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Increasing evidence accumulated during the past two decades has demonstrated that the
then-novel kisspeptin, which was discovered in 2001, the known neuropeptides
neurokinin B and dynorphin A, which were discovered in 1983 and 1979, respectively,
and their G-protein-coupled receptors, serve as key molecules that control reproduction
in mammals. The present review provides a brief historical background and a summary of
our recent understanding of the roles of hypothalamic neurons expressing kisspeptin,
neurokinin B, and dynorphin A, referred to as KNDy neurons, in the central mechanism
underlying gonadotropin-releasing hormone (GnRH) pulse generation and subsequent
tonic gonadotropin release that controls mammalian reproduction.
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INTRODUCTION

Peptides play critical roles in the nervous systems of both invertebrates and vertebrates alike. The
release of peptides as intercellular signaling molecules is an evolutionarily ancient property of neurons
(1, 2). In fact, the nervous systems in cnidarians, a class of mostly aquatic animals that have existed for
over 630 million years, are mainly controlled by peptidergic signals (2). Several signaling peptides were
discovered in cnidarians and most of them were characterized by C-terminal amidation (3). These so-
called neuropeptides are stored in intracellular neurosecretory vesicles until being secreted by
exocytosis. Once secreted, these neuropeptides act on target cells by binding to and activating
plasma membrane receptors, leading to changes in the intracellular signaling system.

The G-protein-coupled receptors (GPCRs) represent the single largest family of plasma
membrane receptors, encompassing about 860 members in humans (4). The concept that these
GPCRs may form a supergene family was derived from the discovery in 1986 that the b2-adrenergic
receptors and the opsins share a seven-transmembrane domain topology (5). At that time, the b2-
adrenergic receptors and the opsins were not known to have much in common except for coupling
to G-proteins to elicit the intracellular signaling system. The structural feature of the seven-
transmembrane domain topology allowed a search for putative GPCRs in the genome, resulting in
the discovery of a large number of GPCRs. The GPCRs are split into two major groups: olfactory
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and non-olfactory receptors. The non-olfactory GPCRs are
further classified based on whether the endogenous ligand is
known or unknown. Approximately 30% of the ~400 non‐
olfactory human GPCRs have not been definitively paired with
endogenous ligands and are designated as orphan GPCRs (6).

The present review focuses on neuropeptides, kisspeptin,
neurokinin B and dynorphin A, and their GPCRs, because
evidence accumulated during the past two decades has
demonstrated that those three neuropeptides serve as key
molecules that control reproduction via controlling pulsatile
gonadotropin-releasing hormone (GnRH) release in mammals.
More specifically, the hypothalamic arcuate nucleus (ARC)
neurons co-expressing kisspeptin/neurokinin B/dynorphin A,
referred to as “KNDy neurons”, are evident in mammals
including rodents (7–11), ruminants (12–14), and primates (15,
16) and the KNDy neurons are now considered to be largely
responsible for GnRH pulse generation. In this review, we provide
a historical background on the concept of GnRH pulse generator
to control gametogenesis and steroidogenesis in mammals and a
summary of our recent understanding of the roles of KNDy
neurons in the central mechanism underlying GnRH pulse
generation and subsequent tonic release of gonadotropins.
THE DISCOVERY OF GNRH/
GONADOTROPIN PULSES

One hundred years ago, in the 1920s, Smith (17) and Evans and
Long (18) investigated the effects of hypophysectomy or the
administration of pituitary extract on gonadal activities, and
accordingly suggested that gonadal activities are regulated by one
or more factors from the anterior pituitary gland (19). In the
1930s, luteinizing hormone (LH) and follicle-stimulating
hormone (FSH) were successfully extracted from the anterior
pituitary gland (20). The presence of GnRH [first named LH-
RH/FSH-RH or LHRH (21)], which controls gonadotropin
release via the pituitary portal circulation, was predicted by
Harris and Jacobsohn because they showed that the structure
and function of the transplanted pituitary gland were maintained
only when the pituitary gland was relocated under the median
eminence in rats (22). Consequently, GnRH, which stimulates
both LH and FSH release, was isolated in the early 1970s by two
independent laboratories headed by Schally and Guillemin,
respectively (23, 24).

In the early 1970s, Knobil and colleagues first demonstrated
tonic (pulsatile) and cyclic (surge) gonadotropin release in
female rhesus monkeys, used as a model of humans (25, 26),
and predicted that the pulsatile nature of tonic gonadotropin
release is likely caused by pulsatile GnRH stimulation to the
anterior pituitary gland. Their pioneer study demonstrated the
indispensable role of GnRH pulses in the control of
gonadotropin release from the anterior pituitary gland (27).
Indeed, plasma LH and FSH levels were kept at physiological
levels only when GnRH was administrated in a pulsatile manner
at a physiological frequency (once per hour) in female rhesus
monkeys with a hypothalamic lesion (which resulted in the lack
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of endogenous GnRH release). In contrast, continuous GnRH
administration paradoxically inhibited gonadotropin release in
these monkeys (27). These findings indicated that GnRH pulses
are needed to sustain the normal response of the anterior
pituitary gland to GnRH stimulation. This knowledge has been
exploited towards human reproductive technology and therapies.
Indeed, some patients take pulsatile GnRH administration by an
attached pump as a medical treatment to enhance folliculogenesis
and recover ovulation (28), whereas chronic GnRH treatment is
therapeutically used to inhibit sex steroid release in patients
suffering from endometriosis as well as prostate cancer (29).

The pulsatile GnRH release was first described in ewes by
measurements of GnRH in the pituitary portal blood in 1982
(30) and then examined in more detail in 1992 (31). These
studies demonstrated that GnRH pulses detected in the pituitary
portal circulation synchronized with LH pulses detected in the
peripheral circulation.
LOCALIZATION OF THE GNRH
PULSE GENERATOR

Pulsatile GnRH release from GnRH neurons into the pituitary
portal circulation has been hypothesized to be driven by the
mechanism of the so-called “GnRH pulse generator” (32, 33).
The first experimental evidence for the localization of the GnRH
pulse generator was provided by Halasz and Pupp (34): They
designed a small knife cut to isolate the mediobasal
hypothalamus (MBH), leaving the region in contact with the
pituitary gland but devoid of neural connections with the other
brain regions. This complete deafferentation of the MBH failed
to affect the testicular function (spermatogenesis) in males nor
ovarian function (folliculogenesis) except for ovulation in female
rats. These findings indicated that the complete deafferentation
of the MBH disrupts the preovulatory GnRH/LH surge but not
the GnRH pulses that drive tonic gonadotropin release in female
rats. Subsequent studies had confirmed that pulsatile LH release
is not impaired by the complete hypothalamic deafferentation in
rats (35, 36). Taken together, these findings indicated that the
GnRH pulse generator would be located in the MBH.
Importantly, GnRH neuronal cell bodies are mainly located in
the preoptic area (POA) and GnRH nerve terminals are located
in the median eminence within the MBH in rats, indicating that
the GnRH neurons themselves may not be involved in GnRH
pulse generation and GnRH terminals would be an effector of
GnRH pulse generator (36, 37).

Knobil and colleagues then established an important method to
monitor GnRH pulse generator activity in the MBH via an
electrophysiological approach in rhesus monkeys (38): This
approach revealed that rhythmic increases in the multiple unit
activity (termed MUA volleys) were accompanied by LH pulses
detected in the peripheral circulation, when the recording
electrodes were placed within the MBH. The MUA is the
summation of the electrical activity of multiple neurons around
the electrodes, and the origin of MUA volleys remained unknown
at that time. This method was subsequently adapted to rats and
September 2021 | Volume 12 | Article 724632
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goats (39–41) and successfully showed the MUA volleys in the
MBH accompanied by LH pulses in such species as well. From
then, significant effort was made to identify the intrinsic sources of
the GnRH pulse generator for many years.
THE ARC KISSPEPTIN NEURONS
ARE A MAJOR REGULATOR OF
GNRH/GONADOTROPIN PULSES

At the turn of the twenty-first century, the discovery of
kisspeptin provided a breakthrough in our understanding of
the source of the GnRH pulse generator. Kisspeptin was first
found as an endogenous ligand of GPR54, a then-orphan GPCR
that shares significant homology with galanin receptors (42),
from human placenta extract (43, 44). Kisspeptin was identified
as a 54-amino-acid peptide cleaved from a 145-amino-acid
prepropeptide in humans (43, 44). The C-terminal amidated
10-amino-acid sequence of the peptide (Kp-10), which is
essential and sufficient for interaction with GPR54, a Gq-
coupled stimulatory GPCR (43), is identical among mammals,
except for the C-terminal phenylalanine which is changed to
tyrosine in non-primate mammals (43–50). The precursor and
mature kisspeptin with the C-terminal amidation in humans,
rodents, and domestic animals are summarized in Figure 1A.
Moreover, an indispensable role of kisspeptin as a neuropeptide in
the central nervous system regulating reproduction in humans,
was uncovered by two studies published in 2003 (51, 52): Two
groups from the US and France independently demonstrated
inactivating mutations of the GPR54 gene in patients suffering
from hypogonadotropic hypogonadism with pubertal failure. To
date, several Kiss1 or Gpr54 knockout rodents replicated
hypogonadotropic hypogonadism as seen in humans (52–58).
Later, a Turkish group demonstrated that patients carrying
inactivating mutations of the KISS1 gene also exhibited
hypogonadotropic hypogonadism (59). Taken together, these
findings suggest that kisspeptin-GPR54 signaling serves as a key
regulator for puberty onset and gonadotropin release in mammals.

Kisspeptin profoundly stimulated GnRH/gonadotropin release
in mammals (53, 54, 60–63). The previous studies demonstrated
that central administration of full-length kisspeptin or Kp-10
stimulated gonadotropin release in rodents (54, 60–62),
ruminants (53), and primates (63). In addition, the stimulatory
effect of kisspeptin on gonadotropin release was blocked by GnRH
antagonists in both rodents (60, 61, 64) and primates (63),
indicating that kisspeptin-induced gonadotropin release is
mediated by GnRH. The previous in vitro study showed that
kisspeptin stimulates GnRH release from the rat hypothalamic
tissue via stimulatory Gq-protein-mediated activation of
phospholipase C and mobilization of intracellular Ca2+ (65).
Further, several histological analyses showed that Gpr54 is
expressed in a majority of GnRH neurons in mice (53, 66, 67)
and rats (60, 68). Electrophysiological studies revealed that
kisspeptin exerted a potent direct depolarizing effect on GnRH
neurons (67, 69, 70). Further, GnRH neuron-specific Gpr54
knockout mice resulted in infertility, whereas the rescuing Gpr54
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in GnRH neurons in global Gpr54 knockout mice restored fertility
(71), suggesting that GPR54 solely in GnRH neurons is enough for
fertility in mice. Taken together, these findings suggest that
kisspeptin directly stimulates GnRH release via GPR54
expressed in GnRH neurons to lead consequent gonadotropin
secretion in mammals.

There are two major populations of hypothalamic kisspeptin
neurons: one population is localized in the ARC—inside the
MBH—in most mammals examined to date, and the other
population is localized more rostral regions such as the
anteroventral periventricular nucleus (AVPV) in rodents
(72–77) and the POA in most of the other mammals including
ruminants (12, 14, 46, 78–83), primates (50, 63, 84, 85), and
others (47, 48). The role of AVPV/POA kisspeptin neurons in
generating GnRH/LH surge in females was reviewed elsewhere
(86–88). Circumstantial evidence suggesting that ARC kisspeptin
neurons are an intrinsic source of the GnRH pulse generator has
been accumulated as follows. When the MUA is measured in
goats through recoding electrodes targeted to the vicinity of the
ARC kisspeptin neurons, MUA volleys are found at regular
intervals and are synchronized with LH pulses (13, 46).
Further, recent in vivo GCaMP6 fiber photometry technology
revealed that ARC kisspeptin neurons exhibited rhythmic
increases in intracellular Ca2+ accompanied by LH pulses in
mice (89, 90). Optogenetic stimulation of ARC kisspeptin
neurons induced and optogenetic inhibition of ARC kisspeptin
neurons suppressed LH pulses in kisspeptin neuron-specific
channelrhodopsin- and archaerhodopsin-expressed gene-
modified mice, respectively (89, 91).

GnRH neuronal axons in the median eminence seem to be an
action site of kisspeptin for the generation of GnRH pulses.
Immunoelectron microscopy revealed that kisspeptin and GnRH
fibers are closely associated with each other in the internal layer
of the median eminence and that few typical synaptic structures
were found between kisspeptin and GnRH fibers in rats and
goats, suggesting that kisspeptin acts on GnRH axons in a non-
synaptic manner, such as “volume transmission” (92, 93).
Further, peripheral (not only central) administration of
kisspeptin successfully induced GnRH/gonadotropin release in
mammals including rodents (53, 62, 64, 94), ruminants (46, 95),
and primates (63, 96). This may be an advantage for therapeutic
use of kisspeptin or its analogs in humans and domestic animals
(97–99). Furthermore, GnRH neuronal cell bodies also seem to
be an action site of ARC kisspeptin neurons because a retrograde
tracing study revealed the projection of ARC kisspeptin neurons
to the POA in mice (100) and confocal microscopy revealed
contacts of kisspeptin fibers from the ARC population to GnRH
neurons in ewes (101).

ROLES OF KISSPEPTIN, NEUROKININ B,
AND DYNORPHIN A IN THE MECHANISM
CONTROLLING GNRH PULSE
GENERATION

Theoretically, the GnRH pulse generator would consist of
neurons that are connected to each other and show
September 2021 | Volume 12 | Article 724632
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synchronized neuronal activity. The dense distribution of
kisspeptin neuronal cell bodies and fibers in the whole ARC
(54, 75) may be indicative of a neuronal connection between
kisspeptin neurons. Such a dense kisspeptin-kisspeptin neuronal
connection may be necessary to synchronize the release of
kisspeptin to the GnRH neurons at the median eminence.
Importantly, Gpr54 is not found in ARC kisspeptin neurons in
mice (66) and rats (68). Further, electrophysiology or MUA
technology revealed that kisspeptin itself unlikely affects the
activity of kisspeptin neurons in mice (102), rats (94), and
goats (46), suggesting that other neuropeptide(s) may
participate to synchronize the kisspeptin neuronal activity.

It is noteworthy that both neurokinin B and dynorphin A are
co-localized in a majority of ARC kisspeptin neurons (therefore
called KNDy neurons) in several mammalian species including
rodents (7–11), ruminants (12–14), and primates (15, 16).
Neurokinin B is one of the tachykinin family peptides, that are
characterized by the presence of the common C-terminal amino
acid sequence Phe-X-Gly-Leu-Met (or Leu)-amide (103)
(Figure 1B). Among the tachykinin families, substance P,
neurokinin A (both of which are cleaved from the same
prepropeptide coded by TAC1 gene in humans), and neurokinin
B (which is cleaved from separate prepropeptide coded by TAC3
gene) have been well-investigated, and the amino acid sequences
of these peptides are identical in all mammalian species examined
to date (103). There are three types of GPCRs for the tachykinins,
denoted as NK1, NK2, and NK3 receptors. These receptors are
recognized with moderate selectivity by endogenous tachykinins.
Neurokinin B was reported to preferentially bind to the NK3
receptor, a Gq-coupled stimulatory GPCR (103). Neurokinin B
previously attracted attention as a mediator for the hot flushes in
postmenopausal women, who show ovarian steroid hyposecretion
and gonadotropin hypersecretion (104). Importantly, inactivating
mutations of the TAC3 or TACR3 (encoding the NK3 receptor)
gene lead to hypogonadotropic hypogonadism in humans (105,
106), suggesting the importance of neurokinin B-NK3R signaling
in human reproduction.

Dynorphin A is a family of endogenous opioid peptides
characterized by the presence of the common N-terminal
amino acid sequence Tyr-Gly-Gly-Phe-Leu (or Met) (107)
(Figure 1C). There are three major endogenous opioids, such
as b-endorphin, enkephalin, and dynorphin A, which are mainly
cleaved from the separate prepropeptides encoded by POMC,
PENK, and PDYN, respectively. Major corresponding receptors
for b-endorphin, enkephalin, and dynorphin A are suggested to
be m-opioid, d-opioid, and k-opioid receptors, respectively, and
the receptors are known as Gi-coupled inhibitory GPCRs (107).
Dynorphin A was previously reported to be involved in negative
feedback action of progesterone on GnRH pulse generation in
ewes (108, 109).

Goodman and colleagues first found that neurokinin B and
dynorphin A are largely co-localized in a single population of
ARC neurons in ewes by immunohistochemistry for these
peptides (110), and then uncovered that kisspeptin is also
expressed in the same neuronal population (12). The
co-localization of neurokinin B and dynorphin A in the ARC
Frontiers in Endocrinology | www.frontiersin.org 4
kisspeptin neurons were validated in several mammalian species
such as goats (13), heifers (14), rats (9, 10), mice (7, 8, 11), and
rhesus monkeys (15, 16) as summarized in Table 1.
Co-localization of kisspeptin and neurokinin B was also found
in humans (111–114) (Table 2), whereas few dynorphin A
immunoreactivity was detected in the ARC kisspeptin/
neurokinin B neurons in humans (112). Furthermore, NK3
receptors were found in a majority of rodent and ovine ARC
KNDy neurons (7, 8, 11, 115, 116) and k-opioid receptors were
found in a majority of rat and ovine KNDy neurons and in a part
of mouse KNDy neurons (7, 8, 11, 115, 117, 118) (Table 3).
These findings suggest that the ARC KNDy neurons
communicate with each other by neurokinin B-NK3 receptor
signaling and dynorphin A-k-opioid receptor signaling in an
autocrine/paracrine manner. The species and sex differences in
terms of the co-expressing rates of KNDy peptides and their
receptors may imply the redundancy of KNDy neurons to
maintain reproductive function in mammals as discussed later.

Figure 2 shows a schematic illustration of the hypothesis
explaining the mechanism controlling GnRH pulse generation.
The current most plausible interpretation is that neurokinin B
initiates and/or accelerates synchronized KNDy neuronal
activity via stimulatory Gq-coupled NK3 receptors to release
kisspeptin that stimulates GnRH release via stimulatory Gq-
coupled GPR54 expressed in GnRH neurons, and that dynorphin
A released from KNDy neurons then terminates KNDy neuronal
activity via inhibitory Gi-coupled k-opioid receptors. Indeed, a
central administration of neurokinin B facilitated the frequency
of the MUA volley, which is corresponding the GnRH pulse
generator activity, and the frequency was lowered by a central
administration of dynorphin A and increased by nor-
binaltorphimine (nor-BNI), a k-opioid receptor antagonist, in
female goats (13). Peripheral administrations of PF-4455242,
another k-opioid receptor antagonist, facilitated and SB223412,
an NK3 receptor antagonist, suppressed LH pulses in female
goats (119, 120). Similarly, a central administration of
neurokinin B or nor-BNI facilitated and SB222200, another
NK3 receptor antagonist, suppressed LH pulses in ewes (121).
In addition, neurokinin B and senktide, an NK3 receptor agonist,
increased the firing frequency of a majority of male mouse KNDy
neurons (8, 102) and dynorphin A and U50-488, a k-opioid
receptor agonist, decreased the firing frequency of all the KNDy
neurons tested (102). Taken together, it is most likely that
neurokinin B serves as a stimulatory signal for ARC KNDy
neurons and dynorphin A serves as an inhibitory signal for the
neurons, leading to the synchronized pulsatile pattern of the
KNDy neuronal activity to generate GnRH pulse.
DIRECT EVIDENCE THAT
KNDY NEURONS AS THE
GNRH PULSE GENERATOR

As we mentioned above, circumstantial evidence accumulated in
the last 15 years suggests that kisspeptin, neurokinin B, and
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A
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C

FIGURE 1 | Schematic illustration of kisspeptin, neurokinin B, dynorphin A, and their precursors in humans, mice, rats, cattle, sheep, and pigs based on the
previous reports (43, 45, 47, 49) and UniProtKB (https://www.uniprot.org/uniprot/). The precursors comprise a signal peptide in the N-terminal. (A) Kisspeptin
consists of 52 or 54 amino acids cleaved from the precursors and the C-terminal is amidated. The C-terminal 10-amino acids (Kp-10) are identical among mice, rats,
cattle, sheep, and pigs. Note that C-terminal tyrosine is replaced with phenylalanine in humans. (B) Neurokinin B consists of 10 amino acids cleaved from the
precursors and the C-terminal is amidated. The amino acid sequence of neurokinin B is identical among humans, mice, rats, cattle, sheep, and pigs. The C-terminal
amino acid sequence Phe-X-Gly-Leu-Met (or Leu)-amide is commonly found in tachykinin family peptides. (C) Dynorphin A consists of 17 amino acids cleaved from
their precursors. The amino acid sequence of dynorphin A is identical among mice, rats, cattle, sheep, and pigs. The N-terminal amino acid sequence Tyr-Gly-Gly-
Phe-Leu (or Met) are commonly found in endogenous opioid peptides.
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dynorphin A in KNDy neurons play key roles in controlling
pulsatile GnRH release in female mammals including rodents
(58, 89, 91) and ruminants (13, 46, 121, 122). However, no direct
evidence proving the role of KNDy neurons as the GnRH pulse
generator had been provided yet because gene-modified mice
and rats lack Kiss1 expression in both two populations of
hypothalamic kisspeptin neurons as well as extra-hypothalamic
and peripheral kisspeptin-producing cells. For example, we
previously generated global Kiss1 knockout rats to demonstrate
the indispensable role of kisspeptin in both pulsatile and surge-
mode GnRH/gonadotropin release (58). The global Kiss1
knockout rats clearly reproduced the hypogonadal phenotypes
of human and mouse models carrying KISS1/Kiss1 or GPR54/
Gpr54 mutations such as pubertal failure and atrophic gonads in
both sexes. Importantly, the Kiss1 knockout rats exhibited a
complete suppression of pulsatile LH release even after
gonadectomy in both sexes, suggesting that kisspeptin neurons
serve as the GnRH pulse generation in both sexes. In addition,
global Kiss1 knockout female rats exhibited no LH surge when
animals were treated with preovulatory levels of estradiol-17b.

To prove that KNDy neurons serve as the GnRH pulse
generator, we rescued KNDy neurons by infecting viral vectors
expressing Kiss1 mRNA targeted into the ARC Tac3-expressing
neurons in global Kiss1 knockout female rats (123). Pulsatile LH
release was recovered in KNDy-rescued rats in which 20-50%
ARC Tac3-expressing neurons exhibited Kiss1 expression. The
profiles of LH pulses are largely dependent on the rescue rates of
KNDy neurons, indicating that the rescue of KNDy neurons, but
not Kiss1 transfection outside of ARC Tac3-expressing neurons,
Frontiers in Endocrinology | www.frontiersin.org 6
could recover LH pulses in global Kiss1 knockout female rats.
Further, rescuing KNDy neurons could recover folliculogenesis,
but not ovulation, suggesting that KNDy neurons are largely
responsible for GnRH/LH pulse generation but not surge
generation. To confirm the notion obtained by the KNDy
rescue experiment, we evaluated the effect of conditional ARC
Kiss1 knockout on GnRH pulse generation in newly generated
Kiss1-floxed rats. By using the Cre-loxP system, we engineered
conditional ARC Kiss1 knockout rats (123). Pulsatile LH release
was completely suppressed in conditional ARC Kiss1 knockout
female rats in which >90% Kiss1-expressing cells disappeared in
the ARC.

The finding that 20% of KNDy neurons are enough to
maintain GnRH pulses and folliculogenesis in the rat suggests
the functional redundancy of the KNDy neuronal population.
The notion of redundancy is also supported by a previous study
showing that gene-modified mice bearing <5% Kiss1 expression
still exhibited puberty and fertility in both sexes (124). To date,
little is known the functional redundancy of the KNDy neurons
in non-rodent mammalian species.

It should be noted that the previous immunohistochemical
studies showed co-localization of NK3 receptor in a number of
GnRH fibers in rats (125) and k-opioid receptor in a majority of
GnRH cell bodies in rats and ewes (118, 126). These findings
imply that neurokinin B and dynorphin A may also directly acts
on GnRH neurons to control GnRH release. Nevertheless, it is
unlikely that neurokinin B and/or dynorphin A derived from
KNDy neurons directly act on GnRH neurons to participate in
GnRH pulse generation. This is because plasma LH/FSH levels
TABLE 1 | Co-expression % of neurokinin B or dynorphin A in the arcuate kisspeptin neurons in ruminants, rodents, and rhesus monkeys.

Species Sexes and treatments NKB/Kp Dyn/Kp Methods Reference no. and authors

Sheep Female (OVX+E2) – 94% IHC (12), Goodman et al., 2007
Female (Ovary intact)1 80.4% – IHC (12), Goodman et al., 2007

Goats Female (OVX) 99.5% 78.0% IHC (13), Wakabayashi et al., 2010
Cattle Female (Ovary intact)2 almost all3 >half3 IHC (14), Hassaneen et al., 2016
Rats Female (OVX) 97% – IHC (9), True et al., 2011

Female (OVX+E2) majority4 majority4 IHC (10), Murakawa et al., 2016
Mice Female (OVX/OVX+E2) 90% 92% ISH (7), Navarro et al., 2009

Male (Cast/Cast+T) 94% 86% ISH (8), Navarro et al., 2011
Female (OVX)5 100% 100% Pooled cell PCR (11), Ikegami et al., 2017

Rhesus monkeys Male (Cast) 40-60% – IHC (15), Ramaswamy et al., 2010
Female (OVX) – 7.3% IHC (16), True et al., 2017
September 2021
Cast, castration; Dyn, dynorphin A; E2, estradiol-17b; Kp, kisspeptin; NKB, neurokinin B; OVX, ovariectomy; T, testosterone.
1Data were collected from ewes at the luteal, follicular, and estrous stages.
2Data were collected from heifers at the luteal and follicular stages.
3Data were not shown as percentage.
4Data were not shown as percentage.
5Data were collected from Kiss1-GFP transgenic mice.
TABLE 2 | Co-expression % of kisspeptin and neurokinin B in the arcuate nucleus of humans.

Species Sexes Ages NKB/Kp Kp/NKB Methods Reference no. and authors

Humans Female 27-74 years old 77.0% 95% IHC (111), Hrabovszky et al., 2010
Male Young (21-37 years old) 75.2% 32.9% IHC (112), Hrabovszky et al., 2012
Male Young (21-49 years old) 72.7% 35.8% IHC (113), Molnar et al., 2012
Male Aged (50-78 years old) 77.9% 68.1% IHC (113), Molnar et al., 2012
Female Postmenopausal (64-90 years old) 78.4% 66.5% IHC (114), Skrapits et al., 2014
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were undetectable in global Kiss1 knockout rats (58), in which
Tac3 and Pdyn gene were abundantly expressed in the ARC as
shown in wild-type female rats. Further, Kiss1 rescue into the
ARC Tac3-expressing cells but not out of the Tac3-expressing
cells rescued LH pulses in the global Kiss1 knockout female rats
(123). These findings indicate that ARC neurokinin B/
dynorphin A neurons without Kiss1 could not drive GnRH/
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LH pulse generation. In this context, non-KNDy neurokinin B
or dynorphin A neurons may directly project GnRH neurons
and control/modulate GnRH and consequent gonadotropin
release. Supportedly, our recent study suggested that the
dynorphin neurons derived from the hypothalamic
paraventricular nucleus mediate glucoprivic suppression of LH
pulses (117).
TABLE 3 | Co-expression % of NK3 receptors or k-opioid receptors in the arcuate kisspeptin/neurokinin B neurons.

Species Sexes and treatments NK3R KOR Targets Methods Reference no. and authors

Sheep Female (Ovary intact)1 64% – NKB IHC (116), Amstalden, et al., 2010
Female (Ovary intact)1 – 97.8% Kp IHC (118), Weems et al., 2016
Female (Ovary intact)1 – 93.5% NKB IHC (118), Weems et al., 2016

Rats Female (OVX+E2) – 62% Kp ISH (117), Tsuchida et al., 2020
Mice Female (OVX/OVX+E2) 96% 20% Kp ISH (7), Navarro et al., 2009

Male (Cast/Cast+T) 76% 6% Kp ISH (8), Navarro et al., 2011
Male (Testis intact)2 35% 41% NKB Single-cell PCR (115), Ruka et al., 2013
Male (Cast)2 86% 19% NKB Single-cell PCR (115), Ruka et al., 2013
Female (OVX)3 83% 33% Kp Pooled cell PCR (11), Ikegami et al., 2017
September 2021
Cast, castration; E2, estradiol-17b; Kp, kisspeptin; KOR, k-opioid receptors; NK3R, NK3 receptors; NKB, neurokinin B; OVX, ovariectomy; T, testosterone.
1Data were collected from ewes at the luteal stage.
2Data were collected from Tac2-GFP transgenic mice.
3Data were collected from Kiss1-GFP transgenic mice.
FIGURE 2 | Schematic illustration of the hypothetical mechanism controlling gonadotropin-releasing hormone (GnRH) pulse generation in mammals. Neurokinin B
initiates and/or accelerates synchronized KNDy neuronal activity via stimulatory Gq-coupled NK3 receptors to release kisspeptin that stimulates GnRH release via
stimulatory Gq-coupled GPR54 expressed in GnRH neurons. Dynorphin A released from KNDy neurons then terminates KNDy neuronal activity via inhibitory Gi-
coupled k-opioid receptors.
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CONCLUSIONS, UNANSWERED
QUESTIONS, AND FUTURE ASPECTS

Kisspeptin discovery in the early 2000s and its subsequent
studies have provided a breakthrough in our understanding of
the brain mechanism underlying reproduction in mammals
along with the rediscovery of the critical roles of neurokinin B,
a tachykinin, and dynorphin A, an endogenous opioid peptide.
We now postulate that KNDy neurons act as an intrinsic source
of the GnRH pulse generator, in which neurokinin B serves as a
stimulatory signal, dynorphin A serves as an inhibitory signal,
and kisspeptin serve as an output signal of KNDy neurons that
drive GnRH release from the GnRH neurons. There are,
however, still some unanswered questions. For example, there
are reportedly species differences in neurokinin B signaling in
KNDy neurons: The NK3 receptor antagonist SB223412 potently
inhibited gonadotropin and testosterone release in male dogs
(127), on the other hand, CS-003, a triple tachykinin receptor
antagonist, was needed to inhibit LH secretion in male and
female rats (128). Similarly, electrophysiology revealed that three
tachykinin receptors were needed to be antagonized to prevent
the stimulatory action of NKB on male mouse KNDy neurons
in vitro (102). There are also species differences in terms of the
co-expressing rates of dynorphin A and k-opioid receptors in
KNDy neurons as described above. Further, the sex differences in
the number of ARC kisspeptin/neurokinin B neurons were
reported in humans: males have fewer kisspeptin- and
neurokinin B-positive cells in the ARC than females (111,
129). The sex differences could be caused by feedback from
different endogenous steroids in gonad-intact human subjects as
reviewed elsewhere (122, 130). Indeed, previous studies showed
the increases in KISS1 and TAC3 expression in the ARC of
postmenopausal women compared to premenopausal women
Frontiers in Endocrinology | www.frontiersin.org 8
(84, 104). Further studies are warranted on how neurokinin B
and dynorphin A orchestrate the synchronized activity of KNDy
neurons and GnRH pulses in mammals and the significance
behind the species and sex differences to contribute to future
therapeutic approaches in both humans and domestic animals
suffering from reproductive disorders.
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