
which aims at obtaining multiple fertilizable oocytes, is a critical
step in ART (16). Since the 1980s, the long gonadotropin-
releasing hormone (GnRH) agonist protocol has been
commonly used to prepare for oocyte retrieval and in-vitro
fertilization (17, 18). This protocol starts around mid-luteal
phase with GnRH agonist administration for about 14 days.
Right after the beginning of GnRH agonist administration, a
short period of gonadotropin (FSH and LH) hypersecretion is
observable. The treatment leads to GnRH-receptor down-
regulation in the pituitary (19, 20). In the next step, the growth
of multiple follicles is stimulated by FSH administration alone,
e.g. with recombinant FSH (rFSH), or by a combination of FSH
and LH, e.g. with human menopausal gonadotropin (hMG).
Continuation of GnRH agonist administration during the
stimulation phase prevents an LH surge and hence ovulation.
In the final step, ovulation is induced by injecting human
chorionic gonadotropin (hCG) (18). Patient-specific and clinic-
dependent modifications of these general procedures are
common. The two most common alternatives are the short
GnRH agonist protocol and the antagonist protocol. Both
protocols work without downregulation, though some clinics
perform a pre-treatment phase for 10 to 25 days with a P4
antagonist that inhibits ovulation.

The stimulation phase in the short GnRH agonist protocol is
the same as in the long protocol. It includes the stimulation with
hMG or rFSH and the concurrent administration of a GnRH
agonist. The antagonist protocol also includes the stimulation
with hMG or rFSH but, in contrast to the agonist protocols, a
GnRH antagonist is administered from day 5 of the stimulation
period. The final step in all protocols is the induction of
ovulation by hCG.

In general, infertility treatment is a long-term and expensive
therapy with high dropout rates (21), mainly because it
imposes physical, mental, and emotional burdens (22). Often,
life has to be subordinated to medical procedures. Therefore,
treatment alternatives are of interest. Both the short and the
antagonist protocol are less time-consuming than the long
protocol. However, the stimulation phase in these protocols
conventionally starts in the early follicular phase. This constraint
could cause too long waiting times, e.g. for women requiring
emergency fertility preservation. Hence, the advancement of a new
class of ovarian stimulation approaches called random - and luteal
phase-start ovarian stimulation protocol (23) has progressed. In
recent years, several studies investigating ovarian stimulation
FIGURE 1 | Flowchart illustrating the interactions included in the given
model. This is a simplified feedback interactions network for the hormonal
control of the female menstrual cycle. Green arrows indicate positive
feedback effects, while red arrows express negative feedback interactions.
Gray arrows show other types of interactions. The pulsatile release of GnRH
stimulates the release of the pituitary hormones LH and FSH. These
hormones effect follicular maturation. Growing follicles produce E2 which has
a positive feedback effect on the LH concentration. A high LH concentration
triggers the ovulation of one selected follicle (light gray arrow) followed by the
formation of the corpus luteum (dark gray dashed arrow). The simultaneous
release of E2 and P4 by the corpus luteum (dark gray arrows) inhibits the
release of GnRH. Additionally, P4 has an inhibitory effect on LH and FSH.
While P4 only has an inhibitory effect on GnRH, E2 has either a stimulatory or
an inhibitory effect on GnRH, depending on the E2 level.
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protocols with various starting points have been published (24–
26). Originally, these protocols were invented for fertility
preservation in cancer patients, where time is a limiting factor
(27). However, they might be beneficial for patients outside an
oncological setting (23), though there is an ongoing debate
whether the oocyte quality differs between protocols. Other
approaches like the double ovarian stimulation, where two
waves within one cycle are stimulated, might help to increase
the number of accumulated oocytes within one treatment cycle
(28). That strategy could be of particular interest for the therapy of
poor ovarian response patients (29, 30).

One possible explanation for the success of stimulation
initiated in different phases of the cycle is the “wave” theory.
The use of high-resolution transvaginal ultrasonography has
underpinned the hypothesis that, similar to ruminants,
follicular growth and development in human is characterized
by waves (31, 32), whereby each wave involves the recruitment of
a cohort of follicles and the possible selection of a dominant
follicle. Given that multiple waves of follicles appear each cycle,
there are multiple time points during one cycle that are suitable
to start ovarian stimulation.

The mathematical model underlying this study simulates the
time-evolution of key hormones and growth behavior of multiple
follicles. In particular, we test the hypothesis that random
recruitment of follicles leads to the emergence of follicular
waves. Based on the occurrence of follicular waves that we
observe in our simulation results, we study variable-start
ovarian stimulation protocols in silico. We demonstrate
simulation results for two protocols, namely (i) stimulation
initiated in the late follicular phase and (ii) stimulation
initiated in the luteal phase. We analyze statistics of treatment
duration and numbers of follicles in our simulation results and
compare them with the literature.
MATERIALS AND METHODS

Mathematical Modeling of the Female
Menstrual Cycle
Mathematical modeling is a useful tool to better understand the
human menstrual cycle by validating or testing hypothesis in
silico, and predicting possible dynamics. A first mathematical
model for the human menstrual cycle was introduced in a series
of articles by Schlosser, Selgrade, and Harris-Clark (33). Their
model allows to simulate the time course of hormones and
follicular maturation stages over several cycles and is able to
display multiple follicular waves (34). This model was extended
by pharmacokinetic sub-models to simulate the administration
of drugs, including ovarian contraceptive pills (35, 36) and
GnRH analogs (37). These pharmacokinetic-pharmacodynamic
(PKPD) models allow to study the influence of dose and time
point of administration of various drugs on the cycle dynamics.

All those models are based on ordinary or delay differential
equations since they allow to simulate the time evolution of
hormone concentrations and follicles. Hill functions have been
used to characterize stimulatory and inhibitory effects, as it is
Frontiers in Endocrinology | www.frontiersin.org 3
common practice for modeling regulatory networks. The model
by Röblitz et al. (37) consists of 33 ordinary differential equations
that describe the feedback mechanisms between the hormones
that are of particular importance for the female menstrual cycle
(GnRH, FSH, LH, E2, P4, inhibin A, inhibin B) and the
development of follicles and corpus luteum throughout
consecutive cycles. Compared to previous models, it does not
use delay differential equations and consists of fewer equations
and parameters. However, all those models have in common that
follicular growth is described in terms of activity levels of
different follicular maturation stages, but not in terms of
follicle numbers and sizes. Thus, the simulation results cannot
be compared with ultrasound data.

Amathematical model that quantifies the time evolution of the
sizes of multiple follicles comparable to observations by
ultrasound measurements in mono-ovulatory species was
presented by (38). This model contains a separate differential
equation for each follicle, whereby the structure of this equation is
the same for all follicles, but the initial follicle sizes are different.
The equations are coupled via a term that accounts for
competitive interactions between follicles. Together with the
model by (37) a previous version of the model by (38) formed
the basis for the development of computational tools to enable in
silico clinical trials in reproductive endocrinology (39, 40). In
particular, by introducing variability into model parameters (41–
43), the authors could analyze inter-individual variability in the
cycle and automatically synthesize, by means of artificial
intelligence guided by patient digital twins, optimal personalized
treatments for the patients at hand (44). However, the tools could
only be applied to the downregulation phase before follicular
stimulation, because the feedback mechanisms from the ovaries to
the pituitary were not implemented in the modified model. This
drawback motivated the development of the fully coupled model
as presented in this work. To our knowledge, this is the first
mathematical model that allows for the simulation of stimulation
protocols that start at different time points in the cycle.

Model Construction and Assumptions
The mathematical model underlying this work is the result of
modifying and coupling the two previously published models by
Röblitz et al. (37) and Lange et al. (38). In a first step, the model
by Röblitz et al. (37) was reduced by removing the equations for
the development of follicles and the corpus luteum and the
hormones produced by them (inhibin A, inhibin B, E2, P4). In
addition, we removed the equations for LH receptor binding
mechanisms, since they were not needed for our purpose. The
remaining equations were kept exactly as in (37), except for the
FSH synthesis rate. In the new model, this rate is inhibited by P4
instead of inhibin A and B [Eq. (S5) in the Supplement], since
P4 reaches its peak in the mid-luteal phase exactly as inhibin A.
The influence of inhibin B could be neglected without any
consequences for the qualitative behavior of the model. In
addition, we have introduced a new equation for the amount
of FSH that reaches the follicles [Eq. (S9) in the Supplement] to
account for delays caused by transportation and for changes in
concentration caused by different volumes. In contrast to (37),
the equations for FSH receptor binding now take into account
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FSH in the ovaries instead of the FSH blood concentration [Eqs.
(S10)–(S12) in the Supplement].

Instead of re-introducing a corpus luteum into the model
equations, we decided to use algebraic equations to directly
model the amounts of E2 and P4 produced in the luteal
phase of the cycle [Eqs. (S23) and (S25) in Supplement S1].
The model describes E2 and P4 levels in the luteal phase by
Gaussian-shaped curves with fixed parameters based on fits to
experimental data (for P4 see Figure S1 in Supplement S3). This
simplification is based on the observation that the variability in
the length of the luteal phase is significantly lower than the
variability in the length of the follicular phase (45).

We modified the follicle equation introduced by (38) in a way
that the hormone dynamics in the system have a direct effect on
the follicular growth behavior [Eqs. (S20)-(S22) in Supplement
S1]. The maturation of each follicle is modeled by a separate
ODE. All ODEs have the same structure and include both shared
and follicle specific parameters. Each follicle carries two random
properties that are follicle specific, hence there are two follicle
specific parameters: the time point at which a follicle is recruited,
and its FSH sensitivity. The following assumptions are made
about these two parameters:

• The time point at which a follicle is recruited and starts
growing is follicle-specific and follows a Poisson process. The
overall number of follicles that are recruited within a specific
time interval is a Poisson random variable. The parameter of
this distribution, in the following named Poisson parameter,
corresponds to the probability that a given number of follicles
is recruited in a fixed time interval. In the model, the Poisson
parameter is modulated by the FSH concentration: if the FSH
concentration is above a certain threshold, more follicles are
recruited.

• The second property is a follicle specific FSH value, referred to
as FSH sensitivity threshold value, which has to be exceeded
in order to stimulate the follicle’s growth. This refers to the
biological finding that follicle growth does not occur below a
certain level of FSH (46), and that any two follicles might
respond differently to FSH, even if the two have the same size,
because they differ in the FSH receptor density. The
distribution of the FSH sensitivity threshold values in the
population of follicles is assumed to follow a normal
distribution. Follicles that are more sensitive to FSH, i.e.
which require less FSH to start growing, have a competitive
advantage for being selected as the dominant follicle. Whether
a follicle becomes dominant, however, depends on both its
FSH sensitivity and its recruitment time point.

The competition between follicles, which is represented by a
common parameter [Eq. (S22) in Supplement S1], is inhibited
by FSH concentrations above a certain threshold, taking into
account the “FSH window concept” (47–49). This concept is
based on the observation that the period of time during which
FSH is above a certain threshold effects the number of follicles
reaching the dominant follicle’s size (50, 51). Moreover, we
assume that the follicular growth rate is inhibited by P4 and
Frontiers in Endocrinology | www.frontiersin.org 4
stimulated by the FSH receptor complex level in a threshold
dependent way [Eq. (S21) in Supplement S1] (52).

Growing follicles are the main source of E2 in the female body
and the dominant follicle produces the most E2 (12, 53, 54).
Estradiol is produced by granulosa cells, which proliferate and
form a multilayered structure. This is included in the model by
an additional term in E2 production which is dependent on the
follicular size [Eqs. (S24) and (S25) in Supplement S1].

To sum up, the coupling between the hormone dynamics
model and the follicular growth model is realized as follows
(compare Figure 1). The levels of FSH in the blood and of the
FSH receptor complex enter into the equations for the follicles in
a threshold dependent way. In addition, the LH level plays a role
in determining the time point of ovulation. Ovulation of a follicle
that exceeds the size threshold occurs 12 h after the LH level is
higher than a certain threshold. The levels of E2 and P4 in the
luteal phase depend on the time point of the last ovulation. E2
and P4 levels enter into the equations for LH and FSH synthesis
and for the frequency and mass of GnRH, in the same way as in
(37). The coupled model contains in total 72 parameters, i.e. less
than the two original models taken together (114 parameters in
(37) and 5 parameters in (38). We adopted 44 parameters from
(37) and only changed the values of three of them. A detailed
parameter list can be found in the Supplement. The model has
been implemented in MATLAB and numerical simulations were
performed using the ODE solver ode15s. The code is available at
https://github.com/SoFiwork/GynCycle.

Ovarian Stimulation Protocols
Stimulation protocols are introduced to the model by a
pharmacokinetic approach. The dosing concentrations of the
administered drug, as used in the ovarian stimulation protocols,
are calculated during the simulation based on three drug
specific pharmacokinetic parameters using the information
given by (55) [Eq. (S26) in Supplement S1]. In order to study
treatment outcomes, two different stimulation protocols were
implemented. The two studies were selected based on the
accessibility of results, the size of study cohorts and the
physiological stage of patients. Each study includes data from
more than 100 women. Patients were at the age of 18 to 40 years
with a body mass index of 18 to 30 kg/m3. All women showed
spontaneous ovulation.

Stimulation Initiated in the Late Follicular Phase
Our simulated treatment protocol for ovarian stimulation during
the late follicular phase follows the description in Zhu and Fu
(24). As a simplification, we did not vary the administered hMG
dose during the first days of stimulation. The stimulation starts
with a daily administration of 150 IU hMG when at least one
follicle measures 14 mm in diameter. After 6 days, the daily dose
is increased to 225 IU per day. We chose day 6 to change the
hMG concentration because re-examination and dose
adjustment in the clinical trial took place after 5 - 7 days. The
stimulation stops whenever at least 3 follicles reach a diameter of
at least 18 mm. The ovulation of a dominant follicle during the
stimulation phase is characteristic for this protocol.
March 2021 | Volume 12 | Article 613048
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Stimulation Initiated in the Luteal Phase
The protocol described in (26) served as a reference to simulate
the stimulation of multiple follicular growth during the luteal
phase. In this clinical trial, the drug administration in the
simulation starts between day 1 and 3 after ovulation under
the condition that there exist follicles smaller than 8 mm.
Follicular growth is stimulated by the daily administration of
225 IU hMG. The stimulation terminates if at least three follicles
have reached a diameter of 18 mm.
RESULTS

Unstimulated Cycle
As indicated in Figure 2, the model generates quasi-periodic
solutions for all four hormones. Due to the individual growth
behavior of follicles implemented in the model, variations in
cycle length and number of follicles per cycle occur. Simulations
for a normal cycle were performed for more than 1000 time steps
in order to get an idea of the variability in the model outcome. In
total, 42 simulated menstrual cycles (here, one menstrual cycle is
defined from one ovulation to the next one) were used for a
Frontiers in Endocrinology | www.frontiersin.org 5
statistical analysis. In the simulations, the average cycle length
was 30.56 days, with a standard deviation of 7.00 days (Figure S2
in Supplement). On average, 16.19 follicles greater than 4 mm
were detected during one cycle, with a standard deviation of 3.08
follicles. The results were tested for normality using the Shapiro-
Wilk test with a 95 confidence interval. A correlation between the
cycle length and the follicular count was not observed.

The simulated hormone curves are supposed to be
comparable to serum hormone concentration profiles in terms
of shape and peak values. Figures 2A–E display consecutive
menstrual cycles in the time period between day 50 and day 130
from one simulation run. The time evolution of all four hormone
profiles is illustrated, and the described interplay between
hormones and follicles is apparent.

The wave-like growth behavior of the follicles (Figure 2E) is
generated by the model itself and is not enforced by the
implementation. Figure 2G shows an example of the ovulation
of a dominant follicle that occurs 12 h after LH reached its peak
concentration. This 12-h gap is accomplished by the way the
ovulation event is defined in our model (see Discussion). Once
ovulation is detected during the run time of the simulation, the
ovulated follicle is taken out from the cohort of follicles
A

B

D

E

F

G

C

FIGURE 2 | Simulation results of the female menstrual cycle model are displayed. The left column illustrates the simulation outcome for two menstrual cycles and
the right column zooms into details. Here, one cycle is defined from one ovulation to the next one. Sub-figures (A–D) represent the simulated hormone concentration
profiles for LH, FSH, E2 and P4. (E) portrays growth trajectories of follicles >4 mm. The ovulation of a dominant follicle is indicated by terminating trajectories, as
seen for example around day 80 of the simulation. (F) illustrates competition between follicles indicated by crossing growth trajectories. (G) Points out that the
ovulation of a dominant follicle occurs 12 h after the LH peak concentration as a result of the way the ovulation process is implemented in the model.
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(indicated by the terminating trajectory in Figure 2G). This
follicle no longer contributes to steroid production. Keeping it in
the simulation would needlessly increase computational time.
The growth behavior of follicles causes variation in the length of
the follicular phase. In contrast to that, the luteal phase has a
constant length of 14 days due to its implementation.

The follicular growth equation, as introduced by (38) and
modified for the given model, includes a term addressing the
competition for dominance between follicles. In the simulation
results, its effect is visible by crossing growth trajectories (Figure
2F). This crossing only is possible because each follicle has its
specific parameters. As it can be seen in Figure 2, competition is
stronger during the early follicular phase before a dominant
follicle emerges.

Ovarian Stimulation
The simulations of ovarian stimulation initiated in the luteal phase
or the late follicular phase are characterized by the growth of
multiple follicles. Additionally, the ovulation of a dominant follicle
during a stimulation protocol occurs only during stimulation in
Frontiers in Endocrinology | www.frontiersin.org 6
the late follicular phase. In the model, the competition term is
inhibited by high FSH concentrations, enabling the growth of
multiple follicles under stimulatory treatment.

Figure 3 exemplarily displays hormone concentration profiles
and follicle development for one simulation of each treatment
approach. Additionally, error bars at four characteristic time
points (one day before treatment, one day after first drug
administration, six days after first drug administration, last day
of drug administration) indicate the variability in the hormone
levels between 20 simulations using the same treatment
conditions. The characteristic time points where chosen in a
way that the results are easily comparable to the clinical data. In
both cases, the FSH concentration rises with each day of the
treatment. Due to the growth of multiple large follicles, which are
the main source of E2, the E2 level increases significantly during
ovarian stimulation. The levels are almost ten times higher
compared to the normal cycle (Figure 2C).

Simulations of an ovarian stimulation during the luteal phase
are dominated by high P4 levels during the stimulation with
hMG. The high P4 concentration prevents the ovulation of
A

B

D

E

F

G

I

H

J

C

FIGURE 3 | Simulation results for two different ovarian stimulation protocols. The growth of multiple large follicles, caused by the stimulation treatment, is characteristic
for both strategies. The left column represents simulation results from a luteal phase stimulation protocol, while the right column shows the effect of a stimulation during
the late follicular phase. Sub-figures (A–D, F–I) exemplary represent hormone profiles originating from one simulation in red. Purple dots and error bars represent mean
values and variances, respectively, from 20 simulations at four characteristic time points: 1 day before the stimulation treatment starts, 1 day after starting the
treatment, 6 days after starting the treatment, and the last day of treatment. Sub-figures (E, J) illustrate the growth trajectories of the follicles.
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follicles (through the negative feedback mechanisms of P4 on
LH). The concentrations of LH, FSH, P4 and E2 in Figures 3A–
D are comparable to observations by (26).

Figure 3J illustrates the follicular growth behavior
under stimulation in the late follicular phase, initiated after
the occurrence of a dominant follicle. The ovulation of
the dominant follicle is followed by an increase in P4
concentration comparable to non-treated conditions. The E2
level decreases after the ovulation of the dominant follicle but
starts to increase again. This increase is caused by multiple large
follicles as a result of the stimulation.

Figure 4 represents the individual outcomes (treatment
duration and follicular count) of 20 simulations per treatment
protocol. The mean and standard deviation of these results are
given in Table 1. The simulation results for ovarian stimulation
initiated in the luteal phase match the observations from Kuang
et al. (26). The simulated treatment duration for the late follicular
phase stimulation approach is noticeably lower than the clinical
observations, which goes along with comparably low counts of
follicles >14 mm. Figure 4 convincingly shows that simulations
differ among each other even if non-follicular parameters are the
same in all simulations. Hence, the individual growth behaviors
of the follicles have a major effect on treatment simulations
and outcomes.
Frontiers in Endocrinology | www.frontiersin.org 7
DISCUSSION

The mathematical model developed in this work addresses the
interplay between pituitary hormones, ovarian hormones and
follicular growth. Simulation results for the unstimulated cycle
agree qualitatively and quantitatively with observations reported
in literature. In particular:

• The time evolution of the four hormone profiles for LH, FSH,
P4 and E2 is consistent with the scientific literature (56).

• An average cycle length of around 29 days, ranging from
cycles with a duration of 22–25 up to 36 days, is reported in
experimental studies (56–58). The simulation results are in
line with these observations.

• In the literature, it is described that the variability in the
length of the follicular phase is significantly higher than for
the luteal phase (58, 59). The given simulation results fulfill
the same property.

• The observed intra-cycle variability of 7 days is comparable to
experimental results by (58).

• (32) observed the emergence of two to three waves carrying 4
to 14 follicles greater than 4 mm. The given simulation results
of 16.19 ± 3.08 follicles in two waves per cycle match their
experimental investigations.
A B

DC

FIGURE 4 | Simulation outcomes of 20 independent cycles for each treatment: ovarian stimulation induced either during the luteal phase (top, A, B) or the late
follicular phase (bottom, C, D). In the upper row (A, B), follicular counts and treatment duration for the luteal phase stimulation approach are displayed (red: follicles
10–14 mm; purple: follicles >14 mm). On average, 11.1 ± 3.5 follicles with a diameter of 10 to 14 mm and 8.9 ± 3.7 follicles with a diameter >14 mm are observed.
The average treatment duration is 9.4 ± 0.7 days. The lower row (C, D) shows follicular counts and treatment durations for simulated stimulations in the late follicular
phase. A treatment cycle takes about 6.0 ± 0.7 days. The average count of follicles with diameters 10 - 14 mm is 6.3 ± 2.2 and the one for follicles >14 mm is 8.0 ±
2.2. (Numbers refer to mean ± standard deviation.)
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The discontinuity in the profile of the E2 curve (Figure 2 at
day 85 of the simulation) is related to the growth behavior of the
follicles and is caused by atresia of larger sub-dominant follicles.

By comparing the results in Table 4, it is visible that variations
in the experimental data are higher than in the simulation results.
That indicates the fact that the inter-individual variability in
human is higher than the variability between simulations sharing
one set of non-follicular parameters. The stochastic growth
behavior of follicles is the only source of variability between
simulations. According to (24), the LH concentration under
stimulatory treatment in the late follicular phase is not
supposed to increase after the ovulation of the dominant
follicle due to the inhibitory effect of P4. However, this effect is
not visible in the simulation results (Figures 3F–J). This might
be due to the comparably lower P4 concentrations in the
simulation results. Here, the P4 concentration at day 6 is about
0.99 ± 0.6 ng/mL, whereas the figures published by (24) indicate
P4 concentrations up to more than five times as high. In the
present model, the P4 concentration is linked to the formation of
the corpus luteum as the only source of P4. Minor P4 sources
such as the adrenal cortex are neglected. However, the equations
for the P4 concentration matches experimental measurements
quite well (Figure S1 in Supplementary Material). A relation
between the high LH concentrations, the low P4 concentrations
and the follicular growth behavior are conceivable as well. Since
the simulated treatment duration is several days shorter than
those in the clinical observations, it appears that follicles are
growing too fast during the simulation of ovarian stimulation. If
this is the reason for the mismatch between the simulation results
and the observations by (24), two explanations are credible: (i)
the model parameters should have other values, or (ii) at least
one mechanism is missing. However, at this point it was not
possible to compare the simulated follicular growth under
treatment to detailed experimental investigations since
ultrasound measurement data were not available from literature.
Frontiers in Endocrinology | www.frontiersin.org 8
Another reason for the mismatch could be that we could not
simulate the clinical treatment procedures in full detail. In a
clinical setting the dose is adjusted according to the treatment
response, which is based on an evaluation of follicular growth
during the stimulation procedure. Since the criteria for dose
adjustment were not described in the available publications, we
did not implement adjustments in our model.

We have not yet simulated double ovarian stimulation due to
technical difficulties with the model implementation. However,
we will do this in future work in order to address some of the
problems that are still unsolved (60), for example the choice of
the best day to start the second stimulation or the necessity of
using a GnRH antagonist during the second stimulation.

Finally, we want to point out that clinical data are mainly
reported as summary statistics, usually in terms of means and
standard deviations, and for very few indicators, e.g. treatment
duration or number and sizes of follicles on certain treatment
days. However, with our model-based approach we could go
beyond a simple comparison of moments. Since the model
simulations generate distributions, we could compare them
with data from literature if the publications about clinical trial
outcomes reported the complete data distributions.
CONCLUSION

This study demonstrates how mathematical modeling and
simulations can contribute to enhance our mechanistic
understanding of ovarian stimulation protocols. In particular,
our approach allows to study the extend of variability in both
treated and untreated cycles. The model simulations confirm that
follicular size is not a reliable parameter for determining
treatment outcome since the receptor status of each individual
follicle (modeled by the FSH sensitivity threshold) and the
timing of growth matter. However, we cannot (yet) make use
of that knowledge in a clinical setting as long as the receptor
status cannot be inferred from measurements. Making
predictions on the level of individuals, either in-vivo or in-
silico, will therefore remain notoriously difficult. However,
models that include random effects can be used to quantify
uncertainties in the predictions. Even though these uncertainties
might be large, being aware of what could happen as well as
identifying outliers can assist in making decisions. Moreover, the
model presented here could be used to compare the outcome of
different treatment strategies in terms of specific success criteria
(e.g. average number of follicles larger than a threshold size at the
end of the stimulation), similar to the approach in (39). This
requires to first validate the model with data from other
stimulation protocols. For example, in order to compare the
two protocols simulated here with the three currently most often
used protocols (long, short, and antagonist), we would need data
on each protocol from cohorts that are comparable in terms of
size and physiological stage (e.g. race, age, BMI). We therefore
invite clinicians to share their data and to join interdisciplinary
research projects with the ultimate goal to develop model-based
clinical decision support systems.
TABLE 1 | Comparison between simulation results and clinical observations.

Luteal phase ovarian
stimulation

Late follicular phase
ovarian stimulation

Kuang et al.
(26)

Simulation Zhu and Fu
(24)

Simulation

Num. of follicles
with

13.9 ± 7.8 11.1 ± 3.5 6.3 ± 2.2

diameter 10 -
14 mm
Num. of follicles
with

11.1 ± 5.5 8.9 ± 3.7 11.7 ± 6.2 8.0 ± 2.2

diameter >
14 mm
Duration of
treatment

10.2 ± 1.6 9.4 ± 0.7 10.93 ± 1.66 6.0 ± 0.7

with hMG
Ovarian stimulation is induced either during the luteal phase or the late follicular phase.
Each of the two studies includes data from more than 100 woman. Patients were at the
age of 18 – 40 years with a body mass index of 18 – 30 kg/m3. All woman showed
spontaneous ovulation.
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