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Immune checkpoint inhibitors (ICIs) are a group of drugs employed in the treatment of
various types of malignant tumors and improve the therapeutic effect. ICIs blocks negative
co-stimulatory molecules, such as programmed cell death gene-1 (PD-1) and its ligand
(PD-L1) and cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4), reactivating the
recognition and killing effect of the immune system on tumors. However, the
reactivation of the immune system can also lead to the death of normal organs, tissues,
and cells, eventually leading to immune-related adverse events (IRAEs). IRAEs involve
various organs and tissues and also cause thyroid dysfunction. This article reviews the
epidemiology, clinical manifestations, possible pathogenesis, and management of ICIs-
related thyroid dysfunction.
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INTRODUCTION

The immune system plays an important role in the occurrence, development, and prognosis of most
tumors and forms a specific tumor immune microenvironment. The immune system can recognize,
kill, and resist tumor cells. However, tumor cells can escape the killing or clearance effect of the
immune system through various escape mechanisms. For example, the immune checkpoint pathway
Abbreviations: ICIs, immune checkpoint inhibitors; IRAEs, immune-related adverse events PD-1, programmed cell death
gene-1; PD-L1, programmed cell death gene-1 ligand; CTLA-4, cytotoxic T-lymphocyte-associated antigen-4; APCs, antigen-
presenting cells; DCs, dendritic cells; RCT, randomized controlled trial; LUAD, lung adenocarcinoma; SCLC, small cell lung
cancer; NSCLC, non-small cell lung cancer; SCCA, squamous cell carcinoma of the anal canal; cSCC, cutaneous squamous cell
carcinoma; TNBC, triple-negative breast cancer; UTUC, urothelial carcinoma; Th cells, helper T cells; CTL, cytotoxic T
lymphocyte cell; Treg, T-regulatory cells; AITDs, autoimmune thyroid diseases; HT, Hashimoto’s thyroiditis; GD, Graves’
disease; FT3, free triiodothyronine; FT4, free thyroxine; TSH, thyroid-stimulating hormone; TPO-Ab, thyroperoxidase
antibodies; TG-Ab, thyroglobulin antibody; Tg, thyroglobulin; CTCAE, the Common Terminology Criteria for Adverse
Events; HLA, human leukocyte antigen; MHC, major histocompatibility complex; ACTH, Adrenocorticotropic hormone; LH,
Luteinizing hormone; FSH, Follicle-stimulating hormone; TRH, Thyrotropin-releasing hormone; TRAb, TSH
receptor antibodies.
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could be activated to inhibit the anti-tumor immune response (1).
Some cell surface receptors play a significant role in the process.
Programmed cell death gene-1 (PD-1) and its ligand (PD-L1),
known as negative co-stimulatory molecules, are the second signal
of T cell activation in cellular immune response (2). Cytotoxic T-
lymphocyte-associated antigen-4 (CTLA-4) is another inhibitory
receptor of active T cells by high-affinity binding to natural B7
family ligands, which plays a similar role (3). They work together
with the first signal to inhibit T cells and regulate the immune
response. The original function of the immune checkpoint is to
maintain immune homeostasis and prevent autoimmunity
(Box 1) (2, 3). However, those pathways are activated to escape
the cytotoxic T-lymphocyte cell (CTL)-mediated immune killing
effect in most malignant tumor cells (4, 5).

Some immunotherapeutic agents can block those intercellular
signal transductions, and thus eliminate the inhibitory effect of T
cells, which restore the anti-tumor response (6). In recent years,
immune checkpoint inhibitors (ICIs) are reported to be novel agents
for the treatment of malignant tumors, which show promising
therapeutic effects and potential (7–9). Although ICIs are often
described as well tolerated, sometimes, they still produce inevitable
immune-related adverse events (IRAEs). ICIs activate the immune
system, affect normal organ tissues, and lead to cell death in addition
to targeting tumor cells, eventually leading to IRAEs (6). IRAEs
involve various organs and systems of the whole body and also
cause thyroid dysfunction, which needs clinical attention (10–14).

Thyroid dysfunction is a common pathological state of thyroid
hormone disorder, most commonly hypothyroidism (15). It needs
active surveillance and treatment; otherwise, severe thyroid
dysfunction may seriously affect health in some cases (16, 17).
The specific mechanism of hypothyroidism is still unclear and
warrants further laboratory and clinical exploration. Currently, the
diagnosis of thyroid dysfunction depends primarily on the
identification of biochemical indicators due to a lack of special
symptoms (Figure 1) (18). Although thyroid dysfunction is mild
among all IRAEs, they have considerable morbidity (19, 20). Better
characterization of thyroid IRAEs and their underlying
mechanisms could improve clinical identification, management,
and care of these patients and assist in choosing a more
effective treatment.
ICIs AND IRAEs

The common ICIs, approved by the US Food and Drug
Administration (FDA), include Ipilimumab for anti-CTLA-4
therapy (5), Nivolumab, Pembrolizumab and Cempilimab for
anti-PD-1 therapy (22–25), Durvalumab, Atezolizumab and
Frontiers in Endocrinology | www.frontiersin.org 2
Avelumab for anti-PD-L1 therapy (Table 1) (10, 26–28).
Currently, ICIs have been widely used in cutaneous squamous
cell carcinoma (cSCC), triple-negative breast cancer (TNBC),
urothelial carcinoma (UTUC), squamous cell carcinoma of the
anal canal (SCCA), malignant melanoma, renal cell carcinoma
(RCC), non-small cell lung cancer (NSCLC), small cell lung
cancer (SCLC), lung adenocarcinoma (LUAD) etc. (25, 27–41).

ICIs are often accompanied by IRAEs, including hypophysitis,
thyroid dysfunction, and autoimmune diabetes, which can occur
alone or concurrently (10–12, 23, 41). So far, numerous articles
have reviewed the incidence rate of IRAEs, among which thyroid
IRAEs was found to be the most common (19, 20). However, it is
less likely to accurately predict the system or organ to be affected
by IRAEs. Therefore, more prospective studies are needed to
explore the predictive biomarkers of IRAEs.
SPECIFIC EFFECTS OF IRAES
ON THE THYROID

Epidemiology
Some scholars have reported that most patients on ICIs for
malignancies are at risk of developing thyroid dysfunction. Thyroid
IRAEs present mainly as hypothyroidism, hyperthyroidism, and
transient thyroiditis (10, 13, 14, 22). Transient thyroiditis was
diagnosed as noticeable hyperthyroidism or subclinical
hyperthyroidism at the time of diagnosis and subsequently
progressing to hypothyroidism (22). The latest review and meta-
analyze have reported high thyroid IRAEs frequencies, especially
relatively high risk for hypothyroidism (42). Notably, ICIs-related
thyroid dysfunction incidences lie on the type of malignant tumor
and ICIs employed (Table 1). Stelmachowska-Banas et al. (42)
summarized that combination therapy has been associated with the
highest estimated incidence of high thyroid dysfunction frequencies,
ranging from 8.0 to 16.4%, remarkably higher than monotherapy
with anti-PD-1 drugs (2.8-8.5%) or anti-PD-L1 drugs (0.6-6.0%) or
anti-CTLA-4 (0.2-5.2%). The combination of multiple
immunotherapies can increase the risk of thyroid dysfunction (23,
43–46). What’s more, the incidence of hypothyroidism,
hyperthyroidism, and thyroiditis was statistically significant
between different drugs (47, 48). Previous researchers found that
the probability of thyroid dysfunction in the anti-PD-1 treatment
group was higher than that in the anti-PD-L1 and anti-CTLA-4
treatment group (45, 49). Furthermore, although both Nivolumab
and Pembrolizumab are anti-PD-1 drugs, patients using the former
are more likely to develop hypothyroidism, whereas those using the
latter are more likely to develop hyperthyroidism (Table 1) (49).
Box 1 | PD-1/PD-L1 and CTLA-4 play a role as the immune checkpoint.
The receptor on the surface of the T cell (TCR) binds to an antigen, acting as the first signal to activate T cells (1). The second signal of T cell activation in cellular immunity is
composed of costimulatory molecules on the surface of T cells, antigen-presenting cells (APCs), and target cells. There are numerous costimulatory molecules on the T
cell surface, including positive and negative costimulatory molecules such as CD28, PD-1, and CTLA-4 (2, 3, 19, 21). PD-L1 is found on tumor cells and APCs, such as B
cells, dendritic cells (DCs), and macrophages (2, 21). PD-1 binds to PD-L1, working together with the first signal to inhibit T cells and regulate the immune response (2).
CTLA-4, which is similar to its homologous stimulatory receptor CD28, combines with natural B7 family ligands, CD80 and CD86, and exerts an immunomodulatory role
(3). To conclude, the PD-1/PD-L1 pathway and CTLA-4 play a vital role as immune checkpoints, which interact with positive costimulatory molecules, so that immune
response can start effectively, play a role properly, and terminate in time (Figure 2).
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Notably, the type of ICIs-related thyroid dysfunction was not
completely identical among different tumors. We can be implied
from several prospective studies that malignant melanoma and
TNBC patients have a certain risk of hyperthyroidism incidence
(26, 27, 30, 32), whilemalignantmelanoma andNSCLCpatients also
have a risk of transient thyroiditis (9, 32). To concluded, patients on
combination therapy were significantly more prone to develop
thyroid dysfunction than those receiving monotherapy. And
patients treated with anti-CTLA-4 drugs had a significantly lower
risk for thyroid dysfunction compared to those with anti-PD-1 and
anti-PD-L1.
Frontiers in Endocrinology | www.frontiersin.org 3
Clinical Manifestations
The biochemical behavior of thyroid dysfunction is different
between tumor types as well as immunosuppressive therapy
(Table 1). Ohara et al. (22) reported that a 69-years-old
patient with LUAD developed painless thyroiditis during a 3-
month nivolumab treatment. The patient had a mild and soft
goiter but had no symptoms of thyrotoxicosis or exophthalmos.
She did not present any fever or pain. Serum-free thyroxine
(FT4) was elevated and thyroid-stimulating hormone (TSH) was
decreased; shortly after, primary hypothyroidism began to
appear. Another patient had the same thyroid disorder after
FIGURE 1 | Thyroid dysfunction. FT3, free triiodothyronine; FT4, free thyroxine; TSH, thyroid-stimulating hormone; TPO-Ab, thyroperoxidase antibodies; TG-Ab,
thyroglobulin antibody; TRAb, TSH receptor antibodies; HT, Hashimoto’s thyroiditis; GD, Graves’ disease.
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6 months of treatment with nivolumab for melanoma (50). An 85-
year-old male suffered hypothyroidism coexisting with various
autoimmune diseases after the administration of pembrolizumab
for advanced melanoma (23). In another case, after 4 months of
Durvalumab immunotherapy, the level ofFT4decreased and thatof
TSH increased in a 49 years old female patient with LUAD (10).
However, thyroperoxidase antibodies (TPO-Ab) and thyroglobulin
antibody (TG-Ab) were negative (22, 50). In summary, most of the
patients were diagnosed with transient thyroiditis or
hypothyroidism during immune checkpoint blockade, which can
be verified in many retrospective studies (51, 52). Even though
many studies have viewed the highest incidence rate of
hypothyroidism, thyroiditis is not uncommon (51, 53, 54).
According to the cause of hypothyroidism, among which ICIs-
related hypothyroidism is categorized as the primary
hypothyroidism. Primary hypothyroidism is defined as TSH level
higher than the reference range and FT4 level lower than the
reference range (15). In turn, central hypothyroidism is defined as
low or low-to-normal TSH level and a disproportionately low FT4
level, owing to dysfunction of the hypothalamus or the pituitary
gland, or both (55). Generally, most patients present with primary
hypothyroidism, and only a few cases with hypothalamic or
pituitary dysfunction have secondary central hypothyroidism
(Figures 1 and 3) (18, 56). Patients may be asymptomatic or only
show non-specific symptoms, such as fatigue, dizziness, weight
Frontiers in Endocrinology | www.frontiersin.org 4
changes, and emotional or behavioral changes (18). Thyroid
disorders are often neglected because their presentation is often
inconspicuous and only a few patients have thyroid storms (16). It
can also be easily deduced from the aforementioned literature that
themedian time from the beginning of drug commencement to the
development of thyroid dysfunction varies in different
immunotherapies. Thyroid dysfunction has been reported to
mostly occurs in 5-36 weeks after immunotherapy (13, 48, 57). In
a retrospective study, themedian occurrence time and the duration
timeof thyroiditiswas 5.3weeks (range0.6-19.6weeks) and6weeks
(range 2.6-39.7 weeks), and the median occurrence time of
hypothyroidism was 10.4 weeks (range 3.4-48.7 weeks) (54).
Although a few patients develop permanent hypothyroidism,
most of them can be relieved after suspending immunotherapy or
undergoing thyroid hormone replacement therapy (22, 23). Finally,
the recovery time of thyroid dysfunction among patients with
combination therapy was significantly longer than that of patients
with monotherapy (13, 14).

To conclude, patients can present with hypothyroidism or
transient thyroiditis during the commencement of ICIs
(Table 1). However, these patients are mostly detected during
routine hormone monitoring because of a lack of clinical
symptoms. The dynamic changes of free triiodothyronine (FT3),
FT4, and TSH can be detected but there are few reports of positive
TPO-Ab and TG-Ab. Additionally, based on the Common
TABLE 1 | Comparison of ICIs-related thyroid dysfunction

Author & year Study type Target tumor ICIs Thyroid dysfunction Incidence

Any Grade Grade 3-5
(%) (%)

Migden et al., 2020 (24) RCT cSCC Cempilimab Hypothyroidism 10.0 0
Migden et al., 2018 (25) RCT cSCC Cempilimab Hypothyroidism 8.0 0
Loibl et al., 2019 (26) RCT TNBC Durvalumab Hypothyroidism 7.6 0

Hyperthyroidism 9.8 0
Mittendorf et al., 2020 (27) RCT TNBC Atezolizumab Hypothyroidism 6.7 0

Hyperthyroidism 3.0 0
Powles et al., 2020 (28) RCT UTUC Avelumab Hypothyroidism 11.6 0.3
Morris et al., 2017 (29) RCT SCCA Nivolumab Hypothyroidism 6.0 3.0
Wolchok et al., 2017 (30) RCT melanoma Ipilimumab Hypothyroidism 5.0 0

Hyperthyroidism 1.0 0
Nivolumab Hypothyroidism 11.0 0

Hyperthyroidism 4.0 0
Nivolumab + Ipilimumab Hypothyroidism 17.0 <1.0

Hyperthyroidism 11.0 1.0
Ascierto et al., 2020 (31) RCT melanoma Nivolumab Hypothyroidism <1.0 0

Ipilimumab <1.0 0
Eggermont et al., 2018 (32) RCT melanoma Pembrolizumab Hypothyroidism 14.3 0

Hyperthyroidism 10.2 0.2
Transient thyroiditis 3.1 0

Motzer et al., 2018 (33) RCT RCC Nivolumab + Ipilimumab Hypothyroidism 16.0 <1.0
Koshkin et al., 2018 (34) RCT RCC Nivolumab Hypothyroidism 7.0 0
McDermott, et al., 2021 (35) RCT RCC Pembrolizumab Hyperthyroidism 5.5 0
Osorio et al., 2017 (9) RCT NSCLC Pembrolizumab Hypothyroidism 8.0 NA

Transient thyroiditis 13.0 NA
Hellmann et al., 2019 (36) RCT NSCLC Nivolumab + Ipilimumab Hypothyroidism 12.0 <1.0
Hellmann et al., 2018 (37) RCT Lung Cancer Nivolumab + Ipilimumab Hypothyroidism 11.6 0.3

Nivolumab 6.4 0.3
Patel et al., 2020 (38) RCT Neuroendocrine Neoplasms Ipilimumab + Nivolumab Hypothyroidism 31.3 0
June 2021 |
 Volume 12 | Art
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Terminology Criteria for Adverse Events (CTCAE) Version 5.0,
recommended by the National Cancer Institute (58), thyroid IRAEs
are mostly graded from level 1 to 3 (Tables 1 and 2) (9, 42, 45, 59).

MECHANISM OF ICIs-RELATED
THYROID DYSFUNCTION

The underlying mechanism for ICIs-related thyroid dysfunction
remains unknown. In terms of clinical presentation, hypothyroidism
or hypothyroidism after transient thyrotoxicosis is the most common
andconsistent characteristicofpatientswith ICIs.Thyroid IRAEsseem
to overlap with that of autoimmune thyroid diseases (AITDs), such as
Graves’ disease (GD) (60), Hashimoto’s thyroiditis (HT) (61). The
thyroid gland is known to bemore susceptible to autoimmune attacks
than any other organ (62). Hypothyroidism often occurs after
hemithyroidectomy, radioiodine therapy, and neck radiotherapy (15,
63). Whether thyroid IRAEs have the same mechanism as AITDs,
warrants further elucidation.

Link Between the Immune System
and HT and GD
HT, widely seen as the common cause of hypothyroidism (15), is
caused by impaired immune tolerance of autoantigens, the
destruction of thyroid cells (64, 65). The pathogenesis of HT is
considered to be a complex autoimmune process. Various T
lymphocytes (Box 2) activate and infiltrate thyroid follicular cells,
and then induce a cellular immune response leading to direct
Frontiers in Endocrinology | www.frontiersin.org 5
thyroid injury and further thyroid antigen exposure (65).
However, B lymphocytes participate in humoral immune
response and secrete specific TPO-Ab and TG-Ab against thyroid
auto-antigen (61, 65). Besides, natural killer (NK) cells,
macrophages, and various cytokines, such as Type 1 T helper
(Th1) cytokines (interleukin-2 (IL-2) and interferon-gamma
(IFN-g)), T-regulatory cells (Treg) cytokine (IL-10), and Th17
cytokine (IL-17), participate in the autoimmune process (62).
Meanwhile, CTL and Th1-mediated immune responses play a
leading role in the development of autoimmune diseases (43).
However, the body does not allow the immune system’s
unrestricted self-attack on the thyroid gland. Treg and PD-1
pathways may be triggered and activated because of persistent
autoimmunity. Treg has an inhibitory effect on autoimmunity,
which is inhibited in HT until it is reactivated by uncontrolled
autoimmunity (62). Álvarez-Sierra et al. (67) detected the
expression of PD-1 in peripheral blood and thyroid gland among
HTpatients and found that the expressionofCD4+ andCD8+PD-1
positive T cells in the thyroid gland was increased. In the
background of lymphocytic thyroiditis and hyperthyroidism, PD-
L1 expression in benign follicular epithelial cells was also increased
(67). Although the PD-1/PD-L1 pathway cannot stop the
autoimmune reaction, it can inhibit the autoimmune response by
inhibiting T cells. However, whether it achieves the effect of
complete inhibition of disease or not remains unknown. It is
reasonable to speculate that HT does not progress as rapidly as
acute thyroiditis, whichmay be due to the negative regulatory effect
of Treg and the PD-1/PD-L1 pathway (Figure 2).
TABLE 2 | Thyroid IRAEs grade in the CTCAE Version 5.0.

Thyroid IRAEs

Term Grade 1 Grade 2 Grade 3 Grade 4 Grade
5

Hypothyroidism Asymptomatic; clinical or diagnostic
observations only;intervention not indicated

Symptomatic; thyroid
replacement indicated;
limiting instrumental ADL

Severe symptoms;
limiting self-care ADL;
hospitalization indicated

Life-threatening
consequences; urgent
intervention indicated

Death

Hyperthyroidism Asymptomatic; clinical or
diagnostic observations only;
intervention not indicated

Symptomatic; thyroid
suppression therapy indicated;

limiting instrumental ADL

Severe symptoms;
limiting self-care ADL;
hospitalization indicated

Life-threatening
consequences; urgent
intervention indicated

Death

Thyroiditis Asymptomatic; clinical or
diagnostic observations only;
intervention not indicated

Symptomatic; thyroid
suppression therapy indicated;

limiting instrumental ADL

Severe symptoms;
limiting self-care ADL;
hospitalization indicated

Life-threatening
consequences; urgent
intervention indicated

Death
June 20
21 | Volume 12 | Article
Hypothyroidism: a disorder characterized by a decrease in the production of thyroid hormone by the thyroid gland.
Hyperthyroidism: a disorder characterized by excessive levels of thyroid hormone in the body. Common causes include an overactive thyroid gland or thyroid hormone overdose.
Thyroiditis: a disorder characterized by transiently obvious hyperthyroidism or subclinical hyperthyroidism and subsequently hypothyroidism.
IRAEs, immune-related adverse events.
Box 2 | T cells and human leukocyte antigen (HLA).
T cells can be divided into naïve T cells, effector T cells, andmemory T cells based on the activation stage. T cells can also be divided into CD4+ and CD8+ T cells. Further, T
cells are divided into helper T (Th) cells, CTL, and Treg based on their functions. There exist a Th1/Th2 balance that transforms depending on the status of the immune
response (64). T cells promote organ and tissue autoimmunity mainly through the following ways: activated T cells proliferate and differentiate, then transform into effector
T cells, such as Th1 and CTL; Th2 cell-dependent B cells produce and secrete auto-antibodies; various inflammatory factors (21, 64). Furthermore, tissue damage in turn
gives rise to further exposure of tissue self-antigen, which leads to more active T cells in the positive feedback loop (64). Then Treg, immune checkpoint, and other
inhibitory pathways will be induced to eliminate self-immune (Figure 2) (21).

HLA gene complex, also called the major histocompatibility complex (MHC), is closely associated with immune response (66). With a complex structure, HLA gene
regions are mainly divided into class I and class II, which are both directly involved in the activation and differentiation of T cells and regulation of adaptive immune response
by binding to a specific antigen peptide (Figure 2) (21). HLA I is distributed on the surface of all nucleated cells, but HLA II only expresses surfaces specific cells, such as
activated T cells and professional APCs. HLA II binds to antigen peptides and then to CD4 Th T cells receptor to accurately recognize Th T cells (21).
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GD is an AITDs that causes hyperthyroidism. Its main
pathogenesis can be understood as follows: the combination of
TSH receptor on the thyroid cells surface and TSH receptor
antibody (TR-Ab) secreted and released by Th2 cell-dependent B
cells results in thyroid cell damage and a series of symptoms of
hyperthyroidism caused by the release of thyroid hormone.
Interestingly, hypothyroidism does not occur in patients with
GD because Th2 is dominant (Figure 2) (60, 64).
Link Between the Immune System
and ICIs-Related Thyroid Dysfunction
Role of T Cell-Mediated Cellular Immune
in Thyroid Dysfunction
Until now, the immune system activated by ICIs not only targets
tumor cells but also leads to the death of normal organs, tissues,
and cells, which is recognized as the most possible mechanism.
Numerous studies have reported that increasing infiltrating CD4+
Frontiers in Endocrinology | www.frontiersin.org 6
and CD8+ T cells represent a higher response rate and a better
clinical outcome of ICIs because it also represents the activity of
anti-tumor immunity (7–9, 68). Intriguingly, previous studies
reported that increased circulating CD4+ and CD8+ T cells also
presented a relatively higher incidence of IRAEs (69). However, a
large amount of clinical and experimental data is needed to
confirm the authenticity of this phenomenon.

ICIs may trigger T cell-mediated pathways that induce
subsequent thyroid dysfunction (65, 70). Generally, anti-CTLA-4
treatment is more likely to trigger IRAEs than anti-PD-1 or PD-L1
treatment, because anti-CTLA-4 is more likely to lead to extensive
T cell activation but blocking PD-1 or PD-L1 is likely to trigger
pre-existing CD8+ T cell activation (6). However, in terms of
thyroid IRAEs, the probability of anti-PD-1 or anti-PD-L1 agents
was higher than that of anti-CTLA-4 agents. Additionally,
blocking PD-1 is more likely to lead to the activation of pre-
existing CD8+ T cells than PD-L1 and CTLA-4 inhibition (1),
which also well explains why thyroid dysfunction in the anti-PD-1
FIGURE 2 | The proposed mechanism of immune checkpoint inhibitors-related thyroid dysfunction. Thyroid IRAEs may involve T and B-lymphocytes, multiply
cytokines, and diverse factors. Immune checkpoints are activated to escape the immune killing and clearance effect in most malignant tumor cells. Some
immunotherapeutic agents can eliminate the inhibitory effect of T cells, which restore the anti-tumor response. However, activation of the immune system can also
affect normal organ tissues, and lead to cell death, eventually leading to organ IRAEs. Thyroid IRAEs present mainly as hypothyroidism, hyperthyroidism, and
transient thyroiditis, seem to overlap with AITDs. HT and GD are AITDs that cause hypothyroidism and hyperthyroidism, respectively. HT is caused by impaired
immune tolerance of autoantigens, the destruction of thyroid cells. The pathogenesis of HT is considered to be a complex autoimmune process involving various
activate and infiltrate T lymphocytes, B lymphocytes, and various cytokines. Then a cellular immune response and humoral immune response are induced, leading to
direct thyroid injury and further thyroid antigen exposure. The main pathogenesis of GD can be understood as the combination of TSH receptor and TR-Ab secreted
and released by Th2 cell-dependent B cells. Immune checkpoints are proposed to play a role in inhibiting the autoimmune process by inhibiting various immune
cells. Whether thyroid IRAEs have the same mechanism as AITDs, warrants further elucidation. PD-1, programmed cell death gene-1; PD-L1, programmed cell death
gene-1 ligand; CTLA-4, cytotoxic T-lymphocyte-associated antigen-4; MHC, major histocompatibility complex; Th cells, helper T cells; CTL, cytotoxic T lymphocyte
cell; Treg, T-regulatory cells; APCs, antigen-presenting cells; TSH, thyroid-stimulating hormone; TPO-Ab, thyroperoxidase antibodies; TG-Ab, thyroglobulin antibody;
TRAb, TSH receptor antibodies; AITDs, autoimmune thyroid diseases; HT, Hashimoto’s thyroiditis; GD, Graves’ disease.
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treatment group was higher than that of the anti-PD-L1 and anti-
CTLA-4 treatment group (45, 49). Besides, several patients
receiving immunosuppressive therapy showed symptoms of
hyperthyroidism before hypothyroidism (9). It is suspected that
GD occurs first, and then thyroid cell antigen is exposed, which
leads to autoimmunity and hypothyroidism because Th1 cells are
dominant. Treg plays a role in the inhibitory effect through cell-
cell contact and secreting a regulatory cytokine IL-10. Some
studies have shown that a higher baseline IL-10 level can
improve anti-PD-1 therapy response, indicating that PD-1 is
Frontiers in Endocrinology | www.frontiersin.org 7
involved in regulating the proliferation and differentiation of
Treg (71). ICIs may cause the loss of Treg energy, inducing self-
immune on the thyroid (72, 73). Taken together, T cell-mediated
cellular immune is the main cause of thyroid IRAEs (Figure 2).

Role of Humoral Autoimmune Response
in Thyroid Dysfunction
It is unclear whether PD-1 blockade induces B cell-mediated
humoral autoimmune response. Whether patients with ICI-
induced hypothyroidism have positive auto-antibodies is an
FIGURE 3 | The hypothalamus-pituitary-thyroid/adrenal gland/ovary/testis axis. ACTH, adrenocorticotropic hormone; LH, luteinizing hormone; FSH, follicle-
stimulating hormone; FT3, free triiodothyronine; FT4, free thyroxine; TSH, thyroid-stimulating hormone; TRH, thyrotropin-releasing hormone.
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unknown problem (74). Several case reports found that there
were negative auto-antibodies among patients with the treatment
of ICIs, although thyroid dysfunction occurred (22, 50). A few
data indicate that blocking PD-1 induces T cell-dependent B cells
to produce and secrete auto-antibodies and the presence of
thyroid auto-antibodies and an early increase in serum
thyroglobulin (Tg) levels may result in an increased risk of
thyroid IRAEs (9, 71, 75, 76). However, it remains to be
determined whether there are any specific risks in subgroups
with previous subclinical autoimmune thyroid disease (77).
There was also another notion that thyroid auto-antibodies
result from humoral immune response to release thyroid
antigens in the process of destructive thyroiditis. Of greatest
interest, a single-center, retrospective cohort study conducted by
Delivanis et al. (65) showed that a minority of the patients had
positive TPO-Ab among patients with thyroid IRAEs. However,
Delivanis and colleagues (65) did not suspect that the
mechanism of thyroid destruction is related to thyroid auto-
antibodies. Therefore, whether auto-antibodies are the reason for
thyroid dysfunction or the result of destructive thyroiditis when
applying ICIs remains controversial, which may be the focus of
future research (Figure 2). Moreover, Delivanis et al. (65)
reported that NK cells or monocyte-mediated pathways may
be involved in thyroid IRAEs due to the elevatedHLA class (Box 2)
surface expression in CD56+CD16+ NK cells and CD14+CD16+

monocytes, which needs data to ascertain its credibility.

Role of Individual Genetic Susceptibility
in Thyroid Dysfunction
It is worth mentioning that autoimmune diabetes and AITDs, are
associated with genetic susceptibility associated with overexpression
of HLA-DR (human leukocyte antigen-DR isotype) (66, 78–80).
More interestingly, hypothyroidism is more prevalent in patients
with autoimmune diseases, such as type 1 diabetes and autoimmune
gastric atrophy, and sometimes occurs as part of various
autoimmune endocrine diseases (80). This phenomenon also
exists in people who employ ICIs to treat malignant tumors (23).
The mechanisms by which hypothyroidism may be linked to
systemic autoimmune diseases have not yet been fully understood
(64). ICIs may change the expression of HLA-DR, increasing the
abnormal activation of T cells and thyroid autoimmunity
susceptibility (Figure 2). Delivanis et al. (65) found that
macrophage activation by up-regulating HLA-DR may be a
potential mechanism of pembrolizumab-induced thyroiditis. Krieg
et al. (77) have reported that the frequency of CD14+CD16− HLA-
DRhi monocytes are a strong indicator for progression-free survival
(PFS) and overall survival (OS) of anti-PD-1 immunotherapy.

Role of Various Cytokines in Thyroid Dysfunction
Besides T and B lymphocytes, various cytokines play an essential
role in the development of thyroid disorders (Figure 2) (62).
Firstly, a higher level of IL-2 can not only induce the binding
between HLA-II with thyroid cell autoantigen, but also promote
the killing effect of CD8+ CTL on the thyroid (71, 81). Krieg et al.
(77) found that the number of CD4+ Th1 that express IFN-g and
IL-2 increased after anti-PD-1 treatment, indicating that PD-1
and PD-L1 are involved in the inhibition of T cell proliferation
Frontiers in Endocrinology | www.frontiersin.org 8
and the production of pro-inflammatory Th1 cytokines, including
IFN-g and IL-2. Kurimoto et al. (71) measured the changes of
various cytokines before and after the treatment of ICIs and found
that an increase of IL-2 and a decrease of granulocyte colony-
stimulating factor (G-CSF) were seemly correlated with thyroid
IRAEs. Th2 cytokine has a strong positive correlation with G-CSF,
whose decrease may be related to the decrease of Th2 cytokine
activity, which also indicates the increase of Th1 dominance in
thyroid IRAEs (71). In summary, it is a plausible suspicion that
Th1 cytokines (IFN-g and IL-2) are involved in thyroid
autoimmunity through blocking PD-1 and PD-L1. The decrease
of IL-10 may be related to the increase of TPO-Ab, suggesting the
loss of Treg energy and the development of thyroid IRAEs.
Additionally, the toxicity mediated by IL-17 has been shown to
contribute to anti-CLTA-4 induced enterocolitis, which also
suggested the loss of Treg energy.

Role of Aging and Gender in ICIs Thyroid Dysfunction
Aging itself is conducive to an increased incidence of autoimmune
diseases and malignant tumors because of immune function
disorder and remodeling of the immune microenvironment (82,
83). The expression of PD-L1 is a critical mechanism by which
aging tissues prevent their reactive T cells from infinitely
participating in autoimmunity (2, 23). Some scholars believe
that the immune system activated by ICIs is more likely to lead
to thyroid self-immunity among the elderly (25). However, in an
ICIs safety study among elderly patients with NSCLC, aging was
not a high-risk factor for IRAEs (84). Sex hormones are also
involved in the regulation of the immune system (85) but the
relationship between gender and IRAEs remains unknown
because of numerous contrary conclusions (72, 86, 87).
MANAGEMENT OF ICIs-RELATED
THYROID DYSFUNCTION

In recent studies (17, 88–90), higher OS and PFS are observed
among patients with thyroid dysfunction and positive auto-
antibodies when they are treated with ICIs. Nevertheless, with
the increasing use of immunosuppressive therapy, clinicians
should identify and regulate thyroid IRAEs to prevent further
rising incidence. At present, there is no prospective trial to
determine the best treatment for thyroid IRAEs and the
currently recommended treatment is based on the consensus of
endocrinologists and guidelines (Figure 4) (18, 42, 91, 92).

Surveillance
The majority of patients with thyroid dysfunction after
immunotherapy are asymptomatic (18). Therefore, it is
unnecessary to expect patients to have positive and marked
clinical manifestations when observing ICIs-related side effects on
the thyroid. However, we should routinely assess the patient’s
symptoms and signs during the ICIs therapy. Moreover, we
should focus on the thyroid biochemical indexes and imaging
tests of patients to ascertain if it is hyperthyroidism, transient
thyroiditis, or hypothyroidism, such as FT3, FT4, TSH, and
cervical ultrasound (US) (92). The biochemical behavior of
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thyroid dysfunction is discrepant in different tumor types on specific
ICIs and cycles (13). Consequently, there is no consistent conclusion
onmonitoring time (92, 93). Routine biochemical function tests and
screening can detect endocrinopathies before symptoms appear,
promoting earlier treatment and a lower incidence rate. A
comprehensively initial test should include a thyroid function test
(FT3, FT4, TSH), fasting glucose, pituitary functions (early morning
cortisol levels), adrenal function (plasma adrenocorticotropic
hormone (ACTH)), and gonadal functions (testosterone,
luteinizing hormone (LH), and follicle-stimulating hormone
(FSH)) (42). In addition, the possibility of central hypothyroidism
should be investigated by MRI test in the case of low FT4 with low
TSH, including ICIs-induced hypophysitis, and then a systematic
assessment of pituitary, adrenal, and gonadal functions is required
(Figures 1, 3, 4) (18, 56). It is important to check coexisting
hormonal disorders and thyroid function in case of hormonal
replacement therapy. Besides, long-term follow-up for thyroid
IRAEs is recommended (92).

In recent years, numerous scholars are trying to explore markers
related to thyroid IRAEs (71, 94). There exists controversy about the
Frontiers in Endocrinology | www.frontiersin.org 9
exclusion of patients with autoimmune diseases from ICI therapy.
There is increasing evidence that ICIs may be safe and effective in
cancer patients with preexisting autoimmune diseases (95–97).
Prospective studies to testify such novel strategies among patients
with autoimmune diseases are needed. Nevertheless, the guidelines
suggest that thyroid disease-related symptoms and signs, thyroid
function test, other hormonal function tests and imaging tests
should be detected before the beginning of immunotherapy and
each treatment cycle (18). It is uncertain whether baseline
assessment of thyroid antibodies will help identify the risk of
thyroiditis because patients with a history of autoimmune diseases
are mostly excluded from clinical ICIs trials (77). Currently,
although there is insufficient data to recommend routine
measurement of thyroid antibodies as a baseline standard, this
may be a useful follow-up test to determine those who are more
likely to have a persistent disease rather than transient drug-induced
thyroiditis (17, 92). Most scholars suggested that close follow-up
should be performed in patients who have high TPO-Ab at baseline
or a history of hypothyroidism because they believe that it indicates
an increased risk of hypothyroidism deterioration after the
FIGURE 4 | Management flow chart for Immune checkpoint inhibitors-related thyroid dysfunction. FT3, free triiodothyronine; FT4, free thyroxine; TSH, thyroid-
stimulating hormone; ACTH, adrenocorticotropic hormone; LH, luteinizing hormone; FSH, follicle-stimulating hormone.
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employment of ICIs (9, 71, 75, 76). Test for TG-Ab and TSH
receptor antibodies (TR-Ab) is necessary if there are clinical features
and suspicions of GD (Figure 1) (92).

Treatment
As aforementioned, thyroid IRAEs has a relatively consistent
pattern from the initial stage of transient hyperthyroidism to
hypothyroidism or direct hypothyroidism (9, 13, 98). The
presence of symptoms and the biochemical confirmation of
evident subclinical hypothyroidism or hypothyroidism are the
indications to start continuous thyroxine treatment (49). Taking
a suitable dosage of levothyroxine in solid form on an empty
stomach is the main choice (42, 92). However, elderly patients
and patients with heart disease should receive low-dose
levothyroxine (56, 91). Transient hyperthyroidism should not
be treated because it usually subsides naturally and often
transforms into hypothyroidism. However, when faced with
serious thyrotoxicoses, such as thyroid storm (16), severe eye
disease, or goiter (99), doctors should respond swiftly to ensure
that patients get the best results. Supportive therapy of b-
blockers, glucocorticoid, and anti-thyroid drugs (ATD) is
helpful to relieve the symptoms of serious thyrotoxicosis (92,
100). Clinicians should decide whether ICIs should be stopped or
delayed after the occurrence of thyroid dysfunction based on the
grade in the CTCAE Version 5.0. (Table 2) (58). If there are
coexisting hormonal disorders with thyroid function during
hormonal replacement therapy, adequate supportive treatment
should be considered in clinical practice (18, 42, 91, 92).
Meanwhile, the employment of ICIs should be guided based
on IRAEs grade (92). ICIs should be withdrawn or delayed if
thyroid or other organ IRAEs are graded from level 3 to 5 but
ICIs could be continued if thyroid or other organ IRAEs are
graded from level 1 to 2 (18, 42, 91, 92). Of course, in case of
IRAEs with adequate supportive treatment, ICIs can be
continued or restarted (18, 42, 91, 92, 101, 102).
CONCLUSION

Thyroid dysfunction is the most common IRAEs, which
warrants close attention from endocrinologists and oncologists.
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Thyroid IRAEs may involve T and B-lymphocytes, multiply
cytokines, and diverse factors. With a limited understanding of
the pathogenesis, it is not clear whether the immune cells
responsible for IRAEs are the same as those involved in
enhancing the anti-tumor immune response and HT. It is also
controversial whether malignant tumor coexisting autoimmune
diseases should be excluded from ICIs. We do not always exclude
using ICIs for cancer patients with a preexisting autoimmune
disease from the current understanding and consensus. Further
clinical and laboratory researches should be conducted to
improve the understanding of ICIs-related thyroid dysfunction.
Additionally, the identification and management of thyroid
IRAEs should be enhanced to avoid life-threatening
complications and increasing mobility. Besides, the long-term
effects of ICIs on thyroid function should be evaluated in future
studies to better understand thyroid IRAEs and AITDs.
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