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Multiple sclerosis (MS) is a chronic neurological disease driven by autoimmune,
inflammatory and neurodegenerative processes leading to neuronal demyelination and
subsequent degeneration. Systemic lipid metabolism is disturbed in people with MS, and
lipid metabolic pathways are crucial to the protective process of remyelination. The lipid-
activated transcription factors liver X receptors (LXRs) are important integrators of lipid
metabolism and immunity. Consequently, there is a strong interest in targeting these
receptors in a number of metabolic and inflammatory diseases, including MS. We have
reviewed the evidence for involvement of LXR-driven lipid metabolism in the dysfunction of
peripheral and brain-resident immune cells in MS, focusing on human studies, both the
relapsing remitting and progressive phases of the disease are discussed. Finally, we
discuss the therapeutic potential of modulating the activity of these receptors with existing
pharmacological agents and highlight important areas of future research.
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INTRODUCTION

Multiple sclerosis (MS) is a chronic degenerative disease of the central nervous system (CNS) and a
major cause of neurological disability amongst young adults (1). The disease course is
heterogeneous, characterized by acute onset neurological symptoms (relapses) and steady accrual
of disability (progression). The underlying pathophysiology is complex and differences exist in the
mechanisms causing relapse-predominant MS (RMS) and progressive neurodegeneration (either
primary progressive where progression occurs from disease onset or secondary progressive where
progression follows a period of relapsing disease) (2). In RMS, relapses are associated with auto-
inflammatory processes driven by defects in immune regulation and activation and, migration of
multiple effector immune cells across the blood brain barrier (BBB) into the CNS. Interactions
between autoreactive immune cells and CNS resident cells, such as microglia and astrocytes, result
in the release of inflammatory mediators that exacerbate localized inflammation. These
inflammatory episodes resolve and lesions remyelinate, however subsequent neuronal
degeneration can lead to persistent disability (3, 4).
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The mechanisms driving accrual of disability in progressive
MS are not well characterized but include neuro-axonal,
oligodendrocyte and astrocyte damage leading to
neurodegeneration. This is mediated by compartmentalized
chronic inflammation within the CNS, involving the formation
of CNS lymphoid-like structures and activation of CNS-resident
innate cells (including microglia); notably, unlike RMS, the BBB
is less permeable to immune cells migrating from the periphery
(5-7).

Evidence supports a role for lipid metabolism (including
changes in cholesterol, oxysterols, sphingolipids and fatty
acids) not only in MS pathogenesis, but also as biomarkers of
disease activity and progression and as treatment targets (8-14).
One hypothesis is that abnormal lipid-mediated signaling in
immune cells could contribute to MS pathogenesis (15). Lipid
metabolism plays a crucial role in immune cell activation,
differentiation and effector function (16). For example,
activated T-cells have higher plasma membrane cholesterol
(17) and fatty acid levels (18) and, fatty acid synthesis controls
lineage differentiation into pro-inflammatory T-helper (Th)17
cells (19). Furthermore, modulation of plasma membrane lipid
rafts, signaling microdomains in the plasma membrane enriched
with lipids such as cholesterol and glycosphingolipids, influence
immune cell differentiation and function (20, 21) with potentially
pathogenic consequences (22). Conversely, manipulation of
plasma membrane lipids can restore immune cell function in
autoimmunity and cancer (23-25).

Interestingly, statins, inhibitors of the cholesterol
biosynthesis enzyme 3-Hydroxy-3-Methylglutaryl-CoA
Reductase-a widely used class of lipid lowering therapy, have
been extensively studied in MS (26). Notably, a phase-II clinical
trial showed that high dose simvastatin (CNS-penetrant statin)
attenuated brain atrophy and disease progression without
adverse effects in secondary progressive MS patients (27). A
phase-III clinical trial is underway (MS-STAT2; NCT03387670,
http://www.isrctn.com/ISRCTN82598726). Statins have
pleiotropic effects on the immune system through the
simultaneous promotion of Th2 differentiation, inhibition of
Thl mediated damage and reduction of neurotoxic pro-
inflammatory molecules (28). Simvastatin also inhibits
secretion of cytokines necessary for Thl and Thl7
differentiation in RMS patients (29) by inhibiting the
interferon regulatory factor-4 transcription factor (30). Statins
may also work through inhibition of mevalonate pathway-
derived isoprenoids that mediate membrane association of
certain signaling proteins, rather than direct inhibition of
cholesterol itself (31, 32).

How disrupted lipid metabolism influences disease
processes in MS remains uncertain. The lipid-activated
nuclear receptors, liver X receptors (LXRs) and peroxisome
proliferator-activated receptors (33, 34), are responsible for
integration of lipid metabolism signaling in multiple immune
and neuronal cell types, and could both play an important role
(33, 35). This mini review presents evidence to support a role
for LXRs in dysregulated lipid metabolism and
immunopathogenesis in MS.

LIVER X RECEPTORS

LXRs are nuclear transcription factors with key functions in lipid
metabolism and cholesterol homeostasis (36-39). Two isoforms
exist, LXRo and LXRP, encoded by NRIH3 and NRIH2 genes
respectively (40). They share 78% of their amino acid sequence
identity but are differentially expressed; LXRa in metabolically
active tissues (including liver, adipose tissue, macrophages, lung,
intestine) while LXRp is expressed ubiquitously. LXRs are activated
by oxidized derivatives of cholesterol (oxysterols) (41-43) and
intermediates of cholesterol biosynthesis (44, 45). Synthetic ligands
for LXRs have been developed and used to understand LXR
function, the most common being GW3965 and T0901317 (later
reported to also act on other nuclear receptors) (46-49).
Cholesterol forms an essential component of cellular
membranes and its oxysterol derivatives regulate many cellular
processes. Cholesterol overload is toxic to cells, therefore
pathways responsible for its generation are coupled to those
responsible for cellular efflux (removal) and are tightly
controlled, to ensure homeostasis (17). LXRs regulate
intracellular lipid (including cholesterol) metabolism through a
number of pathways including reverse cholesterol transport via
the ATP binding cassette transporters (ABC)A1l (50) and
ABCG1 (51) which promote cholesterol removal to the liver
for catabolism and excretion by high density lipoprotein (HDL)
particles. LXRs regulate the transcription of numerous genes
involved in this process including, apolipoprotein-Al (Apo-Al),
apolipoprotein-E (Apo-E) (52, 53) and cholesteryl ester transfer
protein (54). Other processes regulated by LXRs include;
inducible degrader of the LDL receptor (55); Niemann Pick
type-C proteins-1 and 2 involved in the lysosomal/late
endosomal trafficking and recycling of intracellular lipids (56);
fatty acid metabolism both de novo synthesis or through the
Sterol Regulatory Element Binding Protein (SREBP)1, fatty acid
synthase (FASN (57)) and fatty acid desaturation (FADSI,
FADS2), elongation (elongation of very long-chain fatty acids
protein) and phospholipid remodeling (Phospholipid transfer
protein and lysophosphatidylcholine acyltransferase-3) (58-60).
The brain contains 20% of body cholesterol and ~70-80% of
cholesterol in the brain comprises an essential component of myelin
in neuronal cells (61). The BBB prevents cholesterol transfer from
the circulation into the brain, therefore brain cholesterol is
synthesized de novo (62) via the 3-hydroxy-3-methylglutaryl-
coenzyme-A reductase pathway. Cholesterol produced by glial
cells is effluxed via ABCA1 to HDL-like molecules such as Apo-
E, where it is taken up by LDL-receptors and other lipoprotein
receptors in neurons (which have a high demand for cholesterol
due to the large area of membrane in axons and dendrites).
Intracellular cholesterol is transported via Niemann Pick type-C
proteins. Conversely, excess cholesterol is eliminated via
hydroxylation to 24(S)-hydroxycholesterol (catalyzed by
cholesterol 24-hydroxylase), a polar oxysterol and the most
abundant oxysterol in the brain, which crosses the BBB, enters
the circulation, and is eliminated by the liver (61, 63) (Figure 1A).
Oligodendrocytes maintain myelination and remyelination
processes within the CNS and LXR-regulated lipid metabolism
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FIGURE 1 | Potential therapeutic roles of LXR activation in MS. (A) Intracellular cholesterol levels in the brain are tightly regulated by two transcription factors (61):
1. Liver-X-receptor (LXR) and sterol response element binding-protein 2 (SREBP-2). SREBP2 upregulates genes involved in cholesterol biosynthesis. Cholesterol in
the brain is produced de novo mainly by glial cells such as astrocytes using the Bloch pathway. Neurons which have a high cholesterol requirement produce less
cholesterol via the Kandutsch-Russell pathway. 2. LXR is activated by by-products of cholesterol synthesis (oxysterols). 3. LXR activation promotes cholesterol
export via intracellular cholesterol transporter Niemann Pick Type C1 and 2 (NPC1/NPC2), and ATP binding cassette (ABC) A1 and ABCG1 which efflux cholesterol
from the plasma membrane to high density lipoprotein (HDL)-like lipoproteins including apolipoprotein-E (Apo-E). 4. Cholesterol is taken up by cells via lipoprotein
receptors. Excess cellular cholesterol (potentially generated by neurodegeneration processes) is stored in lipid droplets or converted into oxysterols. 24-S
hydroxycholesterol is the most abundant oxysterol in the brain and its production is catalyzed by the enzyme Cyp46A1 (cholesterol 24S-hydroxylase). 24-S
hydroxycholesterol is able to cross the blood brain barrier to the periphery where it is degraded in the liver. 5. LXR also promotes fatty acid synthesis through its
target genes SREBP1c, fatty acid synthase (FASN) and stearoyl-CoA desaturase (SCD). Plasma membrane levels of cholesterol and fatty acids can influence lipid
rafts-membrane microdomains important for immune synapse formation and immune cell activation and function. Fatty acid (glycosphingolipid) abundance and
composition can also influence plasma membrane fluidity (64). (B) LXRpB expression is elevated in peripheral blood mononuclear cells from MS patients potentially
due to increased levels of oxysterols including 24S-hydroxycholesterol. Increased LXR activation can also be triggered by myelin uptake by dlial cells in the central
nervous system (CNS). LXR activation induces reverse cholesterol transport (A, 4). Patients with MS have altered lipoprotein profiles which may reflect defects in the
efficacy of this process. MS progression is associated with reduced levels of high density lipoproteins (HDL)- responsible for effective cholesterol efflux. LXR
activation also induces fatty acid and glycosphingolipid biosynthesis (A, 5). Changes in cellular cholesterol and glycosphingolipids can alter immune cell function by
altering cell signaling and downstream functions including proliferation and cytokine production. In T-cells LXR activation reduces T-cell infiltration into the CNS (65)
and inhibits naive CD4+ T-cell differentiation towards an inflammatory Th17 phenotype (66) and suppressed IL-9 producing CD8+ T cells during anti-tumor
responses (67). LXR activation is crucial for Treg function (68). LXR activation stimulates oligodendrocyte myelin production and remyelination processes (69).
Mechanisms include stimulation of reverse cholesterol transport and fatty acid synthesis. LXR activation leads to the repression of inflammatory responses through
the downregulation of pro-inflammatory genes including inducible nitric oxide synthase (NO), interleukin (IL)-1p, IL-6 and tumor necrosis factor-o.. Myelin uptake by
macrophages activates LXR and suppresses the production these pro-inflammatory mediators These myelin-laden macrophages, express high levels of anti-
inflammatory IL-1-receptor-a,, IL-10, CC-chemokine ligand-18 and transforming growth factor- (70).
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pathways are crucial to their function (71, 72). CNS myelination
is reduced in LXR knockout mice, conversely LXR activation
stimulates oligodendrocyte maturation, myelin production and
remyelination processes (69). Mechanisms include stimulation of
reverse cholesterol transport via LXR target genes including
ABCA1 and Apo-E, which restore remyelination in aged mice
(12) and fatty acid synthesis; depletion of the LXR-target gene
FASN blocked oligodendrocyte myelination and remyelination
in the murine CNS (73).

Cholesterol, Oxysterols and LXR in MS

The relationship between disrupted serum cholesterol levels and
adverse clinical outcomes in MS has been observed in several
studies (74). Notably elevated apolipoprotein-B (Apo-B) (the
major component of low/very low density lipoprotein
cholesterol, LDL/VLDL) in clinically isolated syndrome (before
confirmed MS diagnosis) correlated positively with increased
Expanded Disability Status Scale (EDSS) indicating that
cholesterol levels could serve as biomarkers for disease
progression (74, 75), even accounting for age as a confounder.
Similarly, in RMS, elevated serum LDL correlated positively with
disease activity assessed by new MRI lesions (10, 11); increased
LDL, total cholesterol and Apo-B levels were independently
associated with higher EDSS score (9, 76); as were elevated
VLDL subset levels (77). Conversely, high serum HDL was
associated with reduced BBB injury and reduced inflammatory
infiltrate in the cerebrospinal fluid (78). In RMS, increasing HDL
and Apo-Al levels over time predicted a reduced likelihood of
transition to secondary progressive disease and reduced brain
atrophy (79). Also a greater reduction in HDL following
interferon-f treatment in RMS patients predicted lower rates
of future brain atrophy (10).

Differential patterns of oxysterol expression are also described
in MS depending on the stage of disease (80, 81). Higher
circulating oxysterols, notably, 24S-hydroxycholesterol, are
thought to reflect elevated brain cholesterol metabolism and
ongoing neurodegeneration (74, 81, 82). RMS patients
progressing to secondary progressive disease over 5 years had
higher CNS-derived serum 24S-hydroxycholesterol and Apo-B
and reduced 7-ketocholesterol (83). While one study shows
increased serum 7-ketocholesterol in patients with primary
progressive disease (80). In older patients with RMS and those
with primary progressive MS, serum 24S-hydroxycholesterol
levels are low (84, 85) most likely due to increased brain
atrophy and neuronal loss.

How changes in systemic cholesterol and oxysterols relate to
LXR function in MS remain uncertain. Changes in oxysterol
availability in MS (83) could lead to modulation of LXR signaling
and influence subsequent immune cell function. For example,
Th17 cells upregulate an enzyme that sulfates oxysterols
(SULT2B1), thereby inactivating them as LXR ligands and
driving preferential activation of RORYt (essential for Th17
function) instead of LXR (86). Also cholesterol/oxysterols are
tightly suppressed in a subset of IL-9 producing CD8" T cells to
prevent transrepression of the II9 locus by LXR (67) and
differentiated type-1 regulatory T-cells (Tregs) upregulate 25-
hydroxycholesterol to limit IL-10 production (87).

LXRp expression is elevated in peripheral blood mononuclear
cells from MS patients compared to healthy controls supporting
a role for LXR in immune cell dysregulation (88) and LXR
signaling was upregulated in T-cells during the adoptive transfer
EAE (experimental autoimmune encephalomyelitis) model of
MS (89). Interestingly, absence of LXRa in brain endothelial cells
in EAE resulted in more severe disease, increased BBB
permeability and CNS inflammatory infiltrate (90).

MS patients are also characterized by other defects in lipid
metabolism. A lipidomic analysis of CD4" lymphocytes from MS
patients identified altered phospholipids and elevated
cardiolipins, potentially reflecting mitochondrial dysfunction
(91). Glycosphingolipids (including ceramides and downstream
metabolites hexosylceramide and lactosylceramide) are
dysregulated in MS serum, plasma and immune cells (92-94).
For example, decreased ceramides in white blood cells from MS
patients were associated with impaired granulocyte-colony
stimulating factor signaling and impaired neutrophil migration
(93) and altered glycosphingolipid synthesis induced pathogenic
inflammatory processes in astrocytes in a murine model of
secondary progressive MS (95). Our recent work shows that
LXR activation accelerates the conversion of ceramide to
hexosylceramide (a key event in glycosphingolipid
biosynthesis) in human CD4'T-cells. LXR stimulation
regulated CD4"T-cell function in part by upregulating plasma
membrane glycosphingolipids and reducing cholesterol thereby
altering T-cell receptor-mediated signalling (96).

Collectively, these studies suggest that disrupted LXR
function could be implicated in MS pathogenesis.

Anti-Inflammatory Effects of LXRs

in Immune Cells

LXR activation leads to the repression of inflammatory responses
through the downregulation of pro-inflammatory genes
including inducible nitric oxide synthase, interleukin (IL)-1p,
IL-6 and tumor necrosis factor-o. (97-100). This was thought to
result from a transrepression mechanism involving
SUMOylation of ligand-bound LXR. In macrophages,
SUMOylation of LXR stabilizes corepressors on the nuclear
factor kappa B (NF-xB) transcription factor, therefore
dampening the transcription of target genes (101). However, a
more recent study demonstrated LXRs ability to repress
inflammatory genes in the absence of SUMOylation via the
upregulation of the transmembrane cholesterol transporter
ABCA1 which increases cholesterol efflux, alters plasma
membrane lipid raft composition, and thereby inhibits Toll-
like receptor signaling to downstream effectors NF-kB and
mitogen-activated protein kinase (64).

The role of microglia (CNS-resident macrophages) in MS is
complex; they can be both pathogenic (antigen presentation to
T-cells and release of pro-inflammatory cytokines) and anti-
inflammatory (clearing myelin debris and enabling
remyelination) (102). LXR response genes ABCA1 and Apo-E
are upregulated in microglia from active demyelinating MS
lesions (103). The same study shows that myelin uptake
induces production of 27-hydroxycholesterol oxysterol which
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activates LXRal and induces ABCA1 and Apo-E upregulation in
human monocyte-derived macrophages. Myelin uptake by
macrophages also activates LXRB and suppresses the
production the pro-inflammatory mediators nitric oxide and
IL-6 and interferon-y/IL-1f signalling (104). These myelin-laden
macrophages, termed foamy macrophages, similar to lipid-laden
macrophages present in atherosclerotic plaques, and derived
from either resident microglia or infiltrating monocytes, have a
distinct phenotype characterized by enhanced expression of
genes involved in migration, phagocytosis and inflammation as
well as genes involved in LXR signaling and cholesterol efflux.
Moreover, murine foamy macrophages within MS lesions,
defined by elevated HLA-DR and neutral lipid content, express
high levels of anti-inflammatory IL-1-receptor-o, IL-10, CC-
chemokine ligand-18 and transforming growth factor-f (70).
Thus the anti-inflammatory effects of foamy macrophages arise
from their response to phagocytosis of myelin, at least in part via
LXR activation which suppresses pro-inflammatory mediator
release and also inhibits T-lymphocyte proliferation (105).

LXR activation ameliorates EAE severity, potentially by
reducing infiltration of T-cells into the CNS (65). Activation of
LXRo and LXRpP can also inhibit naive CD4" T-cell
differentiation towards an inflammatory Th17 phenotype. This
occurs by activating SREBP1a and SREBP1c, which bind to the
IL-17 promoter and the aryl hydrocarbon receptor (Ahr) (a
positive regulator of Th17 differentiation), thus antagonizing
Ahr-mediated IL-17 transcription (66). IL-17 suppression
following LXR activation has been reproduced in splenocytes
from the EAE model (106) and in in the context of other
autoinflammatory diseases (107) such as Behcet’s disease. In
murine models, LXR is crucial for Treg function by increasing

Foxp3 expression and promoting inducible-Treg differentiation
(68, 108).Together, these studies demonstrate that activation of
LXR influences macrophage and T-cell differentiation and
polarization (66, 104, 106, 107). These actions may be
protective in the context of MS (Figure 1B).

Therapeutic Activation of LXRs

Due to their actions on lipid and cholesterol metabolism and the
immune system, LXRs have attracted interest as therapeutic
targets in neurodegenerative diseases (109, 110). Despite
numerous studies showing the benefits of LXR agonism with
the first generation of these compounds in experimental models,
their translation to clinical practice has proven difficult. Systemic
LXR activation promotes hepatic lipid accumulation (steatosis)
and hypertriglyceridemia, both risk factors for cardiovascular
disease, through the induction of de novo lipogenesis by LXRo. in
the liver (39). This prompted the development of a new
generation of selective agonists, including selective LXRB-
agonists, tissue-selective agonists or agonists targeting the
trans-repression/anti-inflammatory actions of LXRs (109)
although, to our knowledge, none of these have been tested in
preclinical models of MS (Table 1).

Macrophage-selective LXR agonists such as N,N-dimethyl-
3B-hydroxycholenamide (DMHCA) and the desmosterol
mimetic methylpiperidinyl-3B-hydroxycholenamide
(MePipHCA) are examples of transrepression-dissociated
agonists that avoid SREBP1c-driven hypertriglyceridemia (114,
115), as does the ATI-111 compound (116). By activating reverse
cholesterol transport-related LXR target genes while blocking the
processing of SREBP-1c¢, they act similarly to the endogenous
ligands (e.g., desmosterol and oxysterols), which inhibit SREBP

TABLE 1 | Summary of synthetic LXR agonist effects.

Compound Activity Status Disease/Model Actions Reference
T0901317 LXRo/pB dual agonist Preclinical EAE (MS model) Reduced CNS inflammation (65, 66)
Enhanced demyelination
Reduced Clinical severity
Preclinical WT mice Enhanced Myelin gene/protein expression (69)
Increased Oligodendrocyte maturation
Enhanced Remyelination
LXR-623 LXRovpartial/B full Clinical Trial-Phase 1- Atherosclerosis  Adverse neurological effects (111)
agonist Discontinued
Preclinical Glioblastoma Enhanced cell death (112)
Increased cholesterol depletion
Enhanced tumor regression
Increased Survival
BMS-852927 | XRp/selective Clinical Trial-Phase 1- Healthy subjects Increased Cholesterol transport (113)
partial agonist Discontinued
Enhanced Lipogenesis, triglycerides, LDL-C, apoB, apoE,
CETP
Decreased circulating neutrophils
DMHCA/ Transrepression- Preclinical Colitis, brain Reduced inflammation (114, 115)
MePiPMHCA selective injury
No induction of hepatic steatosis
SREBP1c inhibition
ATI-111 Transrepression- Preclinical Atherosclerosis  Reduced atherosclerosis (116)
selective (Ldlr-null mice)

Lowers plasma triglycerides and cholesterol
SREBP1c inhibition
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activation through actions in the endoplasmic reticulum (117).
More recent reports on T0901317 and GW3965 showing LXR-
independent non-genomic effects in pancreatic [ cells by
interfering with mitochondrial metabolism and cytosolic
calcium concentrations (118) highlights the importance of
testing the impact of novel LXR agonists in appropriate
cellular or experimental systems lacking the receptors or
alongside validated LXR antagonists. Whether this is replicated
in other cellular systems will require further investigation (119).

Studies with the first generation of LXR agonists suggested
their use as novel therapeutic agents for the treatment of MS.
LXR activation in EAE dramatically ameliorates demyelination
and inflammation in an LXR-dependent manner (65, 66). LXR
activation in cerebellar cultures, using T0901317 and 25-
hydroxycholesterol, enhanced expression of myelin-associated
proteins, likely through transcriptional changes, while reverting
the demyelinating phenotype in an LXR-dependent fashion (69).
This study points to a potentially beneficial effect of LXR agonists
on CNS remyelination and reduced neuronal damage. Notably, a
loss of function mutation in the NRIH3 gene encoding LXRa: in
patients presenting with a rare genetic form of severe progressive
MS, indicates that aberrant LXR signaling could be involved in
MS progression (120). The synthetic LXR agonist T0901317
restored LXR-mediated ABCA1 expression in a cell-line
transfected with the mutant LXR, suggesting that
pharmacological activation of LXRs could be beneficial in
progressive MS.

Strategies for tissue specific delivery are important in
addressing the challenge of delivering therapeutic agents across
the BBB during progressive MS, when inflammation is largely
restricted within the CNS. Interestingly, a highly brain penetrant
partial LXRov/full LXR[ agonist (LXR-623) had beneficial effects
in a murine model of glioblastoma (112). However, in healthy
volunteers LXR-623 showed adverse neurological effects at
higher doses (111). Another study in healthy subjects using
LXRP selective agonist BMS-852927, showed enhanced
cholesterol transport in human macrophages but also
SREBP1c-induced lipogenesis which had not been predicted
from primate models (113). Thus limitations exist using
animal models to predict therapeutic responses in humans.
Differences in TLR4 regulation between human and rodent
cells (121, 122), treatment duration in culture (121) and
differing eicosanoid regulation by LXR (58, 123) have been
reported and could underpin some limitations of the first
generation LXR ligands.

Targeting LXRs in specific cell types or tissues could yield
promising results for LXR-based therapeutics. For instance,
atherosclerotic plaque-targeting nanoparticles encapsulating
LXR ligands upregulate LXR target genes (including cholesterol
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DISCUSSION

In conclusion, further investigation into the role of LXRs in MS
immunopathogenesis is warranted. Activation of these receptors
can modify the expression of cytokines and other immune
mediators and polarize immune cells towards pro or anti-
inflammatory phenotypes (Figure 1). In experimental models,
LXR activation can ameliorate clinical symptoms. The role of
LXRs has focused primarily on CD4" T-cells and myeloid cells.
However, the impact of lipid metabolism on other immune cells,
particularly B-cells, is unexplored and could provide further
insight into MS immunopathogenesis. Alternative strategies
may focus on the modulation of immune cell function through
lipid rafts.

Thus, dysregulated LXR-mediated pathways are likely to
contribute to MS pathogenesis and provide a cohesive model
describing the disease manifestations. A better understanding of
LXRs in the context of MS is needed before their promising
therapeutic potential can be fully realized.
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