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The increment in energy-dense food and low physical activity has contributed to the
current obesity pandemic, which is more prevalent in women than in men. Insulin is an
anabolic hormone that regulates the metabolism of lipids, carbohydrates, and proteins in
adipose tissue, liver, and skeletal muscle. During obesity, nutrient storage capacity is
dysregulated due to a reduced insulin action on its target organs, producing insulin
resistance, an early marker of metabolic dysfunction. Insulin resistance in adipose tissue is
central in metabolic diseases due to the critical role that this tissue plays in energy
homeostasis. We focused on sexual dimorphism on the molecular mechanisms of insulin
actions and their relationship with the physiology and pathophysiology of adipose tissue.
Until recently, most of the physiological and pharmacological studies were done in males
without considering sexual dimorphism, which is relevant. There is ample clinical and
epidemiological evidence of its contribution to the establishment and progression of
metabolic diseases. Sexual dimorphism is a critical and often overlooked factor that
should be considered in design of sex-targeted therapeutic strategies and public health
policies to address obesity and diabetes.

Keywords: insulin signaling pathway, sexual dimorphism, lipid metabolism, insulin resistance, metabolic
dysfunction, obesity, estrogens, testosterone
INTRODUCTION

One of the complex problems in modern society is that the availability of energy-dense food has led
to an imbalance between the calories consumed and burned. A sedentary lifestyle has induced this
imbalance. These factors undoubtedly have contributed to the recent obesity and diabetes pandemic
and the increase in cardiovascular diseases. On the other hand, sexual dimorphism relies on
morphological and biological disparities that influence physiological or pathophysiological
processes in males and females (1).

Epidemiological data reveal differences in the incidence and prevalence among men and women
of overweight, obesity, metabolic syndrome, and as a consequence, type-2 diabetes mellitus (T2DM)
and cardiovascular diseases (CVDs). Furthermore, clinical and experimental evidence of sex-specific
components in the development of these diseases supports these facts (2). However, the genetics and
molecular mechanisms underlying these different responses are not entirely clear.
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Adipose tissue plays a central role in regulating insulin
sensitivity and glucose homeostasis (3, 4). Insulin resistance is
a diminished ability of cells to respond to the physiological
actions of insulin. It is a well-known risk factor the establishment
and progression of T2DM and CVDs (5). This work aims to
analyze the sex-specific mechanisms of the regulation of
adipose tissue function by insulin to gain a better insight into
the molecular mechanisms associated with developing
metabolic diseases.

We will first address the insulin actions and signaling
pathway and sexual dimorphism of insulin actions on
gonadal development. Next, we will review the current
knowledge of sex differences in adipose tissue physiology,
highlighting the role of estrogens in lipid metabolism and
their relationship with insulin secretion by pancreatic beta-
cells. Finally, we will explore adipose dysfunction in both sexes,
specifically in obesity, inflammation, and dyslipidemia. We will
center on some proteins of insulin signaling identified to show
sexual dimorphism.
METABOLIC INSULIN ACTIONS AND
SIGNALING PATHWAY

The metabolic actions of insulin are of great importance for
energy homeostasis in the organism´s function. All the tissues
express insulin receptors; however, metabolic actions of insulin
are more understood in the liver, adipose tissue, and skeletal
muscle. In these organs, insulin regulates glucose homeostasis
through the balance between storage and mobilization of energy
reserves during the feeding and fasting states (6).

Insulin promotes protein and lipid synthesis and the storage
of glucose as glycogen in muscles and the liver. In skeletal muscle
and adipose tissue, insulin regulates glucose uptake through of
the translocation of glucose transporter type 4 (GLUT4) from an
intracellular pool to the plasma membrane. Besides, in adipose
tissue, insulin promotes lipogenesis and inhibits lipolysis. In the
liver, insulin also suppresses the production of glucose and
promotes de novo fatty acid synthesis. Thus, insulin regulates
the concentration of glucose and fatty acids in circulation. In
these and other tissues, insulin also regulates gene expression and
division, survival, and cell growth (7).

In the feeding state, nutrients enter the intestine and then the
portal system, reaching the pancreatic islets, where beta-cells
reside. In response, these cells secrete insulin that is transported
toward other organs (8).

In its target tissues, insulin binds to the extracellular alpha
subunits of the insulin receptor (IR). It produces conformational
changes of beta subunits of receptor in the cytoplasmatic
domain, promoting the subunits´ transphosphorylation. The
tyrosine kinase activity starts a cascade of phosphorylations
that transduces the insulin signal within cells.

Insulin activates two main signaling pathways: the PI3K/Akt
signaling pathway, which directs insulin´s primary metabolic
functions, and the MAPK signaling pathway, which regulates the
mitogenic effects of insulin (9) (Figure 1).
Frontiers in Endocrinology | www.frontiersin.org 2
STARTING IN THE INTRAUTERINE
PERIOD, INSULIN ACTIONS DIFFER IN
MALES AND FEMALES

Sexual dimorphism arises in part due to the development of an
ovary and a testis from a bipotential gonad. In mammals, gonad
development drives the differential production and secretion of
steroid hormones. In most cases, the physiological and
pathological differences observed between males and females
result from this sex-specific hormone secretion pattern.

It is worth mentioning that there is sexual dimorphism in
early development stages, thus demonstrating the role of a
genetic/chromosomic component (10). For example, in mice
(11) and humans (12) the male and female embryos show
different growth and metabolic rates before implantation.
Furthermore, there are differences in insulin actions during
different developmental stages in male and female gonads.

The role of insulin in the testis begins even before birth. Testis
development in mice requires the presence of the insulin receptor
family (13); XYmutants lacking the Insr/Igfr receptors in the gonad
display a male-to-female sex reversal. Their gonads have ovarian
morphology; in addition, they do not have Sertoli and Leydig cell
differentiation. Additionally, a recent study has shown that mice
with a deletion of Insr/Igfr in steroidogenic cells displayed smaller
testes, reduced sperm concentration, and lower serum testosterone
levels (14). However, the gonads still display a male phenotype (i.e.,
seminiferous cords were present), albeit with a significant
reduction in Leydig cell numbers in the adult testis. The role of
insulin in Sertoli cells seems to be similar to that observed for
Leydig cells. Adult mice with a Sertoli cell-specific deletion of Insr/
Igf1r have fewer Sertoli cells, smaller testis, altered morphology of
the seminiferous tubes, and a reduced sperm count (15).
Supporting the role of insulin in testicular development, mice
lacking IRS2, besides having impaired glucose homeostasis, have
smaller testes and reduced fertility (16).

Reproduction and nutrition are tightly interrelated; thus,
insulin plays an essential role in male and female reproduction.
The human ovary expresses all but two glucose transporters
(GLUT2 and GLUT7), and glucose is their primary energy
source (17); also for the ovine ovary (18).

Insulin-dependent glucose uptake by the seminiferous cords
in the rat testis occurs in a PI3K/Akt signaling-dependent
manner (19). Reproductive impairment is frequently associated
to alterations in insulin signaling.

Reduced glucose intake in the cumulus cells from diabetic
mothers has been associated with low oocyte quality (20).
Additionally, obese women, often insulin resistant, have a
higher incidence of infertility (21). Furthermore, insulin
resistance is associated with several reproductive anomalies,
such as polycystic ovarian syndrome (PCOS) (22). In addition,
women with metabolic syndrome and insulin resistance require a
longer time to become pregnant independently of obesity (23).
Furthermore, in a small case-control study, seminal fluid from
obese men contained a higher insulin concentration than non-
obese men (24); correlated with a decreased sperm quality. These
results indicate that regardless of sex, high plasma insulin
June 2021 | Volume 12 | Article 690484
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concentration and reduced insulin sensitivity are linked to
reduced fertility.

The human growing follicles express insulin receptors (25).
Insulin modulates the steroidogenic actions of granulosa cells.
For example, insulin promotes estradiol secretion and aromatase
activity in bovine granulosa cells stimulated with FSH (26). One
explanation for this synergy is that FSH regulates the genes for
sterol synthesis via the FoxO1 transcription factor (27), a
signaling node shared with insulin.

Insulin´s synergistic effect over gonadotropins is also
observed in LH-treated human theca cells by promoting
testosterone and androstenedione secretion (28). Insulin also
promotes theca cell proliferation in an mTOR-dependent
manner (29).

In contrast, insulin does not appear to have a metabolic role
in the oocyte despite the expression of insulin receptors. The
oocyte depends on cumulus cells to obtain energy substrates such
as pyruvate via gap junctions (20). One possible role of insulin
Frontiers in Endocrinology | www.frontiersin.org 3
signaling in the oocyte could be the regulation of meiotic
progression. Oocytes from diabetic mice have a delayed
maturation via deregulation of AMPK activity (30). In
addition, they display an increased frequency of abnormal
meiotic spindles (31).

In contrast to the ovary, the role of insulin over the
production of steroid hormones in the testis seems to be an
inhibitory one. In an in vitro assay, insulin reduced progesterone
and testosterone in Leydig cells via Akt. The same study
compared these results to obese mice fed with a high-fat diet
(HFD). These mice displayed a similar reduction in steroid
hormones and increased in p-Akt in the testis (32). In
addition, there is clinical evidence that men with insulin
resistance have lower plasma testosterone (33).

In conclusion, insulin has a differential role in the gonads;
furthermore, insulin and sex hormone´s actions are interrelated.
Insulin is capable of modulating sex hormone synthesis and
effects. In turn, sex hormones affect tissue response to insulin.
FIGURE 1 | PI3K/Akt and MAPK signaling pathways activated by insulin. Active IR transduces insulin signal to effector proteins downstream, as the IRS proteins
family provides specific scaffolding sites that activate other kinases such as PI3K. The catalytic subunit (p110) of PI3K interacts with its substrate, PI (4,5)P2 in the
cell membrane, generating PI (3,4,5)P3, which serves as the binding site of the PDK1 and mTORC2 kinases. The mTORC2 protein complex activates Akt, inducing
the first phosphorylation in Ser473 followed by another PDK1-induced phosphorylation in Thr308. Akt regulates the metabolic effects of insulin through phosphorylation
of a wide variety of substrates. On the other hand, IR besides phosphorylating to IRS, also phosphorylates to Shc protein, both independently can activate the Grb2
protein that through the SOS nucleotide exchanger activates to GTPase Ras, which transduces the signal to the MAP kinases (Raf-1, MEK y ERK 1/2). ERK1/2
activates transcription factors and nuclear proteins. Insulin thus modulates gene expression and cell growth (7, 9). See attached list of abbreviations. Created with
BioRender.com.
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Thus, insulin actions vary between males in females in part due
to their specific hormonal profile. In subsequent sections, we will
discuss how this hormonal profile affects insulin sensitivity in
normal and pathological settings.
SEXUAL DIMORPHISM IN ADIPOSE
TISSUE AND LIPID METABOLISM

As previously discussed, sexual dimorphism is established during
the early embryonic and fetal stages of development although, it
is more evident during the post-puberty phase. At birth, males
and females have a similar fat mass; however, males show more
lean mass and are taller than females. Those differences are less
evident during childhood. Nevertheless, during puberty, both
sexes undergo marked significant changes due to the effects of
sex hormones. In general, adult men have a substantial total lean
and mineral mass and a lower fat mass than women (34).

Adipose tissue is an important endocrine and metabolically
very active organ; its functions include mechanical protection,
thermogenesis, storage and release of energy reserves, regulation
of immune response, and secretion of adipokines. The amount of
plasma adipokines indicates the metabolic status, and they
directly act over different organs (35).

In addition, there are differences in adipose tissue distribution
between sexes. Women have extensive subcutaneous adipose
tissue (femoral and gluteal depots, so-called gynoid phenotype).
In contrast, men accumulate fat mainly in visceral adipose tissue
(so-called android phenotype) (36).

Furthermore, visceral and subcutaneous adipose tissue
depots have different metabolic activity (35). Therefore, it is
comprehensible that sex differences in adipose tissue distribution
determine the differential metabolic phenotype between males
and females. These differences in the metabolic profile include
insulin sensitivity, free fatty acid (FFA) release, and adipokines
production (37).

There is a clear association between visceral adiposity and
reduced insulin sensitivity; conversely, subcutaneous adiposity
associates with increased insulin sensitivity (38). In mice, intra-
abdominal, perigonadal, and subcutaneous adipocytes display an
increased lipogenesis in females compared to males. Moreover,
stimulation of female visceral adipocytes with a low insulin
concentration, increased the phosphorylated Akt and ERK
protein levels (39). This differential activity could explain why
women are more sensitive to insulin; despite increased adiposity
compared to men.

Adipose tissue regulates fat storage in triacylglycerols (TG)
and releases FFA in an insulin-dependent manner. After a meal,
adipocytes secrete lipoprotein lipase (LPL), which inserted in the
plasma membrane of endothelial cells. LPL hydrolyses TG from
chylomicrons and very low-density lipoproteins (VLDL)
producing FFA and monoacylglycerol. Both lipids are
internalized and re-esterified into TG by adipocytes. It is well
documented that VLDL levels are higher in men than in women.
On the other hand, women have higher VLDL–TG clearance rate
than men (40) (Figure 2).
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Lipolysis requires lipases enzymes such as ATGL, HSL, and
MGL. Esterification and oxidation of lipids vary in fasting and
exercise conditions. During fasting, lipolysis and FFA release are
significantly greater in women than men (44). In the
postprandial state, fatty acid oxidation is similar between
women and men; however, when exercising, fatty acid
oxidation is higher in women than men (40) (Figure 2).

Interestingly, despite having an increased lipogenic rate, the
average size of female adipocytes is smaller than that of male
adipocytes. Several studies have shown that female adipocytes
have an increased lipolytic rate than male adipocytes (45). As a
result, women have higher FFA serum levels than men. However,
there are no significant differences in FFA serum levels between
male and female mice. This observation supports the notion of a
higher metabolic turnover of lipids in female visceral adipocytes,
leading to a decreased fat accumulation in visceral depots
compared to males (39).

Men and women have different adipokines secretion, mainly
leptin and adiponectin. Plasma levels of both adipokines are
higher in women than in men (46); they associate with the
adipose tissue distribution and adipocyte size. White adipose
tissue (WAT) is the main secretor of leptin. This hormone is a
powerful catabolic signal in the brain that reduces food intake
and increases energy expenditure (47). Interestingly, there is an
association between high estrogen levels and increased leptin
sensitivity in the brain (48).

Sex differences in adipose tissue distribution could be due, at
least in part, to the effects of sexual hormones. In addition to the
role of sex hormones on metabolism, recent reports point out
that genes located on the X chromosome are associated with
adiposity control (49). The FCG (four-core genotype) model
generates mice with four combinations of gonads and sex
chromosomes: XX female, XX male, XY female, and XY male
mice, through the translocation of the Sry gene. Experimental
evidence obtained from this model revealed a sex-chromosome
complement contribution (50). Mice with two X chromosomes
have an increased body fat proportion, independently of the
gonadal steroid hormones.

Moreover , gonadectomized adul t mice with XX
chromosomes showed an augmented food intake, a rapid
weight gain, and a higher body fat content on HFD than XY
mice (51).

The mechanisms that underlie the effects of sex chromosomes
on lipid metabolism and obesity are unknown. However, the sex-
chromosome complement, overall and tissue-specific miRNA
levels, the X chromosome imprinting, and the X inactivation
escapee genes may be involved in the modulation of autosomal
gene expression (51–54).

Estrogens Actions on Lipid Metabolism
Sex hormones play a role in the regulation of adipose tissue
function and whole-body insulin sensitivity. Estrogens have an
essential role in modulating lipid metabolism through different
estrogen receptors (ERa, ERb, and GPER, also called Gpr30)
expressed in the liver, adipose tissue, gut, and the central nervous
system. Estrogens regulate the movement of FFA to adipose
June 2021 | Volume 12 | Article 690484
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tissue from lipoproteins (chylomicrons and VLDL rich in TG)
from the liver and the gut (41) (Figure 2).

Estrogen signaling may improve nutrient storage in the
subcutaneous fat in women by increasing insulin and
adiponectin sensitivity and promoting pre-adipocyte
differentiation to white adipocytes. The relative redistribution
in body fat from subcutaneous to visceral depots associates with
decreased estrogens during menopause. Furthermore, castration
of male mice enhances insulin sensitivity and increases adipocyte
lipolytic rate (40, 41).

The ERa expression in female adipose tissue is higher than in
males, and it correlates with increased insulin sensitivity in
females compared to males. Systemic and adipose tissue-
specific Esr1 knockout mice develop insulin resistance (55).

Hepatic estrogen signaling in humans might also contribute
to sex differences in cholesterol metabolism because estrogens
promote hepatic reverse cholesterol transport, which is the
process of cholesterol removal from peripheral tissues. This
process culminates with cholesterol delivery to the liver. In
Frontiers in Endocrinology | www.frontiersin.org 5
addition, estradiol promotes the hepatic conversion of
cholesterol into bile acids, and secretion into the bile duct
(56) (Figure 2).

In macrophages, estradiol-esters enhance cholesterol efflux
capacity in high-density lipoprotein (HDL), when estrogen levels
rise during the proestrus phase (57).

The exact contribution of each estrogen receptor related to
lipid metabolism is not well defined in humans. However,
transcriptional activation of ERa by 17b-estradiol binding
could regulate over 1000 genes containing estrogen response
elements (EREs) and are mainly related to lipid metabolism
pathways. Estrogen regulation of lipid-related pathways in mice
may vary depending on the estrous cycle phase (58, 59).

Moreover, estrogens may regulate hepatic lipid metabolism
by serine palmitoylation of caveolin-1 and association with
membrane-associated ERa and ERb, which activate the ERK1/
2 and PI3K pathways. Furthermore, estrogens activate GPER,
which increases intracellular cAMP and Ca2+, and is related to
low-density lipoprotein (LDL) metabolism in mice (41).
FIGURE 2 | Sex hormones’ actions on lipids metabolism and insulin secretion. Lipid metabolism is a complex process that involves organs such as white adipose
tissue, liver, pancreas, and muscle. After feeding, adipocytes convert carbohydrates into fatty acids and uptake plasma FFA released by the liver to store them as
TG, in a process named lipogenesis. In contrast, during fasting, activation of lipolysis within adipocytes, breaks down TG into free fatty acids and glycerol, that are
subsequently released from adipocyte. Muscle and liver oxidize FFA and glycerol. Insulin plays an important role by stimulating lipogenesis and inhibiting lipolysis.
Moreover, sex hormones regulate insulin synthesis and GSIS (40–43). See attached list of abbreviations. Created with Corel Draw.
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The Role of Estrogens on Insulin Secretion
and Insulin Sensitivity
Insulin is a critical regulator of energy metabolism. Current
evidence shows sex-related differences in beta-cell insulin
secretion and the insulin signaling pathway in other tissues
(60–64).

Studies in humans, using the hyperinsulinemic-euglycemic
clamp technique, indicate that women are more sensitive to
insulin, although they have a lower tolerance to glucose than
men (65, 66). In addition, testosterone deficiency predisposes
men to visceral obesity and impairs insulin sensitivity (67,
68). Moreover, testosterone excess predisposes women to
obesity and hyperglycemia (68). Furthermore PCOS, the
leading cause of androgen excess, predisposes women to
develop T2DM (69).

In healthy men and hyperandrogenic women, testosterone is
the most abundant androgen (70), while 17b-estradiol or E2 is
the most abundant estrogen in healthy premenopausal women
(71). Moreover, testosterone undergoes conversion to either
dihydrotestosterone (DHT) or E2 in target tissues, via 5a-
reductase and aromatase enzymes, respectively. Interestingly, a
recent study showed for the first time that pancreatic beta cells
could produce androgens and estrogens from circulating
testosterone (70).

These sexual hormones can enter the blood stream and
interact with their receptors. Androgens receptors (AR) are
present in female and male pancreatic beta-cells (42), and
three estrogens receptors (ERa, ERb and GPER) had been
identified in rodent and human beta-cells (72). In classic
target tissues of sexual hormones, these receptors act as
ligand-activated transcriptional factors. In pancreatic beta-cells,
ERs and ARs reside mainly in extranuclear locations
(71) (Figure 2).

Accumulated evidence suggests that estrogens (17b-estradiol)
and androgens (testosterone) modulate insulin secretion in a
sexually dimorphic manner (42, 71). Previous work in our
laboratory with pancreatic islets of female rats observed higher
insulin secretion rates when comparted with those of male rats
(73). In addition, variations in pancreatic insulin mRNA levels
and serum insulin levels have been observed during the estrous
cycle, suggesting that sex steroid hormones could modulate
insulin secretion (74, 75).

In addition, testosterone deficiency predisposes to pancreatic
beta-cell dysfunction and insulin deficiency (42). In contrast,
DHT enhances glucose-stimulated insulin secretion (GSIS) in
cultured male islets, and this effect is abolished in male mice
lacking AR in beta-cells (bARKO) (76).

On the other hand, female rats exposed to DHT show
hyperinsulinemia due to increased insulin gene transcription in
pancreatic beta cells (77). While, estrogens promote insulin-
producing beta-cell function by increasing their electrical
activity, survival, and proliferation (43).

Testosterone may increase GSIS in pancreatic beta-cells via
AR and GLP-1 receptors by increasing intracellular cAMP levels
and amplifying the incretin effects of GLP-1 (76). GSIS in
pancreatic beta-cells begins with glucose internalization and
Frontiers in Endocrinology | www.frontiersin.org 6
metabolism, which increases ATP levels and membrane
depolarization that triggers [Ca2+] influx (78). Interestingly,
testosterone action on GSIS is independent of increases in
intracellular ATP levels (76) (Figure 2).

In contrast, ERs exert their effects via cytosolic interactions
with kinases such as Src and ERK that subsequently could
activate Neuro D1 an insulinotropic transcription factor.
Moreover, ERs may activate AMPK or through transcription
factors such as the STAT family to induce some of their effects
(79). GPER activation protects pancreatic beta cells from lipid
accumulation and promotes their survival (71). Furthermore,
activation of GPER also increases the GSIS via activation of
ERK signaling pathway (80) (Figure 2).
SEXUAL DIMORPHISM IN ADIPOSE
TISSUE DYSFUNCTION

Sex differences in the molecular mechanisms that control adipose
tissue´s function and its relationship with other organs have
clinical implications. They participate in the development of
obesity, dyslipidemia, insulin resistance, and hypertension
favoring the establishment of metabolic syndrome and
increasing the risk of developing T2DM and CVDs (2).

In 2016, the World Health Organization (WHO) reported
that around 13% of the world’s adult population (11% of men
and 15% of women) were obese. Furthermore, even though
women have significantly more body fat accumulation, the
prevalence of diabetes and early glucose metabolism
abnormalities is higher in men than in women. The last global
estimates published by the International Diabetes Federation
showed sexual differences in worldwide diabetes prevalence in
the adult population, 9.1% in men compared to 8.4% in women
(1). Epidemiologic studies show that diabetes and pre-diabetes
are less prevalent in pre- and peri-menopausal women than age-
adjusted men (2).

Furthermore, it has been well established that after
menopause, the decline in estrogen levels produces an increase
of visceral fat, associated with insulin resistance and an increased
cardiovascular risk (41). Several studies had observed that
premenopausal women have lower incidence and severity of
hypertension. Thus they have a lower incidence of myocardial
infarction and CVDs than men (81).

In consequence, response to treatment, complications of
metabolic diseases, and mortal ity have shown sex-
specific differences.

Obesity, Dyslipidemia, and Inflammation
Obesity is defined as an excessive accumulation of fat that can be
harmful to health. According to WHO, a person with a BMI ≥ 30
is considered obese. The most common cause is a positive
balance between caloric intake and energy expenditure. In
obesity, there is an excessive accumulation of lipids in WAT,
which causes a rise in adipocyte number (hyperplasia) or an
enhanced lipid accumulation (hypertrophy), generating several
metabolic alterations (82, 83).
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https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Ortiz-Huidobro et al. Insulin Actions Are Sexually Dimorphic
The higher visceral adiposity observed in men is associated
with elevated postprandial insulin, FFA, and TG levels (84).
Visceral adipocytes are more sensitive to catecholamine-induced
lipolysis and less susceptible to insulin´s antilipolytic effect than
subcutaneous adipocytes. This leads to an increased FFA delivery
to the portal system, resulting in increased gluconeogenesis,
VLDL secretion, and decreased hepatic insulin clearance. This
way, higher lipolytic activity in visceral fat and its direct
connection with the liver is associated with increased
dyslipidemia and insulin resistance (85).

Once adipocyte storage and mitochondrial oxidative capacity
are overwhelmed, lipids in excess accumulate in non-adipose
tissues such as the liver, muscle, and pancreas (86), creating a
condition that is known as lipotoxicity.

In obesity, men show a higher VLDL production than women
do; in part, secondary to a lower FFA delivery to the liver due to
enhanced FFA clearance by muscle in women. Accordingly, male
HFD-fed mice have increased serum TG levels relative to females
(40, 63). Intramuscular TG accumulation is also associated with
insulin resistance and impaired glucose disposal, and it is only
observed in men (87).

Morbid obesity usually causes an aberrant accumulation of
TG in the liver, which leads to hepatic steatosis and further
impairs systemic fat metabolism (64, 88).

During obesity, adipocytes constantly die by necrosis, caused
by physical stress, hypoxia, mitochondrial dysfunction, and by
the production of reactive oxygen species (ROS) due to excessive
levels of FFA. After necrosis, the adipocyte debris are recognized
by monocytes and antigen-presenting cells (APC), like
macrophages and dendritic cells, present in the adipose tissue.
Once activated, these cells start a low-grade inflammation, a
process known as meta-inflammation (89). Accordingly, there is
a significant increase in WAT macrophage accumulation in male
HFD-fed mouse, compared to females (63).

This meta-inflammation observed in obesity differs between
sexes at the molecular, cellular, and systemic level. At a molecular
level, adipokines and cytokines secreted by adipose tissue
respond to inflammation and act as endocrine molecules,
usually through JAK/STAT, NF-kB, and JNK kinase signaling
pathways. These pathways are essential to regulate body
homeostasis, but once deregulated, they contribute to the
differential development of insulin resistance between males
and females (90).

There is a predominantly anti-inflammatory profile in
healthy adipose tissue, the most secreted cytokines are
interleukin-4, -13, and -10 (IL-4, IL-13, and IL-10). On the
other hand, the resident immune cells in WAT switch to a pro-
inflammatory profile and release cytokines like TNFa, IL-1b, and
IL-6. Regarding to the sexual dimorphic cytokine production in
obese humans, in men, peripheral mononuclear cells produce
more TNFa and less IL-10 than women (91). In HFD-induced
obesity murine models, peritoneal macrophages from male mice
express higher TLR4 levels and CXCL 10 compared to female
mice. This fact means more macrophages M1 activation and
more immune cells attraction to inflammation site and,
constitutive production of TNFa (92).
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In female C57/BL6 mice, 17b-estradiol stimulates an anti-
inflammatory response directly in adipocytes by reducing the
production of TNFa and subsequent activation of NF-kB (93).

According to the differences previously mentioned between
men and women, the obesity-related meta-inflammation and
treatment of obesity complications are more complex than
previously thought.

Sexual Dimorphism in Insulin Resistance
Insulin resistance is a condition in which there is a reduced
response of organs to insulin actions, manifested by mild
hyperglycemia (less than 125 mg/dL) and hyperinsulinemia in
fasting and postprandial states. In murine models of insulin
resistance, there is an increase in the production and release of
hepatic glucose and a glycogen synthesis decrease in muscle,
which increases blood glucose in fasting (94). Plasma insulin
levels are elevated during fasting due to elevated glucose beta-cell
stimulation and or in response to meta-inflammation because
even with average glucose values, there is hyperinsulinemia (95).
There are alterations in lipid metabolism in adipose tissue and
liver in rats with insulin resistance (64, 95). These alterations
reflect an increase in FFA levels in circulation due to the loss of
lipolysis inhibition in adipose tissue in these animals (88).

Release of FFA and cytokines from WAT induces
accumulation of ectopic fat in muscle and the liver, as well as
inflammation and insulin signaling defects in other tissues
(6, 64).

In states such as early development, adolescence, or
pregnancy, and even in some infectious processes, insulin
resistance is physiological because it is an adaptive response to
high energy demand (7, 96). However, there is sufficient evidence
that obesity-related insulin resistance is an early and determining
risk factor in establishing metabolic syndrome, and
consequently, T2DM, and some types of cancer (2, 6, 64, 94).

Insulin resistance is sexually dimorphic. In mice models of
HFD-induced obesity, despite similar levels of obesity in both
sexes, males display higher fasting plasma glucose levels and
develop more severe glucose intolerance and insulin resistance
than females (63). Male rodents fed with HFD develop insulin
resistance within three weeks, but females are less prone to the
metabolic disturbances caused by HFD, suggesting that females
are less susceptible to fatty acids-induced systemic insulin
resistance (65).

Intralipid infusion has been used as a model to investigate
lipid-induced insulin resistance in rodents and humans. In two
hours, intralipid infusion reduced the phosphorylation of IRS1,
PI3K activity, and the insulin-stimulated glucose uptake in male
but not in female rats. In healthy individuals, intralipid infusion
causes less insulin resistance in women than in men. This insulin
resistance does not impair insulin or AMPK signaling in muscle
and subcutaneous fat. It does not cause accumulation of lipids in
muscle, inflammation, or direct inhibition of GLUT4 activity in
women. Instead, it turns a higher lactate release and lower
glucose oxidation that may suggest a “metabolic switch” of
glucose metabolism to lipid metabolism induced by intralipid
infusion, particularly in women (97).
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Obesity is associated with an enhanced oxidative function and
increased cellular oxidative stress. Mitochondrial dysfunction in
WAT derived from fatty acid accumulation leads to a
dysregulation of adipokine secretion, affecting insulin
sensitivity. Recent investigations suggest that ER elicits
estrogen´s metabolic effects by mitochondrial mechanisms
involved in the regulation of insulin signaling (98). A crucial
link between mitochondrial dysfunction and insulin sensitivity is
adiponectin production. Adiponectin plays a role as an insulin-
sensitizing factor. HFD induces mitochondrial differentiation in
females and a greater retroperitoneal WAT expandability and
decreased adiponectin levels. Surprisingly, in females, HFD-
induced changes allow better systemic insulin sensitivity and
delay lipotoxicity development than male rats. This sexual
dimorphism suggests different physiological strategies between
males and females to maintain energetic and metabolic
homeostasis in response to the high uptake of lipids (99).

In estrogen-poor conditions such as menopause,
ovariectomy, and aromatase deficiency, insulin sensitivity is
decreased (100). HFD-fed ovariectomized female mice exhibit
a reduced insulin sensitivity due to an increased TNFa synthesis.
TNFa activates phosphatases such as PTP1B, which can
dephosphorylate IRS2 and downregulate Akt, interfering with
GLUT4 translocation to the plasma membrane (101).
Conversely, estradiol supplementation reduces inflammation,
improves insulin sensitivity, and down-regulates TNFa and IL-
6 expression (102).

Sex-Related Differences in the Insulin
Signaling Pathway
The sexual dimorphism in adipose tissue’s the physiology and
pathophysiology has been extensively studied. However, there is
not much data related to sex-related differences in the molecular
mechanisms of insulin actions and the consequences of its
dysregulation. Here we present some of the findings reported
so far (Figure 3).

IRS2
IRS2 is known to have an essential role in hypothalamic
regulation of appetite and obesity (104). Irs-2 deletion in mice
causes diabetes and has a sexually dimorphic phenotype. Males
Irs-2-/-mice develop diabetes at 12 weeks of age, while in females,
this deletion generates obesity and a slower progression of this
disease. Garcıá-Barrado and colls. (2011) explored beta-cell
function and lipolysis as a possible cause of sex-related
differences in this model. They reported an increased GSIS on
islets from male Irs-2-/- mice compared to wildtype controls due
to lower expression of a2-AR and attenuation of their inhibitory
role on insulin secretion, which favors beta-cells damage and
their subsequent dysfunction in males.

On the other hand, adipocytes from both male and female Irs-
2-/- mice show resistance to the anti-lipolytic effects of insulin.
However, female Irs-2-/- mice also present resistance to
catecholamines, impairment of cAMP synthesis, and in
consequence, downregulation of PKA, which drives lipolysis.
The HSL lipolytic enzyme activity is blunted in adipose tissue of
Frontiers in Endocrinology | www.frontiersin.org 8
female Irs-2 -/- mice and this decreases the adverse effects of
circulating lipids in females. These results suggest that IRS2 may
play a sexually dimorphic role in the regulating insulin sensitivity
in adipose tissue function (103).

mTORC1 Signaling Pathway
The activation of mTORC1 through Akt promotes the
phosphorylation of S6K and 4E-BP which induces ribosomal
biogenesis and mRNA translation, respectively. The
dysregulation of mTORC1 signaling in tissues of obese
individuals and murine models is related to insulin resistance
(64, 105). Moreover, there is an increase of S6K1 signaling in
tissues from diabetic individuals, and there is evidence that S6K1
removal in mice protects them from diet-induced obesity and
insulin resistance (106).

Tsai and collaborators (2016) have identified gender-specific
differences in the mTORC1 signaling pathway in mice fed with
HFD and obesity associated with aging. The mRNA expression
and protein level of 4E-BP1 decreases under these conditions in
the liver, skeletal muscle, and adipose tissue of males, but not in
females. A transgenic mouse model that over-expresses 4E-BP1
demonstrated that this protein protects male mice against obesity
and HFD-induced insulin resistance. As a result, 4E-BP1 is a
gender-specific obesity suppressor that regulates insulin
sensitivity (63).

Among other mTORC1 targets examined, in aging female
tissues, there is an upregulation of S6K1 activity. The
phosphorylation of PRAS40 by mTORC1 on Ser183 increases
visceral fat of male HFD-treatment mice compared to female
mice (63).

Finally, high-sucrose diet induces metabolic syndrome in
Wistar rats, and insulin resistance associated with sex-
dependent differences in the Akt-mTORC1-S6K signaling
axis (64).

GLUT4
The insulin-sensitive glucose transporter GLUT4 is translocated
to the plasma membrane in response to insulin stimulation in
adipose tissue and skeletal muscle. Recent studies indicate that
this is also true in the hippocampus (107, 108).

Adipocytes from visceral and subcutaneous adipose tissue
from female mice had higher mRNA and protein levels of
GLUT4. In addition, they also display increased amounts of
key lipogenic enzymes such as FAS and ACC than male
adipocytes (39).

CEBPA and PPARg are the main transcriptional factors that
regulate adipocyte differentiation. These transcriptional factors
regulate the expression of the Slc2a4 gene, which codes for
GLUT4. Interestingly, although PPARg upregulates genes
related to adipocyte differentiation, it downregulates Slc2a4
expression. Cebpa expression increases during adipocyte
differentiation. Estradiol increases the expression of Cepba
mRNA, CEBPA nuclear content, and its binding to the Slc2a4
promoter (61). This way, estradiol stimulates the differentiation
of 3T3-L1 adipocytes. ERa activation in adipose tissue increases
Slc2a4 expression, GLUT4 translocation to the plasma
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membrane, and subsequent glucose uptake (109) through the
ERa/CEBPA-mediated pathway, thus revealing a mechanism by
which estradiol can modulate adipogenesis and GLUT4
expression (61) (Figure 2).

FoxO
FoxOs are transcription factors ubiquitously expressed. They
control cellular differentiation, muscle growth, metabolism, and
tumor suppression pathways. FoxOs are directly inhibited by the
actions of insulin in its target tissues (6).

There is a decreased insulin-stimulated Akt activation in
males in a model of mice of muscle-specific FoxO1/3/4 triple
knockout (TKO); Akt2 mRNA and protein levels are reduced, as
well as were protein and phosphorylation levels of insulin
receptor and IRS2 mRNA. These changes contributed to a
decreased insulin-stimulated glucose uptake in the muscle of
male TKOmice, altering glucose homeostasis. In contrast, female
TKO mice maintained normal Akt2 levels, unchanged levels of
insulin-mediated Akt phosphorylation, and normal glucose
uptake in muscle compared to those of controls. Thus, FoxO
Frontiers in Endocrinology | www.frontiersin.org 9
deletion in skeletal muscle reveals sex-dependent differences in
Akt2 associated with impaired insulin signaling in male mice
muscle, but not in females. Penniman and collaborators suggest
that FoxO promotes insulin sensitivity in male mice muscle,
probably due to an increased Akt2 expression (60).
CONCLUSION

There is ample evidence from animal models and humans that
males and females are different phenotypically and metabolically
at cellular and molecular level. Females are protected against
obesity–induced insulin resistance due to sex hormones and sex-
specific gene expression in adipose tissue. Furthermore, there are
variations between males and females in insulin actions through
of the insulin signaling pathway. Although sex is a critical factor
in the prevalence and severity of metabolic diseases, males have
historically been used in scientific research scientific to avoid
female sex hormones actions along the estral cycle. However, sex
FIGURE 3 | Sexual dimorphism in the insulin signaling pathway. The sex-dependent function of proteins in the insulin signaling pathway involves sex-dependent
differences in adipose tissue function and consequently in the development and progression of obesity, dyslipidemia and insulin resistance, signs associated with
metabolic diseases such as metabolic syndrome, T2DM, CVDs (39, 60, 61, 63, 64, 103). See attached list of abbreviations. Created with BioRender.com.
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should be considered when investigating molecular processes
related to insulin signaling and related metabolic pathways in
healthy metabolism and disease (Figure 3). This new
consideration could lead to more efficient and urgently needed
sex-targeted therapies to treat obesity and its comorbidities.
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Channels and Insulin Secretion by Drugs and Hormones in Pancreatic Beta
Cells. Mol Pharmacol (2016) 90(3):341–57. doi: 10.1124/mol.116.103861

79. Wong WPS, Tiano JP, Liu S, Hewitt SC, Le May C, Dalle S, et al.
Extranuclear Estrogen Receptor-Alpha Stimulates Neurod1 Binding to the
Insulin Promoter and Favors Insulin Synthesis. Proc Natl Acad Sci USA
(2010) 107(29):13057–62. doi: 10.1073/pnas.0914501107

80. Sharma G, Prossnitz ER. Mechanisms of Estradiol-Induced Insulin Secretion
by the G Protein-Coupled Estrogen Receptor GPR30/GPER in Pancreatic
Beta-Cells. Endocrinology (2011) 152(8):3030–9. doi: 10.1210/en.2011-0091

81. Heart Disease and Stroke Statistics. Update - American College of Cardiology
(2017). Available at: https://www.acc.org/latest-in-cardiology/ten-points-to-
remember/2017/02/09/14/58/heart-disease-and-stroke-statistics-2017.

82. Smith GI, Mittendorfer B, Klein S. Metabolically Healthy Obesity: Facts and
Fantasies. J Clin Invest (2019) 129(10):3978–89. doi: 10.1172/JCI129186

83. Salaün H, Thariat J, Vignot M, Merrouche Y, Vignot S. Obesity and Cancer.
Bull Cancer (2017) 104(1):30–41. doi: 10.1016/j.bulcan.2016.11.012

84. Chang E, Varghese M, Singer K. Gender and Sex Differences in Adipose
Tissue. Curr Diabetes Rep (2018) 18(9):69. doi: 10.1007/s11892-018-1031-3

85. Geer EB, Shen W. Gender Differences in Insulin Resistance, Body
Composition, and Energy Balance. Gend Med (2009) 6 Suppl 1:60–75.
doi: 10.1016/j.genm.2009.02.002

86. Attie AD, Scherer PE. Adipocyte Metabolism and Obesity. J Lipid Res (2009)
50 Suppl:S395–9. doi: 10.1194/jlr.R800057-JLR200

87. Perreault L, Bergman BC, Hunerdosse DM, Eckel RH. Altered Intramuscular
Lipid Metabolism Relates to Diminished Insulin Action in Men, But Not
Women, in Progression to Diabetes. Obes (Silver Spring) (2010) 18
(11):2093–100. doi: 10.1038/oby.2010.76

88. Garcia-Carrizo F, Priego T, Szostaczuk N, Palou A, Picó C. Sexual Dimorphism
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95. Larqué C, VelascoM, Navarro-Tableros V, DuhneM, Aguirre J, Gutiérrez-Reyes
G, et al. Early Endocrine and Molecular Changes in Metabolic Syndrome
Models. IUBMB Life (2011) 63(10):831–9. doi: 10.1002/iub.544

96. Aguayo-Mazzucato C, Sanchez-Soto C, Godinez-Puig V, Gutiérrez-Ospina
G, Hiriart M. Restructuring of Pancreatic Islets and Insulin Secretion in a
Postnatal Critical Window. PloS One (2006) 1:e35. doi: 10.1371/
journal.pone.0000035

97. Høeg LD, Sjøberg KA, Jeppesen J, Jensen TE, Frøsig C, Birk JB, et al. Lipid-
Induced Insulin Resistance Affects Women Less Than Men and Is Not
Accompanied by Inflammation or Impaired Proximal Insulin Signaling.
Diabetes (2011) 60(1):64–73. doi: 10.2337/db10-0698

98. Gupte AA, Pownall HJ, Hamilton DJ. Estrogen: An Emerging Regulator of
Insulin Action and Mitochondrial Function. J Diabetes Res (2015)
2015:916585. doi: 10.1155/2015/916585

99. Amengual-Cladera E, Lladó I, Gianotti M, Proenza AM. Sex Differences in
the Effect of High-Fat Diet Feeding on Rat White Adipose Tissue
Mitochondrial Function and Insulin Sensitivity. Metab Clin Exp (2012) 61
(8):1108–17. doi: 10.1016/j.metabol.2011.12.016

100. Van Sinderen M, Steinberg G, Jorgensen SB, Honeyman J, Chow JDY,
Simpson ER, et al. Sexual Dimorphism in the Glucose Homeostasis
Phenotype of the Aromatase Knockout (ArKO) Mice. J Steroid Biochem
Mol Biol (2017) 170:39–48. doi: 10.1016/j.jsbmb.2016.05.013
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GLOSSARY

4E-BP Eukaryotic translation initiation factor 4E binding protein
5´AMP Adenosine 5´-monophosphate
AC Adenilate cyclase
ACC Acetyl-CoA carboxylase
Akt Protein kinase B
AMPK AMP-activated protein kinase
AR Androgen receptors
ATGL Adipose triglyceride lipase
ATP Adenosine triphosphate
cAMP Cyclic adenosine monophosphate
CEBPA Estrogen receptor 1/CCAAT/enhancer-binding protein alpha
CXCL 10 CXC-chemokine ligand 10
DHT Dihydrotestosterone
E2 17b-estradiol
ERK Extracellular signal-regulated kinase
ERa Estrogen receptor a
ERb Estrogen receptor b
Esr1 Estrogen receptor 1 gene
FAS Fatty acid synthase
FoxO1 Forkhead box protein O1
FSH Follicle stimulating hormone
G6Pase Glucose 6-phosphatase
GDP Guanosine diphosphate
GLP-1 Glucagon-like peptide-1
GLUT2 Glucotransporter 2
GLUT4 Glucotransporter 4
GPER G-protein coupled estrogen receptor
Grb2 Growth factor receptor-bound protein 2
GSK3b Glycogen synthase kinase 3b
GTP Guanosine 5´triphosphate
HSL Hormone-sensitive lipase
Igfr Insulin-like growth factor receptor gene
Insr Insulin receptor gene
IR Insulin receptor
IRS1 Insulin receptor substrate 1
IRS2 Insulin receptor substrate 2
Irs-2 Insulin receptor substrate 2 gene
JAK Janus kinase

(Continued)
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JNK c-Jun N-terminal kinase
LH Luteinizing hormone
MAPK Mitogen-Activated Protein Kinase
MEK MAPK ERK kinase
MGL Monoacylglycerol lipase
miRNA Micro RNA
mRNA Messenger RNA
mTOR mammalian Target Of Rapamycin
mTORC1 mammalian Target Of Rapamycin Complex 1
mTORC2 mammalian Target Of Rapamycin Complex 2
NF-kB Nuclear factor-kB
PDE3B Phosphodiesterase 3B
PDK1 Phosphoinositide-dependent kinase-1
PEPCK Phosphoenolpyruvate carboxykinase
PGC1a Peroxisome proliferator-activated receptor-gamma coactivator-1a
PI(3,4,5)P3 Phosphatidylinositol 3,4,5-trisphosphate
PI(4,5)P2 Phosphatidylinositol 4,5-bisphosphate
PI3K Phosphatidylinositol–3 kinase
PKA cAMP-dependent protein kinase
PPARg Peroxisome proliferator-activated receptor-gamma
PRAS40 Proline-rich Akt substrate
PTP1B Protein tyrosine phosphatase 1B
Raf-1 RAF proto-oncogene serine/threonine-protein kinase
Raptor Regulatory-associated protein of mTOR
Ras Ras proteins (small guanosine triphosphatases)
Rheb Ras homolog enriched in brain
S6K Ribosomal S6 kinase
ShC Src homology and collagen protein
Slc2a4 Solute carrier family 2-member 4 gene
SOS Guanin exchange factor son of sevenless
Src Proto-oncogene tyrosine-protein kinase
SREBP1c Sterol regulatory element-binding protein 1c
Sry Sex determining region Y gene
STAT Signal transducer and activator of transcription
TBC1D4 TBC1 domain family member 4
T Testosterone
TG Triacylglycerols
TLR4 Toll-like receptor 4
TNFa Tumor necrosis factor a
TSC1/2 Tuberous sclerosis protein ½
a2-AR a2-adrenoceptors
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