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The occurrence of diabetes mellitus is characterized by pancreatic b cell loss and chronic
hyperglycemia. While Type 1 and Type 2 diabetes are the most common types, rarer
forms involve mutations affecting a single gene. This characteristic has made monogenic
diabetes an interesting disease group to model in vitro using human pluripotent stem cells
(hPSCs). By altering the genotype of the original hPSCs or by deriving human induced
pluripotent stem cells (hiPSCs) from patients with monogenic diabetes, changes in the
outcome of the in vitro differentiation protocol can be analyzed in detail to infer the
regulatory mechanisms affected by the disease-associated genes. This approach has
been so far applied to a diversity of genes/diseases and uncovered newmechanisms. The
focus of the present review is to discuss the latest findings obtained by modeling
monogenic diabetes using hPSC-derived pancreatic cells generated in vitro. We will
specifically focus on the interpretation of these studies, the advantages and limitations of
the models used, and the future perspectives for improvement.
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INTRODUCTION

Diabetes mellitus (DM) is characterized by pancreatic b cell loss and chronic hyperglycemia. Type 1
diabetes (T1D) is caused by the autoimmune reaction against b cells (1), and Type 2 diabetes
originates from insulin resistance and b cell overload (2–4). In addition, rarer monogenic forms of
diabetes account for approximately 1–5% of diabetes cases, depending on the population studied (5,
6). Over 30 subtypes of monogenic diabetes have been identified to date, each having a characteristic
phenotype and a specific pattern of inheritance (6, 7). The identification of genes implicated in the
pathogenesis of monogenic diabetes, including components of the insulin secretory pathway and
transcription factors, has provided important insights into human pancreas and b cell development
and function.

Monogenic diabetes is caused by either splice-site, non-sense, missense, or frame-shift
mutations, and more rarely partial or full deletions, affecting a single gene (8–14). The disease
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phenotype and associated extra-pancreatic features vary
depending on the affected gene (15). These characteristics have
made monogenic diabetes an interesting disease subtype to
model using human pluripotent stem cells (hPSCs). Indeed,
hPSCs can be differentiated into pancreatic cells following key
steps of differentiation induced by well-established combinations
of growth factors and small molecules, thereby respecting a
natural path of development [recently reviewed in (16, 17)].
Thus, differentiation of human induced pluripotent stem cells
(hiPSCs) either derived from patients with monogenic diabetes
or genetically edited to carry the mutation of interest can be used
to study the potential regulatory mechanisms affected by each of
the disease-associated genes (Figure 1). Applying this approach
to a diversity of genes has led to the discovery of new
mechanisms associated with specific regulators of pancreatic
development. The focus of this review is to discuss the latest
findings obtained by modeling monogenic diabetes using hPSC-
derived pancreatic cells generated in vitro. We will focus on the
interpretation of these studies, the advantages and limitations of
the models used, and the future perspectives for improvement.
Of note, the reader is referred to recent reviews concerning:
1) the state-of-the-art knowledge in pancreatic b cell development
in mice and humans (18–21); 2) the tools for hPSC genome
editing (22, 23); 3) a comparison of the in vitro pancreatic
differentiation protocols including the latest advances to achieve
functional b cells from hPSCs (16, 17, 24); 4) analyzing the
intrinsic variation in the protocol outcomes from different
sources of hPSCs (25, 26); and 5) the use of in vitro pancreatic
Frontiers in Endocrinology | www.frontiersin.org 2
differentiation from hPSCs to discover new mechanisms
underlying human pancreas development (24, 27), or to model
other types of diabetes (23, 28–31). The later also summarize
findings on monogenic diabetes modeling. Our review adds up on
top of these by exclusively focusing on the modeling of
monogenic diabetes, discussing in more detail the different
approaches taken and including extremely recent works which
provide insightful information for the interpretation of the results
published so far.
HUMAN PANCREAS DEVELOPMENT

Lessons Learned From Mice and
Current Challenges
Pancreas development begins with the establishment of the
pancreatic bud containing multipotent pancreatic progenitor
cells (MPCs) at ~E8.5 in the mouse (19, 20) or ~29 days post
conception in humans (20, 21, 32) and progresses until E18.5 in
the mouse (19, 20) or 24 weeks post conception (wpc) estimated
in humans (20, 21, 33–35). By this time, most of the pancreatic
progenitor cells are terminally fate-committed. The MPCs are
capable of differentiating along the three main lineages of the
adult pancreas, namely the ductal, the exocrine (comprising
acinar cells that secrete digestive enzymes), and the endocrine
(including the b cells that produce insulin, but also the a, d, g,
and PP cells) (19, 36, 37). As the pancreas develops, MPCs
differentiate into acinar or endocrine-ductal bipotent progenitor
FIGURE 1 | Schematic illustrating the pipeline for monogenic diabetes disease modeling using human pluripotent stem cells.
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(BP) cells, and eventually to endocrine-committed progenitors
(EPs) that will give rise to b cells. Importantly, recent single cell
RNA-seq (scRNA-seq) studies have described the transcriptional
profiles that characterize these pancreatic progenitor cell stages
in the mouse and identified additional progenitor cell sub stages
(38–42). Thus, we can now rely on a precise transcriptomic
fingerprint for several progenitors that arise during mouse
pancreas development.

Cumulative knowledge has revealed the role and stage-specific
functions of signaling pathways in the pancreatic developmental
program, including Wnt, TGF-b, Notch, FGF and, more recently,
the Hippo pathway (19, 36, 37, 43–46). The pancreatic
mesenchyme has also been shown to play important roles during
development, by fine-tuning the crosstalk with the pancreatic
epithelium through these pathways (47–50). This knowledge has
been exploited to develop protocols to differentiate human
embryonic stem cells (hESCs) into the pancreatic lineage (51–
55), opening the possibility to produce large quantities of b cells for
cell-based therapies and also providing a new avenue for research
in human pancreas development.

Differentiation protocols currently available to produce b cells
from hPSCs take advantage of the cell signaling events that occur
during fetal development (18–21). Despite this knowledge-based
approach, the generation of fully functional b cells in vitro has
remained elusive. We thus refer to the cells produced in vitro so far
as b-like cells. This limitation could be in part explained by the fact
that the function of these pathways during pancreas development
has been mainly studied in rodents, and it has recently been
reported that human pancreas development could differ in several
aspects (20, 21, 32, 56, 57). We are still lacking systematic studies
comparing islet development between human and mouse, although
recent reports are moving forward to address this gap (57–60). It is
expected that a deeper understanding of these inter-species
differences in islet development will probably be critical for the
production of fully functional and mature b cells from hPSCs. As
well, this will allow a more precise dissection of the molecular
mechanisms driving diabetes predisposition by genetic mutations
and/or external stimuli. Noteworthy, recent protocols allow the
derivation of monohormonal insulin-producing cells expressing key
b cell transcription factors, including PDX1, NKX6.1, and MAFA
(61–65). Fine tuning of such protocols could further improve the
glucose-response of in vitro derived b-like cells (66–69) without the
need to involve a step of cell transplantation in mice to ensure
proper maturation.

Lessons Learned From In Vitro Human
PSC Pancreatic Differentiation
The use of hPSCs as in vitro model system to study human
pancreatic development has gained momentum and several
important discoveries have been made using this approach
[recently reviewed in (27)].

A Role for TEAD and YAP in Pancreas Development
By comparing the transcriptomes and key epigenomic features of
MPCs derived in vitro from hESCs with human fetal primary
pancreatic tissue of six wpc embryos, we were able to show that
Frontiers in Endocrinology | www.frontiersin.org 3
in vitro derived cells closely recapitulated the main expression
profile and regulatory landscape of their in vivo counterparts (45).
Furthermore, this epigenomic characterization was extended to
include ChIP-seq profiling of several transcription factors by
taking advantage of the in vitro system. A combined analysis of
these data led to the discovery that TEAD1 was an integral
component of the enhancer network in human embryonic
pancreatic progenitors (45, 46). The relevance of TEAD protein
binding for the activation of MPC enhancers was mechanistically
validated using the platform provided by hPSC-derived pancreatic
cells in vitro. We concluded that, while highly tissue specific
enhancers were defined by co-binding of pancreas-specific
transcription factors, TEAD proteins conferred these regions the
ability to be regulated by YAP (an effector of the Hippo pathway)
during human pancreas development. These results were consistent
with reports for a role of the Hippo pathway in mouse pancreas
development (43, 44). More recent reports support these findings by
showing that YAP and other components of the Hippo pathway are
active and highly enriched within the SOX9+/PTF1A+ progenitor
cells of the human fetal pancreas (58).

The human in vitro differentiation system has provided
additional mechanistic evidence for the relevance of the Hippo
pathway in pancreas differentiation by showing that YAP links
extracellular matrix-mediated mechano-signals to regulate gene
expression. Integration of such signaling plays a key role in the
fate choice of bipotent pancreatic progenitors, whereby YAP
downregulation favors endocrine cell commitment (70). In
agreement, sustained in vitro YAP activation impairs b cell
differentiation while inhibition of YAP enhances differentiation
of functional b cells derived from hPSCs (71). Combined
together, these results illustrate how in vitro pancreatic
differentiation can help in the discovery of new regulatory
mechanisms that are relevant for human b cell development.

A Role for Polycomb Group-Mediated Repression in
Pancreas Development
Mapping the dynamic changes in histone modifications and
chromatin accessibility across different stages of the in vitro
pancreatic differentiation protocol has provided important
insights into the suitability and current limitations of this
model (72–75). It has to be noted that, despite successful
applications, the in vitro pancreatic differentiation system does
not exactly replicate all the epigenomic features of their in vivo
counterparts. Sander and colleagues have profiled selected
chromatin modifications and the transcriptome of these cells,
at different stages of the pancreatic endocrine differentiation
protocol using hESCs (72). They showed that removal of
Polycomb group (PcG)-mediated repression on stage-specific
genes was a key mechanism for the induction of developmental
regulators in the in vitro system, consistent with the in vivo
relevance of this mechanism in mouse endocrine pancreas
development (76–78). However, they also reported that
elimination of PcG-mediated repression on endocrine-specific
genes was not fully recapitulated by the in vitro derived
endocrine cells. This was particularly evident at genes involved
in organ morphogenesis, underscoring a current limitation
July 2021 | Volume 12 | Article 692596
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(i.e. the lack of tissue-specific contextual cell signaling) of the in
vitro protocols for studying some aspects of in vivo development.
Noteworthy, these experiments were performed using 2D in vitro
differentiation protocols which have been shown to be less
efficient to produce functional b-like cells than three-
dimensional suspension culture systems (61–63, 66–68). This
“second generation” protocols could be more efficient in
allowing the proper deposition of epigenetic marks.

Distinct Progenitor Cell Populations Could
Differentiate Into Monohormonal b Cells
Another example of the complexity of the in vitro endocrine
differentiation process was provided by Petersen et al. who
profiled single-cell transcripts by qRT-PCR at selected stages of
the protocol used to produce b-like cells from hPSCs (79). This
analysis identified two distinct progenitor cell populations with
the potential to differentiate into monohormonal b-like cells.
NKX6.1 expression prior or after the onset of NEUROG3 (the
gene coding for the EP transcription factor marker NGN3) was
the main difference between these progenitors. Building up on
these results, Ramond et al. performed a combined analysis of
single-cell qRT-PCR datasets obtained from pancreatic
progenitor and endocrine cells from in vitro and in vivo
samples (59, 60). Their observations suggest that these distinct
progenitor cell populations identified in vitro could indeed exist
during in vivo development. This finding contrasts with
knowledge gained from mouse studies where Nkx6 factors
systematically specify endocrine cell fate upstream of Ngn3 in
the MPC stage (80, 81). Still, the function and characteristics of
these two populations of progenitors in the developing human
pancreas remain to be fully elucidated.

Taking advantage of novel single-cell technologies can help to
match some of the transcriptional signatures from in vivo
pancreatic progenitor cell stages identified in the mouse (38–
41), with pancreatic progenitors derived from hPSCs (38, 66, 82).
However, such exercise remains challenging due to inter-species
differences and also the impact of the in vitro culture. New tools
are being quickly developed to address this limitation, making
the bioinformatic analyses of these data an exciting area of
research (83, 84). More recently, the first scRNA-seq
experiments using human embryonic pancreas from 15.2 and
17.1 wpc have been reported (58, 85). Integration of these
scRNA-seq datasets with those derived from the mouse
embryonic pancreas will help to identify differences and
similarities in the transcriptional fingerprints of the distinct
pancreatic progenitor cell types. This will ultimately contribute
to validate the identity of pancreatic progenitors produced
from hPSCs.
MODELING MONOGENIC DIABETES WITH
HUMAN PLURIPOTENT STEM CELLS

The most frequently affected maturity-onset diabetes of the
young (MODY) genes include the enzyme glucokinase (GCK,
MODY2) (86, 87) and the transcription factor genes hepatic
nuclear factor 1 alpha (HNF1A, MODY3) (88), hepatic nuclear
Frontiers in Endocrinology | www.frontiersin.org 4
factor 4 alpha (HNF4A, MODY1) (89), and hepatic nuclear
factor 1 beta (HNF1B, MODY5) (90). Other MODY genes
include PDX1 (MODY4), NEUROD1 (MODY6), KLF11
(MODY7), CEL (MODY8), PAX4 (MODY9), INS (MODY10),
BLK (MODY11), ABCC8 (MODY12), KCNJ11 (MODY13),
APPL1 (MODY14) (91). On the other hand, homozygous
mutations at several lineage determining transcription factors,
such as PTF1A, PDX1, NEUROG3, RFX6, NEUROD1, MNX1,
NKX2.2 and GLIS3 result in permanent neonatal diabetes
mellitus (PNDM) in humans (13, 92–100). Interestingly,
heterozygous mutations in these genes rarely result in diabetes
in mice, thereby suggesting an important divergence in the
activity or function for these factors between human and
mouse (19, 21, 101). The importance of haploinsufficiency and
the mechanisms by which a decrease in transcription factor
activity causes a disease in humans is poorly understood, mostly
due to the lack of an appropriate model system. As an example,
MODY5 diabetes (HNF1B-associated) can be induced by a
diversity of mutations including several splice-site, non-sense,
missense, and frame-shift mutations or whole gene deletions, all
of which result in a diabetes (102). The heterozygous mutation in
mouse has no effect on pancreatic development, while
homozygous mutation blocks foregut specification thereby
masking its downstream function in the differentiation of
MPCs. Ultimately, haploinsufficiency may reflect the functional
effects of different gene anomalies, stochastic variation in
temporal gene expression during early development or
additional genetic and/or environmental modifiers that may
influence the disease phenotype (102–104).

As mentioned above, mouse models often do not recapitulate
the disease phenotype associated with heterozygous mutations of
HNF1A, HNF4A, or HNF1B in humans. The genetic discrepancy
between the mouse and monogenic diabetes gene
haploinsufficient patients and the difficulty in accessing patient
samples have reinforced the interest in using hPSCs (Figure 1).
Genome-editing tools combined with directed differentiation of
hPSCs offer a unique platform for generating patient-specific
disease models to elucidate novel genes and molecular pathways
that underlie monogenic diseases with complex traits, such as
diabetes, and ultimately lead to the development of novel
therapeutic strategies [recently reviewed in (22, 25)]. Several
studies in the last decade have used genetically engineered hPSC
culture systems for differentiation into pancreatic cells to further
expand our understanding of the roles of various genes
associated with monogenic diabetes. Their findings are
summarized in Tables 1, 2, and these will be discussed in
more detail next.

WFS1
Egli and colleagues provided the first example for the use of
hiPSCs to create insulin-producing cells from patients with
Wolfram Syndrome (WS) (119). hiPSCs were generated from
individuals with diabetes caused by mutations in the WFS1 gene
and healthy-donor controls. Differentiation of these cells towards
b-like cells revealed increased levels of ER stress molecules and
decreased insulin content in WFS1-deficient b-like cells. Overall,
insulin processing and secretion in response to various
July 2021 | Volume 12 | Article 692596
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TABLE 1 | Summary of reports modeling maturity-onset diabetes of the young (MODY) mutation effects.

Gene
studied

Pancreatic defects reported
in humans

Effects recapitulated
in mice

Genome
editing

approach

Differentiation
protocol

Type of human
pluripotent stem

cell

In vitro phenotypes Ref.

HNF4A
(MODY1)

HNF4A heterozygous mutations
affect both liver and pancreas
development. MODY1 patients
present neonatal
hyperinsulinemia and
impairment in b cell function.
They present normal insulin
sensitivity but decreased insulin
secretion.

Rodent models do not
accurately recapitulate
the MODY1 phenotype
in humans. The available
Hnf4a general knockout
murine model is
embryonic lethal, while
heterozygous mice
present normal glucose
tolerance and do not
show any diabetic
features.

NA (62) hiPSCs were
derived from
MODY1 mutation
carriers. Their family
members, without
the mutation, were
used as controls.

The HNF4A mutation studied did
not prevent the formation of
insulin+ cells in vitro. Also, no
defects in b-like cells
differentiated from HNF4A
mutant hiPSCs were found.

(105)

NA Adapted from
(62).

Control hiPSC lines
(CSES7 and IPSO
lines) and MODY1
patient-derived
hiPSCs.

Researchers report that cells
from the MPC stage show
increased expression of
endocrine progenitor
transcription factors, including
PAX6, NEUROD1 and
NEUROG3.

(106)

Site-directed
mutagenesis.

(61) hiPSCs were
derived from non-
diabetic and
MODY1 patients.

Key developmental genes such
as HNF1B, PDX1, GATA4, and
RFX6 are downregulated at the
foregut progenitor stage, prior to
MPC specification. Still, terminally
differentiated b-like cells can be
produced and express selective
b cell markers and C-peptide.
The functional capacity of these
cells could not be appropriately
elucidated due to limitations of
the in vitro protocol used.

(107)

GCK
(MODY2)

Patients with GCK
heterozygous mutations
present progressive b-cell
dysfunction, fasting
hyperglycemia and reduced
insulin secretion. These result in
a mild diabetes phenotype that
generally does not require anti-
diabetes medication.

Homozygous mutant
mice exhibit growth
retardation and die soon
after birth as
consequence of severe
hyperglycemia.
Heterozygous mutant
mice only present
slightly elevated blood
glucose levels from
birth, with disturbed
glucose tolerance and
glucose-induced insulin
secretion.

NA NA Non-edited MODY2
and PNDM patient-
derived hiPSCs.

This work reports the generation
of iPSCs from MODY2 patients.
The researchers did not analyze
differentiation into the pancreatic
lineage.

(108)

HNF1A
(MODY3)

Patients with HNF1A
heterozygous mutations show b
cell dysfunction and
hyperglycemia due to
insufficient insulin release in
response to increased blood
glucose levels.

Mouse models do not
fully mimic the human
disease phenotype.
Mice with heterozygous
mutations in Hnf1a are
healthy and mice with
homozygous null
mutations present a
diabetic phenotype.

CRISPR-
CAS9
system.

(62), with minor
modifications.

Genome-edited
hESCs (MEL1 and
H1) and human b-
cell lines (EndoC-
BH).

Differentiation from HNF1A+/-

hESC show reduced number of
INS+ cells. b-like cells present
defects in mitochondrial function
and the glycolysis process.
Decreased expression of b cell
transcription factors and genes
associated with insulin synthesis.
Reduced b cell proliferation and
increased apoptosis.

(109)

NA (61), with some
modifications.

hiPSCs were
derived from
MODY3 patients.
hiPSCs derived
from a healthy
donor were used
as control.

HNF1A MODY3 mutations
caused decreased GLUT2
expression, which was
associated with reduced glucose
uptake and ATP production. The
mutant HNF1A b-like cells
present decreased insulin
secretion in response to high
glucose.

(110)

(Continued)
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secretagogues was comparable to healthy controls, but the
former displayed increased activity of unfolded protein
response (UPR) pathways.

More recently, Maxwell et al. used CRISPR/Cas9 to correct a
diabetes-causing pathogenic variant in WFS1 hiPSCs (120).
Noteworthy, b-like cells differentiated from WFS1-corrected
hiPSCs showed robust and dynamic insulin secretion in
response to glucose, and reversed streptozocin-induced
diabetes when transplanted into mice. Single-cell RNA-seq
transcriptome profiling showed that indeed these cells
displayed increased insulin levels and decreased expression of
genes associated with endoplasmic reticulum stress. Taken
together, these studies illustrate the potential of in vitro
pancreatic differentiation from hPSCs to study how
mechanisms related to cellular stress can affect diabetes onset.

PDX1
Homozygous null mutations in PDX1 result in pancreatic
agenesis both in mice and humans (13, 121–123). Human
patients with PDX1 heterozygous inactivating mutations
exhibit MODY4 diabetes caused by defects in b cell function
and/or the maintenance of b cell mass in adults (36). In rodents,
it has been reported that Pdx1+/− mice can develop a functional
pancreas (121, 122) but become diabetic in adulthood due to b
cell apoptosis (124).
Frontiers in Endocrinology | www.frontiersin.org 6
Another pioneer study to model monogenic diabetes was
reported by Huangfu and colleagues, who used TALEN and
CRISPR-Cas-mediated gene editing combined with hPSC-
directed differentiation. These researchers provide a systematic
analysis of the role for PDX1 and seven additional pancreatic
transcription factors (RFX6, PTF1A, GLIS3, MNX1, NGN3,
HES1 and ARX) in pancreatic cell commitment (111).
Noteworthy, they created mono- or biallelic frameshift
mutations in all these genes and used untargeted isogenic cell
lines as controls. This analysis not only defined the specific
developmental steps affected by these mutations in a model of
human pancreas differentiation, but also revealed new
mechanisms. Tables 1, 2 show a summary of their results for
the genes previously associated with MODY and/or PNDM. An
interesting finding of this work was that monoallelic frameshift
translation mutations disrupting the PDX1 protein sequence
cause a reduction (up to 65%) in the number of insulin+ cells
derived in vitro. These findings suggest a haploinsufficient
requirement for PDX1 in pancreatic endocrine development.
Importantly, this phenotype correlates with the observation that
patients with heterozygous mutations in PDX1 present with
diabetes from an early age (125). These results further validate
that decreased amounts of PDX1 could lead to b cell dysfunction,
a decrease in b cell mass during fetal development and/or the
maintenance of b cell mass in adults (124, 126, 127).
TABLE 1 | Continued

Gene
studied

Pancreatic defects reported
in humans

Effects recapitulated
in mice

Genome
editing

approach

Differentiation
protocol

Type of human
pluripotent stem

cell

In vitro phenotypes Ref.

PDX1
(MODY4)

PDX1 heterozygous mutations
are associated with insulin
secretion deficiency. Common
point heterozygous mutations in
the PDX1 transactivation
domain impair human
pancreatic b cell formation and
function, and contribute to
increased risk for diabetes.
Pancreatic developmental
anomalies related to PDX1
mutations are reported only in
neonatal diabetes cases.

Homozygous Pdx1-
deficient mice fail to
generate a pancreas,
while heterozygous
animals develop a
pancreas but become
diabetic in adulthood
due to b cell apoptosis.

TALEN and
CRISPR/
Cas9.

Adapted from
(52, 54).

Genome-edited
hESCs (HUES8).

Monoallelic PDX1 mutations are
associated with decreased PDX1
protein expression. These
compromise endocrine
differentiation and lead to
reduction in the number of INS+
cells derived in vitro.

(111)

CRISPR/
Cas9.

Based on (62). Genome-edited
hiPSCs and
patient-derived
hiPSCs.

Heterozygous mutations impair in
vitro b cell differentiation and
function. Homozygous point
mutations in the PDX1
transactivation domain do not
only impact pancreatic endocrine
lineage development, but also
impair glucose-responsive
function of b cells through
misregulation of several PDX1
target genes.

(112)

HNF1B
(MODY5)

Patients with HNF1B
heterozygous mutations
commonly exhibit pancreatic
hypoplasia, b-cell dysfunction
and insulin resistance.

Hnf1b-/- mice present
pancreatic agenesis,
exhibiting loss of
expression of several
pancreatic genes,
including Pax6, which
regulate b-cell function.
In contrast with MODY5
patients, Hnf1b+/- mice
do not develop
diabetes.

NA Adapted from
(52).

MODY5 patient-
derived hiPSCs.

Upregulation of multiple key
pancreatic transcription factors
at the DE and MPC stage,
including FOXA2, PDX1, GATA4
and GATA6. Interestingly,
expression of HNF1B itself was
induced in mutant hiPSC-derived
MPCs. Reduction of PAX6
expression.

(113)
July 2021 | Volume 12 | Article 69
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TABLE 2 | Summary of reports modeling monogenic mutations associated with permanent neonatal diabetes mellitus (PNDM) or pancreatic agenesis.

Gene studied Pancreatic
defects reported

in humans

Effects recapitulated
in mice

Genome editing
approach

Differentiation
protocol

Type of human
pluripotent stem

cell

In vitro phenotypes Ref.

GATA6 GATA6
heterozygous
inactivating
mutations result in
pancreatic
agenesis.

Gata6 heterozygous
mice are fertile and
phenotypically normal.
Gata6 null mice are
embryonic lethal.
Biallelic loss
of Gata6 and its
paralog Gata4 result in
a phenotype similar to
human PNDM
GATA6-mutated
patients.

CRISPR/Cas9-
mediated genome
editing.

Adapted from (52). Patient-derived
hiPSCs and
genome-edited
hESCs. Isogenic,
mutation-corrected,
hiPSCs were used
as controls.

GATA6 homozygous
mutations lead to impaired
DE differentiation. Rescue of
DE defects in these cells by
re-expression of other
GATA family members
allows b-like cell production
with a lower efficiency.
hPSCs with GATA6
heterozygous mutations
show defects in DE
differentiation. b-like cells
produced in both cases are
defective in the GSIS and in
insulin processing.

(114)

CRISPR/Cas9-
mediated genome
editing.

(61, 62, 111), with
some modifications.

Genome-edited
hESCs (H1 and
HUES8).

Differentiation of GATA6-/-

hPSCs revealed impaired
DE commitment and
pancreatic endocrine
differentiation. No defects in
DE differentiation from
GATA6+/- hPSCs, but a
lower number of PDX1+
NKX6.1+ pancreatic
progenitors and b-like cells
was produced.

(115)

TALENs (55), adapted from
(52).

hiPSCs derived
from pancreatic
agenesis patients
with GATA6
heterozygous
mutations.
Genome-edited
hESCs (H9) and
hiPSCs. Non-
mutated hESCs
and hiPSCs were
used as isogenic
controls.

GATA6 heterozygous
hPSCs present a modest
decrease in the generation
of DE, which differentiate
less efficiently into MPCs
and EPs. GATA6-null
hPSCs fail to enter the DE
lineage.

(116)

CRISPR-CAS9-
mediated genome
editing.

Adapted from (61,
62, 54).

hiPSCs derived
from a patient with
pancreatic
agenesis. Isogenic,
mutation-corrected
hiPSCs were used
as control.

hiPSCs with GATA6
heterozygous mutations
present reduced efficiency
for generation of pancreatic
progenitor cells in vitro.
Correction of these
mutations allowed
identifying a non-coding
SNP that additionally
contributes to the
phenotype observed.

(117)

PDX1 Homozygous
mutations in PDX1
result in pancreatic
agenesis. PDX1
heterozygous
patients exhibit
diabetes caused by
defects in b cell
function and/or the
maintenance of b
cell mass in adults.

Homozygous
mutations in
Pdx1cause pancreatic
agenesis, while
heterozygous animals
develop a pancreas
but become diabetic
in adulthood due to b
cell apoptosis.

TALEN ad CRISPR/
Cas9.

Adapted from (52,
54).

Genome-edited
hESCs (HUES8).

Differentiation of PDX1+/-

mutant hESCs present a
65% reduction of INS+ cells
at the b-like cell stage,
which are mainly
polyhormonal cells using the
protocol described in this
study.

(111)
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TABLE 2 | Continued

Gene studied Pancreatic
defects reported

in humans

Effects recapitulated
in mice

Genome editing
approach

Differentiation
protocol

Type of human
pluripotent stem

cell

In vitro phenotypes Ref.

RFX6 Patients carrying
biallelic RFX6
inactivating
mutations present a
reduction in the
pancreas size and
obstruction of the
small intestine.
These patients
present defects in
the formation of
pancreatic
progenitors and
their further
differentiation into
functional endocrine
cells.

Similar to humans,
Rfx6-null mice show
variable degrees of
pancreatic hypoplasia
and premature death.

TALEN ad CRISPR/
Cas9.

Adapted from (52,
54).

Genome-edited
hESCs (HUES8).

Differentiation of RFX6-/-

mutant hESCs show a
reduction in the number of
PDX1+ pancreatic
progenitor cells. Severe
reduction in b-like cells and
complete absence of a
cells.

(111)

CRISPR/Cas9-
mediated genome
editing.

Adapted from (62) hiPSCs were
derived from
patients with MRS
and from their
healthy,
heterozygous
father. hESCs (H9)
was used as
control.

hiPSCs with RFX6
homozygous mutations
show normal DE and PFG
differentiation, but fail to
robustly activate PDX1.
MPCs and endocrine-
competent progenitors
differentiate less efficiently
from these cells.

(118)

PTF1A Homozygous
inactivating
mutations in PTF1A
cause pancreatic
and cerebellar
agenesis.

Ptf1a-null mice
present a complete
absence of exocrine
pancreatic tissue, but
all islet endocrine cell
types are present until
the late stages of
embryogenesis.

TALEN ad CRISPR/
Cas9.

Adapted from (52,
54).

Genome-edited
hESCs (HUES8).

Differentiation of PTF1A-/-

mutant hESCs do not
present defects in
pancreatic endocrine
differentiation using the
protocol described.

(111)

GLIS3 Biallelic mutations
of GLIS3 underlie a
rare clinical
syndrome,
characterized by
neonatal diabetes
and congenital
hypothyroidism.

Global Glis3-/- mice
die of severe neonatal
diabetes shortly after
birth. Minor differences
in gene dosage of
Glis3 produce
substantive changes
in the expression
levels of Ngn3 and
Ins1, leading to a
variable phenotype
among the multiple
Glis3-KO mouse lines.

TALEN ad CRISPR/
Cas9.

Adapted from (52,
54).

Genome-edited
hESCs (HUES8).

Differentiation of GLIS3-/-

mutant hESCs do not
present defects in
pancreatic endocrine
differentiation using the
protocol described.

(111)

CRISPR/Cas9-
mediated genome
editing.

(64) Genome-edited
hESCs.

Differentiation of GLIS3-/-

mutant hESCs show
impaired expression of
pancreatic endocrine-
associated genes, including
PDX1, NEUROD1, NKX6.1,
and MAFA, and present
increased b-like cell death.
A chemical screen identified
a drug candidate that
rescues mutant GLIS3-
associated b-cell death both
in vitro and in vivo.

(64)

(Continued)
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More recently, Lickert and colleagues generated hiPSCs
from two patients with heterozygous missense mutations in the
PDX1 coding region (PDX1P33T/+ and PDX1C18R/+) leading to
single amino acid exchanges in its transactivation domain
(112). By comparing with a control hiPSC line derived from a
healthy donor, the authors showed that MPC differentiation
was not affected in patient-derived hiPSCs. However, the PDX1
heterozygous point mutations impaired the differentiation of
b-like cells and affected their response to glucose. A more severe
effect was observed when artificially introducing the same point
mutations in homozygosis (i.e. PDX1P33T/P33T and PDX1C18R/C18R)
in isogenic cell lines derived from the original control cell.
Interestingly, this resulted in impaired NKX6.1 induction in
MPCs just in one of the cell lines (PDX1P33T/P33T). Nevertheless,
when differentiated towards insulin producing cells, both
homozygous cell lines yielded a decreased number of b-like
cells with impaired glucose response. The authors also generated
additional isogenic lines carrying different heterozygous
mutations in the PDX1 transactivation domain, to generate a
frame-shift mutation (PDX1+/−). This created a more severe
phenotype to the one observed in the patient-derived hiPSCs,
leading to similar outcomes as obtained from the homozygous
isogenic PDX1P33T/P33T point mutated cells. Further transcriptomic
analyses of MPCs differentiated from these cell lines ascribed the
observed effects to downregulation of key PDX1-bound genes
including MEG3 and NNA, which are involved in pancreas
development and insulin secretion.

Taken together, these results illustrate how predisposition to
develop diabetes can be provoked at the stage of pancreatic
endocrine lineage development by genetic mutations on a gene
that plays a key role at this timepoint. These anomalies could
impair the glucose-responsive function of b-like cells through
misregulation of genes involved in b cell development,
maturation, and function. These results also emphasize that
the choice between patient-derived hiPSCs or healthy donor
hiPSCs with mutations artificially introduced, as well as the
choice of the control cell line used, can affect experimental
Frontiers in Endocrinology | www.frontiersin.org 9
outcomes and their interpretations. In this context, patient-
derived hiPSCs could carry additional mutations in non-
coding regulatory regions and/or other genes which might
further impair the in vitro differentiation outcomes. This effects
have been elegantly exposed in a recent work by Gadue and
colleagues (117), which will be discussed in more detail below, in
the GATA6 section of this review. In contrast, the use of healthy
donor hiPSCs with mutations artificially introduced has the
advantage of enabling the use of isogenic cell lines (i.e. non-
mutated hiPSCs) to exclude additional effects of the
genetic background.

RFX6
Lack of Rfx6 in mice blocks differentiation of all islet cell types,
with the exception of pancreatic-polypeptide-producing cells,
while RFX6mutations in humans result in PNDM (93, 100, 128).
Modeling of the RFX6 requirement for human endocrine
pancreas development has been addressed by Zhu et al. Their
findings, in agreement with current knowledge, show a reduction
of endocrine cell commitment from pancreatic progenitor cells
derived from RFX6−/− mutant hPSCs (111).

In a more recent study, Trott et al. used hiPSCs derived from
individuals with Mitchell–Riley syndrome (MRS) to specifically
associate the role of RFX6 mutations and the lack of pancreatic
endocrine cells in a human model of pancreas development
(118). X-ray microtomography of one of these patients
confirmed the spectrum of congenital defects typical of MRS
(loss of the pancreas body and tail), and exome sequencing
identified a homozygous non-sense mutation in RFX6. hiPSCs
derived from this patient and differentiated along the pancreatic
cell lineage revealed that these cells efficiently differentiate into
posterior foregut cells but exhibited a reduction in the pancreatic
endoderm differentiation, which was accompanied by expression
of genes associated with mesoderm differentiation. These
findings indicate that RFX6 is crucial for maintaining the
transcriptional program that specifies early pancreatic
endoderm in humans.
TABLE 2 | Continued

Gene studied Pancreatic
defects reported

in humans

Effects recapitulated
in mice

Genome editing
approach

Differentiation
protocol

Type of human
pluripotent stem

cell

In vitro phenotypes Ref.

MNX1 Homozygous
mutations in MNX1
are associated
with the
occurrence of
diabetes in infancy
without evidence
of exocrine
pancreatic
dysfunction.
Reduced number
of pancreatic
endocrine cells,
including b cells.

Mnx1-deficient mice
show pancreatic
dorsal-lobe agenesis
and smaller pancreatic
islets, while Mnx1
gain-of-function in the
pancreas leads to
aberrant pancreatic
development.

TALEN ad CRISPR/
Cas9.

Adapted from (52,
54).

Genome-edited
hESCs (HUES8).

Differentiation of MNX1−/−

mutant hESCs do not
present defects in
pancreatic endocrine
differentiation using the
protocol described.

(111)
July
 2021 | Volume 12 | Article 69
DE, definitive endoderm; MPC, multipotent pancreatic progenitor cells; PFG, posterior foregut; GSIS, glucose-stimulated insulin secretion; MRS, Mitchell-Riley syndrome; KO, knock out;
ER, endoplasmic reticulum.
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NEUROG3
While loss of Ngn3 function has been associated with complete lack
of pancreatic endocrine cells in mice (129), the phenotype in
humans is variable [recently reviewed in (21)]. In this sense, while
some patients with homozygous or compound heterozygous
NEUROG3 mutations show glycemic control into adulthood,
indicating a functional endocrine pancreas, others present
neonatal diabetes (96, 130, 131). A recent study suggests that each
mutation could have unique effects on the structure and function of
NGN3 (132). To further understand this divergence, the
requirement of NGN3 for the generation of insulin-producing
cells during human development has been addressed using hPSC
differentiation. Zhu et al. reported that in vitro endocrine pancreatic
differentiation of hPSCs with biallelic mutations in NEUROG3
formed some insulin-producing cells (111), whereas another study
reported a total lack of endocrine cells differentiated from
NEUROG3−/− hPSCs (133). The latter work described that as little
as 10% NEUROG3 expression is sufficient for the formation of
pancreatic endocrine cells, supporting that NGN3 is essential for
endocrine pancreas development in humans. The divergence
between differentiation protocols used in each laboratory and the
influence of genetic background could explain the varied
phenotypes observed between these two studies. Interestingly, a
new adult mouse islet resident pancreatic endocrine progenitor cell
population has been recently reported (134). These cells express the
surface marker Procr, are Neurog3 negative and, when isolated and
co-cultured with endothelial cells, are able to give rise to islet-like
clusters containing all endocrine cell types. Apparently,
differentiation of this adult progenitor cell population into
endocrine cells does not involve Neurog3 expression, raising the
intriguing question of whether such a population exists in humans
and, if so, whether in vitro pancreatic differentiation from hPSCs is
able to follow this “alternative” path for endocrine cell production.
Such possibility could explain the divergence between different
reports concerning the requirement of NGN3 in endocrine cell
production. Taken together, these studies illustrate the complexity,
as well as the potential, associated with hPSC differentiation for
modeling the impact of genetic mutations on human development.

GLIS3
It has been reported that global Glis3−/− mice die of severe
neonatal diabetes shortly after birth (135). Minor differences in
gene dosage of Glis3 produce substantive changes in the
expression levels of Neurog3 and Ins1, leading to a variable
phenotype among the multiple Glis3-KO mouse lines (136). In
agreement with these phenotypes, human biallelic mutations in
GLIS3 underlie a rare clinical syndrome, characterized by
neonatal diabetes and congenital hypothyroidism (92).

The first report of the in vitromodeling for the requirement of
GLIS3 in human pancreas development was provided by Zhu
et al. These researchers did not find defects in pancreatic
endocrine differentiation using GLIS3-/- mutant hESCs, when
using a first generation in vitro pancreatic differentiation
protocol that allows producing poly-hormonal cells (111).

More recently, Amin et al. developed an improved
differentiation protocol that allowed the production of
monohormonal b-like cells with enhanced functionality (64).
Frontiers in Endocrinology | www.frontiersin.org 10
Noteworthy, this protocol allowed the generation of robust
GLIS3 expression at the PDX1+/NKX6.1+ pancreatic
progenitor cell stage, in contrast with previously reported
protocols (52, 111). Using this improved protocol, they were
able to demonstrate that differentiation of GLIS3−/− mutant
hESCs presented impaired expression of pancreatic endocrine-
associated genes, including PDX1, NEUROD1, NKX6.1, and
MAFA. These cells also showed increased b-like cell death.
These findings contrast with those reported by Zhu et al. (111).
The difference could be explained by the improvements in the
differentiation protocol, which allow a closer recapitulation of
the differentiation steps to produce b-like cells. Furthermore,
providing an illustrative example of the utility of the in vitro b
cell differentiation protocols, these researchers performed a
chemical screen that allowed the identification of a novel drug
candidate that rescued mutant GLIS3-associated b-cell death
both in vitro and in vivo (64).

HNF1A
Hnf1a has been shown to regulate the expression pattern of islet-
specific genes involved in key functions of this tissue (137). In the
mouse, while homozygous knockout (Hnf1a−/−) results in insulin
secretory defects and higher blood glucose concentrations,
heterozygous knockout (Hnf1a+/−) do not display this
phenotype (138). This is in sharp contrast with the MODY3
pathology in humans, in which heterozygous mutations result in
diabetes (139). In an attempt to elucidate the mechanisms by
which dysfunctional HNF1A affects pancreatic development
and/or b cell function, Gadue and colleagues have modeled
MODY3 using CRISPR-Cas9 genome-edited hESCs and
EndoC-BH human cell lines (109). Loss of HNF1A function
was accomplished by deletion and premature termination in one
or both HNF1A alleles, resulting in heterozygous and
homozygous KO mutations. Their results suggest that HNF1A
plays an essential role in endocrine cell development, as its loss
leads to abnormal expression of genes related to b cell function
and diabetes. Noteworthy, complete loss of HNF1A did not
impair the production of pancreatic progenitors, but this factor
was necessary for proper endocrine cell development as revealed
by decreased expression of PAX4, and impaired insulin
expression and secretion. Interestingly, HNF1A loss of function
(deletion in one or both alleles of HNF1A) led to increased
expression of a cell markers, including glucagon. The authors
suggest that the increase found in a cells derived from this model
system appears to be human-specific, sinceHnf1a knockout mice
do not display this phenotype.

Another key finding of this work was the identification of a
previously unannotated human-specific long intergenic non-
coding RNA (lncRNA). The LINC01139, designated LINKA,
was shown to act as a downstream target of HNF1A. In vitro
endocrine pancreatic differentiation of LINKA-deficient hESCs
showed no effect on the production of pancreatic progenitors,
but revealed a limited bias towards the production of a cells.
Furthermore, b-like cells produced from LINKA-deficient hESCs
showed a decrease in maximal respiration capacity to a similar
extent as seen in the HNF1A heterozygous cells. Taken together,
their findings point to a role for LINKA in the regulation of a
July 2021 | Volume 12 | Article 692596
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subset of HNF1A target genes with implications in cellular
respiration. The in vivo relevance of LINKA for diabetes onset
remains to be explored. Of note, a significant variability was
observed in the expression changes among the hESC lines used in
this study. These could be partially explained by the impact of the
genetic background, which could lead to differences in the
efficiency of differentiation protocol when applied to each
cell line.

A more recent report was provided by Teo and colleagues
(110). These researchers used MODY3 patient-derived hiPSCs to
study the impact of a recently reported patient-specific
heterozygous HNF1A+/H126D mutation (140). The authors used
hiPSCs reprogrammed from a healthy donor and H9 hESCs as
two independent wild type controls. Molecular dynamics
simulations predicted that the H126D mutation could
compromise DNA binding and gene target transcription.
Indeed, RNA-seq and ChIP-seq analyses performed on
MODY3 hiPSC-derived endocrine progenitors revealed that
the expression of several HNF1A gene targets was affected by
the mutation. An in-depth analysis of the effects on the b-like
cells derived from HNF1A+/H126D hiPSCs demonstrated that the
HNF1A mutation causes a GLUT2 deficiency, that is associated
with reduced glucose uptake and ATP production. Their findings
reveal the importance of HNF1A in regulating GLUT2 and
several genes involved in the MODY3 pathology that may
partly account for the lack of insulin secretion clinically
observed in these patients. This report extends the findings
reported by Cardenas-Diaz et al. (109) by revealing additional
mechanisms triggered by theHNF1Amutations on the rest of the
stimulus-secretion coupling pathway and on HNF1A
transcriptional targets in human b-like cells. Noteworthy, Teo
and colleagues performed RNA-seq and ChIP-seq at the
endocrine progenitor cell stage. They did not found a
differential regulation of the LINC01139 (LINKA) at this stage,
and unfortunately the expression of this lncRNA in b-like cells
derived from HNF1A+/H126D hiPSCs is not reported. It remains
to be elucidated whether LINC01139 is also downregulated in the
latter model. Potential discrepancies on the regulation of this
lncRNA could be accounted by the different approaches followed
in each work to evaluate the effects of HNF1A haploinsufficiency.
On one hand Cardenas-Diaz et al. artificially introduced KO
mutations by generating a genomic deletion leading to
premature termination in one or both HNF1A alleles, and
non-mutated isogenic cell lines were used as controls. This
approach has the advantage of using an isogenic control cell
line, which neutralizes contributions from the genomic
background. However, the mutations introduced generate a
strong HNF1A loss of function that might not appropriately
recapitulate the mechanisms that take place in MODY3 patients.
On the other hand, Teo and colleagues used MODY3 patient-
derived hiPSCs carrying a mutation that causes an amino acid
substitution (HNF1A+/H126D) and used hiPSCs derived from a
healthy donor and H9 hESCs as wild type controls. This
approach has the advantage of using hiPSCs derived from
patient cells, accounting for a closer model to the MODY3
disease. However, the use of non-isogenic hPSCs as controls
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does not allow accounting for potential effects derived from the
different genomic backgrounds. As presented in more detail in
the next section, these might introduce an additional bias in the
differentiation outcome. In summary, further studies are
required to elucidate whether deregulation of LINC01139 plays
a relevant role in MODY3 diabetes.

GATA 6
Mono allelic mutations in GATA6 have been linked with
pancreas agenesis in humans (141) while the knockout of the
same gene has little effect on pancreatic development in the
mouse. Indeed, only knockout of both Gata4 and Gata6 results
in pancreatic agenesis (142, 143). Thus, GATA6 seems to have a
different or at least a more extensive function in human
development. To confirm this observation, Shi et al. used
CRISPR/Cas9 to create hPSCs carrying frameshift mutations in
GATA6, alone or in combination with GATA4 mutations (115).
Their results show that GATA6+/− haploinsufficiency alters
pancreatic progenitor cell differentiation leading to a reduced
number of glucose-responsive b-like cells. Given that
heterozygous inactivating mutations in GATA6 have been
linked with pancreas agenesis, these findings suggest that the
severity of the phenotype could vary according to additional
genetic, epigenetic, and/or environmental factors that were not
accounted by the differentiation process. Interestingly, the
authors also describe dosage-sensitive requirements for
GATA6 and GATA4 in the formation of both definitive
endoderm and pancreatic progenitor cells, confirming the
complex interplays between these factors observed in genetic
studies in the mouse.

In another study, Tiyaboonchai et al. used hiPSCs derived
from a patient with pancreatic agenesis associated with a
heterozygous GATA6 frameshift mutation, which leads to
production of a truncated protein. These researchers also used
CRISPR/Cas9 genome editing to introduce this mutation on
both alleles of the same hiPSC line (114). Noteworthy, hiPSC
lines with homozygous mutations failed to differentiate into
endoderm. Re-expression of GATA6 or other GATA family
members restored this defect. The use of endodermal
progenitor cell lines established from the hiPSC allelic series,
which expressed GATA6 at lower levels but GATA4 and GATA3
at higher levels, allowed bypassing the endoderm defect and
focusing on pancreatic b cell differentiation. The authors found
that all mutant lines were able to differentiate into pancreatic b-
like cells, but the response to glucose in these cells was
functionally defective. Also, they showed that the clear
decrease in pancreas specification and b-like cell generation
was associated with limited endogenous retinoic acid signaling
during in vitro pancreas induction using the GATA6 mutant
cell lines.

Additional information was provided by Chia et al. who
combined both gene-edited and patient-derived hPSCs to
study the function of GATA6 (116). These authors found that
GATA6 heterozygous hPSCs show a limited reduction in
endoderm formation, while GATA6-null hPSCs can only form
mesoderm-like cells. Thus, GATA6 seems to be upstream of the
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endoderm program in humans. Consistent with this hypothesis,
genome-wide studies showed that GATA6 binds and cooperates
with EOMES/SMAD2/3 to regulate the expression of master
endoderm genes. In addition, the early deficit of GATA6+/− in
definitive endoderm was accompanied by a significant reduction
in PDX1+ pancreatic progenitors and C-peptide+ b-like cells.
These findings show that, in humans, the formation of definitive
endoderm and acquisition of pancreatic fate are exquisitely
sensitive to GATA6 gene dosage.

Taken together, the above-mentioned reports revealed
different levels of requirement of GATA6 for pancreatic
differentiation between protocols, labs and cell lines (Table 2).
In this context, a very recent report by Gadue and colleagues
provides an illustrative example which might help to understand
this apparent divergence. These researchers generated a hiPSC
line derived from a pancreatic agenesis patient, harboring a
heterozygous 4 bp duplication in exon 2 of GATA6 leading to
a premature STOP codon, a genetically matched control line, and
an identically artificially-mutated ESC line. Using these cell lines
the authors identified a minor allele frequency of a SNP located
downstream of GATA6 which was associated with the level of
expression of this gene (117). In their in vitro model, the
expression of the GATA6 protein remained depressed in
pancreatic progenitor cells even after correction of the coding
mutation. Screening the regulatory regions of the GATA6 gene in
the patient cells and an additional pancreas agenesis hiPSC line
revealed the above-mentioned SNP. Noteworthy, introducing
this non-coding disease modifier SNP by CRISPR/Cas9 in
control hESCs confirmed that it depressed GATA6 expression
in pancreas precursors. Thus, the phenotypic diversity found in
GATA6 heterozygous patients and the outcome of in vitro studies
could be explained in part by this genetic variant.

The findings reported by Gadue and colleagues suggest that
caution has to be taken when interpreting the results of
monogenic diabetes modeling using patient-derived hiPSCs.
Additional genomic variants might contribute to the in vitro
differentiation outcomes, making it difficult to compare the
results obtained by different groups. Nevertheless, some of the
studies mentioned above did use the same hPSC line, including
the original H9 line derived by JA Thomson and colleagues
(144). In such cases, it is worth to underline that each group used
different protocols of differentiation. Specific additives could
compensate for the decrease in GATA6 expression. For
example, retinoic acid seems to support GATA6 function in
pancreatic specification. Addition/increase of this morphogen
could modulate the effect of GATA6 haploinsufficiency. Taken
together, these results illustrate the challenges and, at the same
time, highlight the unique interest of investigating the function of
key transcription factors in pancreatic development using hPSCs.

HNF4A
In mouse, it has been shown that full inactivation Hnf4a is
embryonically lethal, while heterozygote knockout mice are
normoglycemic and do not present diabetes features (145–147).
In contrast, MODY1 patients carrying heterozygous mutations in
HNF4A present diabetes due to impaired b cell function (148).
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Patient-derived hiPSCs have been recently used to address the
potential mechanisms involved in this phenotype. Ræder and
colleagues reported the use of hiPSCs derived from patients
carrying a non-sense HNF4A mutation associated with MODY1
to study its effect on pancreas and b cell differentiation (105).
Noteworthy, the mutation studied in this work (p. Ile271fs)
generates a truncated HNF4A product from one of the alleles.
The authors show that insulin-positive cells could be generated in
vitro from these cells, suggesting that this human HNF4Amutation
neither blocked the expression of the insulin gene nor the
production of insulin-producing cells in vitro. However, they
acknowledge that the insulin-producing cells derived are
immature as a result of the b cell differentiation protocol per se,
leaving open the possibility that HNF4A could have more subtle
effects on the functionality of fully mature b cells.

In another study, Braverman-Gross et al. generated hiPSCs
from MODY1 patients harboring a different non-sense mutation
in the HNF4A gene and evaluated its differentiation along the
pancreatic lineage (106). In this case, the mutation studied affects
all HNF4A transcripts and impairs the protein dimerization and
transactivation domains. Pancreatic progenitors differentiated
from these cells exhibited an upregulation of other key
pancreatic transcription factors, including PAX6, NEUROD1,
and NEUROG3. The authors suggest that such gene expression
increase could be a compensatory mechanism utilized by
MODY1 cells to overcome the reduction in HNF4A expression.
Interestingly, they also note that the differential expression of
HNF4A target genes in posterior foregut progenitors derived
from mutant cells is affected by the number of HNF4A DNA
binding sites, its transcription start site distance, and the number
of other transcription factor binding sites. Unfortunately, the
authors of this work did not extend the differentiation protocol
to evaluate proportion and functionality of b-like cells derived
from these hiPSC samples.

MODY1 disease modeling was also more recently
accomplished by Teo and colleagues using hiPSCs derived
from patients with frameshift mutations that introduce a
premature stop codon in HNF4A, leading to an unstable
mRNA and overall lowered HNF4A levels (107). This
mutation is the same one (p. Ile271fs) studied by Ræder and
colleagues. Control hiPSC lines were derived from a non-diabetic
patient family member. The resulting cell lines were
differentiated into liver and pancreatic endocrine cells.
Phenotypic analyses showed that HNF4A haploinsufficiency
affects foregut endoderm gene expression signatures,
contributing to long-term consequences on hepatic and
pancreatic cell fates. While key developmental genes were
perturbed by HNF4A haploinsufficiency at the pancreatic
progenitor stage (including HNF1B, PDX1, GATA4, and
RFX6), these mutant hiPSCs were still able to procure b-like
cells expressing specific markers, including insulin and C-
peptide. However, the b-like cells derived with the assayed in
vitro protocol were not fully mature. More critical effects of
HNF4A mutations taking place during the b cell maturation
process or on already mature b cells could not be properly
evaluated with the protocol described in this work.
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Taken together, the results reported so far from hiPSC models
used to study the effects of different HNF4A mutations suggest
that the effects of such mutations might be more relevant at the
functional level of the b cells produced. The generation of fully
functional b-like cells from in vitro differentiation protocols still
remains a challenge. Thus, evaluating the functionality of the b-
like cells produced from control or patient-derived hiPSC cannot
be appropriately assessed with the current differentiation
protocols. On the other hand, it should be noted that while
two of these studies evaluated the effects of the same mutation,
the results described by Braverman-Gross et al. analyzed a
different HNF4A mutation. These mutations lead to HNF4A
loss-of-function through different mechanisms, thus potentially
explaining the different outcomes obtained in each of the reports.
Last, but not least, it should be kept in mind when using patient-
derived hiPSCs that additional mutations in other genes or in
HNF4A regulatory regions could also modulate the outcome of
the in vitro differentiation experiments, as illustrated above for
GATA6. To conclude, additional studies are necessary to address
how HNF4A mutations cause MODY in humans, especially
using the next generation of pancreatic differentiation
protocols that improve the production of fully mature b-
like cells.

HNF1B
Teo and colleagues established a well-controlled patient-derived
hiPSC pancreatic differentiation model to elucidate the molecular
mechanisms underlying MODY5 pancreatic hypoplasia (113).
Differentiation of MODY5-hiPSCs into pancreatic progenitors
showed that the HNF1BS148L/+ mutation causes the up-regulation
of several key endocrine pancreas-enriched transcription factors
including PDX1. Pancreatic differentiation using these cells did
not block PDX1, PTF1A, GATA4, and GATA6 expression,
suggesting that MODY5-mediated pancreatic hypoplasia in this
case is mechanistically independent from the effect associated
with these transcription factors. On the other hand, the point
mutation in HNF1B caused an indirect reduction in the
expression of the insulin gene activator PAX6, suggesting that
loss of one copy ofHNF1B in humans impairs b cell development
and function. Although these findings are consistent with the
potential occurrence of maturity-onset diabetes, they fail to
uncover the mechanism by which HNF1B haploinsufficiency
results in pancreatic hypoplasia.

To further address this question, we recently used an
alternative hiPSC pancreatic differentiation model to elucidate
the molecular mechanisms underlying HNF1B-associated diabetes
(Khairi et al, manuscript submitted). To evaluate the
transcriptional differences in the HNF1B haploinsufficient cells,
we used bulk RNA-seq at several stages of the pancreatic
differentiat ion protocol (from DE to b- l ike cel ls) ,
immunofluorescence staining, and scRNA-seq at the MPC stage.
Our analyses show that absence of HNF1B blocks the specification
of the pancreatic fate from the foregut progenitor stage. In
contrast, HNF1B haploinsufficiency allows differentiation of
MPCs and the generation of functional b-like cells although at a
lower frequency than the control isogenic cell line. We further
report that HNF1B haploinsufficiency impairs cell proliferation in
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foregut progenitors and MPCs. Our results show that HNF1B
plays a key role in the production and expansion of pancreatic
progenitors and suggest that this factor could regulate the
expression of several Hippo pathway components in MPCs.
Thus, the level of HNF1B, combined with environmental
stimuli, could define the number of pancreatic progenitor cells
generated during development and therefore contribute to the
susceptibility to diabetes during childhood/adulthood.

PTF1A
It has been described that homozygous inactivating mutations in
PTF1A cause pancreatic and cerebellar agenesis (98). In
agreement, Ptf1a null mice present a complete absence of
exocrine pancreatic tissue, but all islet endocrine cell types are
present until the late stages of embryogenesis (149). Zhu et al.
reported the in vitro modeling of the PTF1A requirement for
human pancreas development. Using PTF1A−/− hESCs and a first
generation in vitro pancreatic differentiation protocol, these
researchers did not find defects in pancreatic endocrine
differentiation (111). This finding is in agreement with
previous reports showing that Ptf1a is not required for the
specification of Ngn3+ endocrine progenitors or the
differentiation of mature b cells in mice (150).

The study of PTF1A regulation provides another example of
how human in vitro pancreatic differentiation can guide the
discovery of a developmental regulatory mechanism, in this case
consisting in the identification of recessive mutations in a distal
non-coding region (151). Identification of genetic mutations
resulting in pancreatic agenesis can be challenging as these can
be located in regulatory regions far away from known regulators.
Accordingly, genome sequencing of a cohort of patients
presenting pancreatic agenesis revealed several mutations in a
distal non-coding region located >1 Mb upstream the PTF1A
gene. Enhancer profiling in MPCs, derived in vitro from hPSCs,
confirmed the functional importance of this regulatory sequence
in humans (151). The mutation sites coincided with a FOXA2
binding site profiled by ChIP-seq in in vitro MPCs. Further
mechanistic experiments performed in vitro confirmed that the
targeted region acts as an enhancer in human MPCs, and that
patient mutations affect PDX1 and FOXA2 binding. These
findings allowed us to propose that the mutated enhancer
region is in charge of triggering the early PTF1A expression in
the gut region where the pancreas is specified. This study
illustrates how human genetic and in vitro differentiation of
hPSCs can be combined to define mechanisms driving
developmental diseases.

INS
Balboa et al. generated a model based on hiPSCs from patients
carrying INS mutations and engineered isogenic CRISPR-Cas9
mutation-corrected lines. These cells were differentiated to b-like
cells (152). Using this model, the authors show that the INS
mutations lead to accumulation of proinsulin misfolding,
increased signs of ER-stress, and reduced proliferation in INS-
mutant b-like cells compared with corrected controls. Following
transplantation into mice, INS-mutant grafts presented reduced
insulin secretion and further increased ER-stress, associated with
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decreased PDX1 expression and b cell size, as well as
mitochondrial alterations. The authors conclude that neonatal
diabetes-associated INS-mutations lead to defective b cell mass
expansion, contributing to neonatal diabetes development.

In another recent study, Egli and colleagues generated hiPSCs
from fibroblasts of a patient with PNDM and undetectable insulin at
birth due to a homozygous mutation in the translation start site of
the insulin gene (153). Their results show that the differentiation of
INS mutant cells resulted in hormone-negative hiPSCs, and the
correction of this mutation by CRISPR-Cas9 restored insulin
production and secretion to levels comparable to those of wild
type endocrine cells. The authors also demonstrate that the insulin-
producing cells of corrected patient hiPSCs protect mice from
diabetes, providing a proof-of-principle study for the use of
replacement therapy as a treatment for monogenic diabetes.

STAT3
Saarimäki-Vire et al. used hiPSCs derived from a patient with
PNDM and pancreatic hypoplasia to investigate the effects of an
activating STAT3 mutation on pancreatic development (154).
Noteworthy, the mutation studied has been identified as the
cause of PNDM in association with early onset autoimmunity.
These authors demonstrate that the mutation in STAT3 leads to
premature endocrine differentiation through binding and direct
induction of NEUROG3 by the increased nuclear shuttling of the
mutated protein. They also showed that correction of the STAT3
mutation using CRISPR/Cas9 completely reversed the disease
phenotype. These results demonstrate that, in addition to the
early onset autoimmunity, the same mutation leads to a primary
developmental defect in pancreatic organogenesis.
CONCLUSION AND FUTURE DIRECTIONS

The field of hPSCs has allowed important advances in our
understanding of the molecular mechanisms underlying the
different forms of monogenic diabetes. Indeed, the
establishment of hPSC-based in vitro platforms offers a unique
opportunity to study pancreas development and to investigate
the pathophysiology underlying monogenic diabetes. This basic
knowledge paves the way to the development of new treatments,
not only for diabetes induced by genetic mutations, but also
more broadly for personalized medicine therapies in the context
of type I and type II diabetes. Nonetheless, several challenges
require attention. Current in vitro b-like cell differentiation
protocols have been markedly improved and may be sufficient
to recapitulate several of the MODY phenotypes in the hPSC-
based model. However, one of their greatest limitations remains
the lack of metabolic maturation of the b-like cells derived. A
solution to turn the differentiated cells into fully mature and
functional b cells has been their transplantation in mouse to
allow for the latest steps of cell differentiation to take place in
vivo. Alternative methods involve culture in 3D and cell self-
aggregation into islet-like clusters to produce b-like cells with
improved functionality. The emergence of scRNA-seq is
expected to lead to the identification of new markers involved
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in pancreatic b cell maturation, thus allowing improved
benchmarking of the in vitro differentiation protocol outcomes.
Also, scRNA-seq applied to human embryonic pancreatic tissue
might provide additional insights into the developmental cues
that differ among mice and humans. This will provide additional
input to improve the in vitro differentiation protocols by
modulating yet unknown signaling cues.

The other growing challenge is the divergence of results
between different groups studying the same mutation/genes
but using either different hPSC lines and/or different protocols.
Indeed, genetic background and culture conditions can have a
strong effect on phenotype, thus leading to different experimental
outcomes. New hiPSC lines derived from monogenic diabetic
patients continue to be reported. A very recent study described
the generation of hiPSCs derived from MODY2 patients, but in
this case its differentiation into the pancreatic lineage was not
evaluated so far (108). Thus, there is a need to develop standard
hiPSC lines which could be shared between laboratories. More
importantly, the use of “universal” culture conditions to grow
and to differentiate hPSC lines would be incredibly useful to
allow the comparison of data generated and to precisely establish
the importance of genetic background on the phenotype
observed in vitro. Such standardization implies that culture
conditions are fully described and shared between laboratories.
The use of isogenic control hPSC lines is also essential and is
helping to overcome the limitations related to the variability
between lines, especially when compared with the use of family
controls, which is inherent to differences in genetic background.
Numerous studies have successfully used CRISPR/Cas9 tools to
generate isogenic hPSC lines by introducing patient-specific
mutations, editing genes in control-hPSC lines to investigate
the implication of a single genetic variant on b cell differentiation
and function. Here, we revisited the latest advances in the
application of in vitro pancreatic cell differentiation from
hPSCs to model several types of monogenic diabetes. Much
work remains to be done to improve the modeling of monogenic
diabetes but, as it stems from this review, in vitro pancreatic
differentiation from hPSCs is definitely gaining momentum.
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