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Background: Despite extensive research, the papillary thyroid carcinoma (PTC)
ecosystem is poorly characterized and, in particular, locoregional progression. Available
evidence supports that single-cell transcriptome sequencing (Sc-RNA seq) can dissect
tumor ecosystems.

Methods: Tissue samples from one PTC patient, including matched primary tumor (Ca),
lymph node (LN) metastasis, and paracancerous tissue (PCa), were subjected to Sc-RNA
seq with 10×Genomics. Dual-label immunofluorescence and immunohistochemistry were
used to confirm the existence of cell subtypes in a separate cohort.

Results: 11,805 cell transcriptomes were profiled, cell landscapes of PTC were
composed of malignant follicular epithelial cells (MFECs), CD8+ and CD4+ T cells, B
cells, vascular endothelial cells, fibroblasts and cancer-associated fibroblasts (CAFs).
Between Ca and LN ecosystems, the proportions of MFEC and interstitial cells were
similar, less than 1/25(229/6,694, 361/3,895), while the proportion of normal follicular
epithelial cells (NFECs) and interstitial cells was > 2 in PCa (455/171). NFECs in PCa
formed a separate cluster, while MFECs in Ca and LN exhibited a profound
transcriptional overlap, and the interstitial cells among these samples had an overall
concordance in their identity and representation, albeit with some distinctions in terms of
the cell percentage per subset. A fraction of the B cell subpopulation in Ca expressed
inhibitory receptors, while their respective ligand genes were clearly transcribed in T cell
and malignant epithelial cell clusters, while some CD8+ T cells in both Ca and LN
produced high levels of inhibitory receptors whose respective ligands were
overexpressed in some CD4+ T cells. Three CAF subtypes in Ca and LN were
identified, which may be due to mutual transitions.

Conclusions: Our data provide new insights into the PTC ecosystem and highlight the
differences in ecosystems in PTC progression, which updates our understanding of PTC
biology and will improve individualized patient treatment.
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INTRODUCTION

Thyroid cancer is the most common malignant endocrine tumor,
with rapidly increasing incidence globally over recent decades
(1). As the most common histological type, papillary thyroid
carcinoma (PTC) accounts for most new cases, and death mainly
occurs in advanced-stage patients with regional and distant
metastases (2). Therefore, an in-depth understanding of the
biological characteristics of PTC progression is key to
establishing effective treatments, reducing mortality, and
improving prognosis.

Biological alterations during tumor progression arise in
several crucial transitions, including tumor initiation, local
expansion, metastasis, and therapeutic resistance, which
involve complex interactions between cells within the dynamic
tumor ecosystem (3). In PTC, the current understanding of
ecosystem heterogeneity is primarily based on genomic and
transcriptomic methods that have profiled them in bulk (4),
providing critical information yet masking the diversity of cells
within each tumor.

Single-cell transcriptome sequencing (Sc-RNA seq) is based
on comprehensive and quantitative interpretation of mRNA
information to identify individual cell identities, resolve tumor
tissue heterogeneity, uncover gene regulatory relationships, and
trace the transcriptional trajectories underlying malignant
transformation (5). Sc-RNA seq has been used to dissect the
cell landscapes in ecosystems such as liver cancer (6), head and
neck cancer (7), breast cancer (8), melanoma (9), and pancreatic
cancer (10). Recently, Sc-RNA seq analyses in mouse metastatic
thyroid carcinoma have revealed the cellular landscape and
focused on two subsets of follicular epithelial cells that perform
Frontiers in Endocrinology | www.frontiersin.org 2
regenerative functions (11), and in the zebrafish thyroid gland,
thyrocyte diversity has been documented (12). We found that the
ARHGAP36 gene is exclusively expressed in thyroid malignant
follicular epithelial cells (MFECs) by Sc-RNA seq analysis and
further identified its function in promoting tissue invasion and
tumor metastasis (13).

Here, we prepared viable single cells from a PTC patient
diagnostically confirmed by pathology, including matched
primary tumor (Ca), lymph node (LN) metastasis, and adjacent
normal tissues (PCa). A total of 11,805 cells were subjected to
Sc-RNA seq and cell landscapes were identified. Then, ecosystem
differences involving the three matched samples were compared
using aggregate analysis. Our data provide new insights into the
ecosystem of PTCs and highlight differences in ecosystems in
PTC progression, which updates our understanding of PTC
biology and will improve individualized patient treatment.
MATERIALS AND METHODS

Clinical Specimens
Primary PTC, lymph node metastasis, and matched adjacent
normal tissue samples were harvested and cut into two parts
during a surgical operation involving a 45-year-old female patient
(Figure 1). Half of each tissue sample was completely immersed in
MACS tissue preservation solution (Miltenyi Biotec, #130-100-
008) and delivered to the laboratory within 2 h at 4°C, while the
other section was fixed in paraformaldehyde for histological
analysis. In addition, primary and metastatic carcinoma tissues
from 10 patients with PTC were collected and fixed in 10% neutral
formalin for immunostaining (Supplementary Table 1). None of
FIGURE 1 | Imaging and histology of matched PTC cases (Ca, primary PTC samples; LN, lymph node metastasis sample). (A) Axial CT contrast-enhanced scan of
neck showing primary and lymph node metastasis tumors (arrows). (B) Three-dimensional CT imaging of neck. (C) BRAF gene mutation test result was negative.
(D–F) Pathology sections of tumor tissue stained with hematoxylin and eosin showing typical paracancerous tissue, primary PTC, and lymph node metastasis
(original magnification 20×).
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the patients underwent any preoperative treatment. The
pathological diagnoses of the samples were independently
confirmed by two pathologists.

Tissue Processing and Enrichment of
Single Cells
The tissues were washed twice with PBS. The biopsy specimens
were cut into 1 mm3 pieces using sterile scalpel blades and placed
in Petri dishes. Sample dissociation was performed according to
the instructions of a human tumor dissociation kit (Miltenyi
Biotec, #130-095-929), using a gentleMACS Octo automatic
tissue processor (Miltenyi Biotec, #130-096-427). Large lumps
of tissue were removed by a membrane with a pore size of
approximately 100 µm. The cells were then centrifuged at 300 × g
for 5 min. The cells were resuspended in red blood cell lysis
buffer, cultured at room temperature for 15 min, and then
centrifuged at 120 × g for 3 min at 4°C. The remaining cells
were diluted with PBS containing 0.04% BSA (Sigma) to achieve
a concentration of approximately 106 cells per microliter. Cell
viability was assessed by 0.4% Trypan blue (Invitrogen)
exclusion staining.

Single Cell Capture, cDNA Library
Preparation, and Sequencing
Single cell suspensions at a concentration of 300-600 living cells
per microliter determined by Count Star were loaded onto a
Chromium single cell controller (10×Genomics) to generate
single-cell gel beads in an emulsion according to the
manufacturer’s protocol. Using a S1000TM Touch Thermal
Cycler (BioRad), cDNA was generated and then amplified, and
the quality was assessed using Agilent TapeStation 4200 system.
According to the manufacturer’s instructions, Single-cell RNA-
seq libraries were constructed using Single Cell 3’ Library Gel
Bead Kit V2 (10×Genomics, 120237). The cells were sequenced
to a depth of at least 105 reads per cell and 150 bp (PE150)
paired-end reads on an Illumina Novaseq6000 sequencer
(CapitalBio, Beijing, China).

Bioinformatics
We used Cell Ranger v.3.0.2 (10×Genomics) to process raw
sequencing data. Files from the Illumina Novaseq6000 were
demultiplexed and converted to FASTQ files. Transcript
counts for each cell were quantified using barcoded Unique
molecular identifiers (UMIs) and 10× cell barcode sequences.
Gene-by-cell-expression matrices were loaded into the R package
Seurat v.3.0 for quality control and downstream analyses. For
aggregation analysis, the combined data was aggregated from the
Cell Ranger count data, normalized to the same sequencing
depth, and recalculated the gene expression matrix. Qualified
cells were retained based on genes with > 200 cells detected and
cells with >500 and<10 000 genes and a mitochondrial gene
percentage of <30%. Single-cell trajectories were built using the
Monocle package (version 2.8.0). Dimensionality reduction was
performed by visualization using t-distributed stochastic
neighbor embedding (t-SNE) overlays and marker gene
heatmaps. Cell clusters were identified using the FindClusters
Frontiers in Endocrinology | www.frontiersin.org 3
function based on a K-means clustering algorithm implemented
in Seurat.

Thyroid Histology and Immunostaining
Paraffin-embedded 3-µm-thick sections were stained with
hematoxylin and eosin (H&E) according to routine histological
protocols or deparaffinized and rehydrated. For immunostaining,
antigen retrieval was performed using a pressure cooker for 15–20
min in 0.01 M citrate buffer (pH 6.0) to remove aldehyde links
formed during initial fixation of tissues. Sections were then
blocked in PBS containing 10% bovine serum albumin for 1
hour at room temperature. After blocking, one part of the
samples was incubated with rabbit anti-human a-SMA/ACTA2
(1:200, Abcam, ab32575) and sheep-anti-human FAP (1:200,
Affinity, AF3715) primary antibodies overnight at 4°C.
Secondary antibodies (Invitrogen) were incubated for 1 h at
room temperature. DAPI (1 mg/ml,Invitrogen) was then used to
counterstain nuclei, and the remaining samples were incubated
with primary antibodies against CD20 (1:200, Abcam) at 4°C
overnight. The sections were then stained with the appropriate
HRP-labeled polymer-conjugated secondary antibodies for 60
min. Immune complexes were visualized by exposure to DAB
substrate for 3-5 min. Nuclei were counterstained with
H&ERrepresentativeimmunostaining images from each
specimen were captured and analyzed using Image-Pro Plus v.6.0.

Statistics
Quantitative data are presented as means ± SEM, or means ± SD.
Statistical analyses were performed using a two-tailed paired
Student’s t-test. Statistical significance was set at p value < 0.05.
For scRNA-seq analysis, 1-tailed Welch’s t test with p value <
0.01 was used for cell type-specific signature gene selection.
RESULTS

Single-Cell Expression Atlas of
PTC Progression
In the matched samples, 626 cells from adjacent normal tissues
(PCa), 6923 cells from primary tumor (Ca), and 4256 cells from
metastatic lymph node (LN) were analyzed by Sc-RNA seq,
clustered, and then annotated with the identity of cell clusters
(Figures 2A–C). Among them, normal follicular epithelial cells
(NFECs) from PCa were identified by TG, EpCAM, TPO, etc.
marker genes, malignant follicular epithelial cells (MFEC)s from
Ca and LN by TG, EpCAM, CK19/KRT19, MET, etc. marker
genes, and interstitial cell subsets from the three samples by their
respective marker genes, such as CD4+ T (Th) cells (CD4+,
CD25-)/CD4+ T (Treg) cells (CD4+, CD25+), CD8+ T cells (CD8),
B cells (CD19, CD20), vascular endothelial cells (VWF, ACKR1),
dendritic cells (LAMP3), fibroblasts (ACTA2, FN1, THY1,
TAGLN), and CAFs (FAP, POSTN, CXCL12) (Supplementary
Figures S1A, B). Normal follicular cell subsets were the main
components of PCa (455/626), while MFEC subsets only
accounted for a small proportion of Ca as well as LN (229/
November 2021 | Volume 12 | Article 729565
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6,923, 361/4,256), which is the authentic cancer cell population
in cancer tissues (Figures 2A–C).

Intrinsic Differences of
Ecosystems in Paracancerous,
Primary, and Metastatic PTCs
Aggregate analysis of all cells from the matched samples was
further used to ascertain the relationships involving these cell
populations and the dynamics of their phenotypic changes
during PTC progression (Figures 3A, B). This showed that the
NFECs in PCa formed a separate cluster, while MFECs in Ca and
LN exhibited profound transcriptional overlaps. Interstitial cells
among the matched samples exhibited an overall concordance in
their identity and representation, albeit with some distinctions in
terms of cell percentages per subset (Figures 3B, C). For
example, BC1/mature B cells (CD19+, CD20+, CD23+/-) and
Frontiers in Endocrinology | www.frontiersin.org 4
BC2/activated B cells (CD19+, CD20+, CD23+) subsets were
only found in Ca, and the cytotoxic T lymphocyte (CTL)
subtypes (CD8+, CD28+) in CD8+ T cells were more
concentrated in Ca. In contrast, there were more CD4+ T cells
in LN, whereas fibroblasts and CAFs were significantly enriched
in LN. In addition, there were few interstitial cells in PCa. The
trajectory of differentiation commenced with follicular epithelial
cells of PCa and ended with malignant epithelial cells of primary
and metastatic PTCs, while their trajectory branches partly
overlapped between primary and metastatic malignant
cells (Figures 3D).

Putative Interactions Between Immune
Cell Types in PTC
In primary tumor tissues, large numbers of mature and activated
B cells emerge, expressing markers such as CD20 and CD19,
A B

C

FIGURE 2 | Cell landscapes of matched PTC samples by single-cell transcriptomic analysis(The closer together cells are plotted, the more similar they are; k-means
cluster assignment is indicated by color; clusters are labeled based on expression of canonical marker genes). (A) t-SNE plot demonstrating eight main cell types in
primary PTC(Ca). (B) t-SNE plot demonstrating eight main cell types in metastatic PTC(LN). (C) t-SNE plot demonstrating five main cell types in paracancerous
normal tissue(PCa). NFE, Normal Follicular Epithelial cell; ME, Malignant Epithelial cell; VE, Vascular Endothelium cell; FB, Fibroblast cell; CAF, Cancer-associated
fibroblast; DC, Dendritic cell; Treg, Regulatory T cell; Th, helper T cell; BC, B cell.
November 2021 | Volume 12 | Article 729565
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although no plasma cells were observed. This was confirmed
using immunohistochemistry (IHC) with anti-CD20 antibodies
in another PTC cohort (Figure 4A). Some cells in this subset also
expressed the inhibitory receptors CD22 and CD72, and their
interacting ligands, PTPRC and SEMA4D, were clearly expressed
in T cells and malignant epithelial cell clusters (Figure 4B). A
fraction of CTLs in the CD8+ T cell subtype expressed high levels
of PD1, CTLA4, and TIGIT inhibitory receptors in both primary
and metastatic tumor samples, and their interacting ligand
transcripts such as PDCDILG2 and CD80 were overexpressed
in a small fraction of CD4+T cells, CAFs, and malignant cell
subpopulations (Figure 4C).

Diversity of CAFs in PTC
There was a certain number of CAFs in primary and metastatic
tissues, and three distinct molecular subtypes of CAFs were
identified through finer-scale clustering (Figure 5A). CAFs-1
markedly expressed an abundance of chemokines, such as C77,
Frontiers in Endocrinology | www.frontiersin.org 5
CCL19, CXCL12, IL33, and IGF2. CAFs-2 specifically expressed
FN1, TNFAIP6, POSTN, TPM1, TPM2, and the myofibroblast
marker ACTA2. The two subsets mainly originate from LN. CAFs-
3 from the primary tumor showed distinct expression of other
chemokines and growth factors, such as C3, CCL5, IGF1, CXCL10,
CXCL9, and CXCL14, in addition to CCL19 and IGF2 (Figure 5B
and Supplementary Figure S2). Double immunofluorescent
staining for ACTA2 and FAP demonstrated that CAFs-2 was
present in human metastatic PTC tumors (Figure 5C).
Pseudotime analysis showed that CAFs-1 cells and CAFs-2 cells
were located under different transcriptional states on the one
trajectory path in metastatic PTC (Figure 5D).
DISCUSSION

Despite extensive efforts to dissect the cellular composition of
PTC (5), to the best of our knowledge, an accurate, intuitive cell
A B

DC

FIGURE 3 | Cellular heterogeneity during PTC progression (Ca, primary PTC; LN, lymph node metastasis; PCa, paracancerous tissue). (A) Diagram of cell cluster
correlation. (B) Aggregate analysis of ecosystems in paracancerous, primary and metastatic PTCs. The t-SNE plot of aggregate analysis from paracancerous, primary
and metastatic PTCs, showing the formation of 10 main clusters shown in different colors. The functional description of each cluster is determined by the gene
expression characteristics of each cluster. Cluster1: CD8+T(CTL); Cluster2: BC1; Cluster3: FB; Cluster4: CD8+T(Treg); Cluster5: CD4+T;Cluster6: BC2; Cluster7:
MFEC; Cluster8: CAF; Cluster9: NFE; Cluster10: VE. (C) Heatmap illustrating expression levels of specific markers in each cell cluster. Detailed different genes were
listed in Supplementary Table 2. Expression data are calculated as Log2 Fold Change. (D) Pseudotime PTC trajectory analysis. Each point corresponds to a single
cell, and each color represents a sample. NFE, Normal Follicular Epithelial cell; ME, Malignant Epithelial cell; VE, Vascular Endothelium cell; FB, Fibroblast cell; CAF,
Cancer-associated fibroblast; Treg, Regulatory T cell; Th, helper T cell; BC, B cell.
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landscape in PTC has not been achieved. After performing Sc-
RNA seq of the present matched PTC samples, it was shown that
a multicellular ecosystem of PTC was composed of MFECs and
interstitial cells, and their detailed cell types were consistent with
previously described types in bulk samples (5). However, it is
Frontiers in Endocrinology | www.frontiersin.org 6
notable that in primary and metastatic PTC ecosystems, the
number of MFECs only accounted for a small proportion of total
cells in Ca and LN, while there was a large proportion of follicular
epithelial cells in normal tissues adjacent to cancerous tissues,
which is consistent with the results of a recent Sc-RNA seq study
A

B

C

FIGURE 4 | Cancer-associated immune cells and inhibitory regulation in PTC (Ca, primary PTC; LN, lymph node metastasis; PCa, paracancerous tissue). (A) IHC
with CD20 antibodies in another PTC cohort(original magnification 20×). (B) Expression levels of CD22, CD72, PTPRC and SEMA4D on the t-SNE plot, with each
cell colored based on the relative normalized expression. (C) Expression levels of PDCD1, CTLA4, TIGIT, PDCD1LG2 and CD80 on the t-SNE plot with each cell
colored based on the relative normalized expression.
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involving adult thyroid tissue (14). The recruitment of large
numbers of interstitial cells by cancer cells constitutes a unique
ecosystem that may explain the indolent behavior of most PTCs.

To understand the intrinsic differences involving ecosystems
in PTC progression, we performed aggregate analysis of all cells
from matched samples. The results showed that the
transcriptional profiles of MFECs in primary or metastatic
PTC and NFECs in PCa tissue were significantly different.
However, the transcriptional profiles of MFECs unexpectedly
overlapped between primary and metastatic PTCs, which was
consistent with earlier findings in primary and metastatic head
and neck cancer (7). Combined with pseudotime analysis of
differentiation trajectories of normal follicular cells and primary
and metastatic cancer cells in the present case, this phenomenon
Frontiers in Endocrinology | www.frontiersin.org 7
changes our previous understanding of differential gene
expression in metastatic and primary cancer cells in bulk,
which returns to the common sense concept that metastatic
cancer cells are derived from primary cancer cells, and supports
the phenotypic plasticity of cancer cells from epithelial-
mesenchymal transition (EMT) to mesenchymal-epithelial
transition (MET)in the metastasis cascade (15, 16). In contrast
to tumor parenchymal cells, the present single-cell analysis
confirmed that there were differences in the ecology of primary
and metastatic PTC cells. For example, B and CTL cells were
concentrated in the microenvironment of primary cancer cells,
whereas CD4+ T cells and CAFs were found in the
microenvironment of metastatic cancer cells. Our findings
suggest that the transition of cancer cells from a primary state
A B

DC

FIGURE 5 | Diversity of CAFs in PTC (A) Reclustering of CAFs represented as a t-SNE plot. (The closer together cells are plotted, the more similar they are; k-
means cluster assignment is indicated by color). (B) Violin plots of selected genes, showing normalized expression in the different subclusters. (C) Double
immunofluorescent staining for ACTA2 and FAP in human metastatic PTC tumors. (D) Pseudotime analysis of CAFs in metastatic PTC. Each point corresponds to a
single cell, and each color represents a cell cluster. LN, lymph node metastasis; CAF, Cancer-associated fibroblast.
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to one progression may be provoked by changes in their local
environment, and metastatic colonization requires, or at least
can be aided by, a supportive immunity and extracellular
matrix (15).

Our data showed that the number of regulatory T cells (Tregs)
was more widely distributed in the metastatic tumor
microenvironment than in primary tissues. It has been recognized
that cancer cells can evade destruction by cancer-attacking immune
cells such as CTLs, aided by immunosuppressive Tregs that depend
on a lipid production pathway in the tumor microenvironment
(17). Therefore, it is suggested that Tregs play a key role in the
growth of metastatic PTC cells, and targeting them may be a new
alternative treatment strategy for metastatic PTC (18).

From the present data, a novel finding was that a large number
of mature and activated B cell subsets exist in the primary PTC
ecology, but not in normal and metastatic tissues. Mature and
activated B cells are recognized as the main effector cells of
humoral immunity, which suppress tumor progression by
secreting immunoglobulins, promoting T cell responses, and
improving survival (19). A recent study confirmed that tumor-
infiltrating B cells cluster, HPV-specific antibody secreting cells
(ASCs), can produce virus specific antigen-antibody responses to
human head and neck cancer-specific papillomavirus (20). At the
same time, our data showed that some of these B cells expressed
inhibitory receptor genes, and their corresponding ligand
molecules were displayed by T cells and malignant epithelial
cells. Together, this evidence suggested that although the
underlying mechanism of the difference between B cells
aggregation in primary and metastatic foci is unclear, as an
important member, B cells interact with other members of the
PTC ecosystem to affect the state of tumor cells. The profound
transcriptional overlap between primary and metastatic lesions
our data showed may be the result of Spatial and temporal
microenvironment homeostasis in PTC.

Our data revealed that immune checkpoint genes PDCD-1,
CTLA4, and TIGIT were expressed in a small proportion of CTL
cells in primary and metastatic PTCs, and most of their
interacting ligands are expressed in the surrounding CD4+ T
cells, suggesting that checkpoint blockade approaches that target
these markers might be effective for PTC patient therapy. In fact,
combinations of immune checkpoint inhibitors such as
pembrolizumab and multikinase inhibitors such as lenvatinib
as effective treatments have entered phase II clinical trials (21).

CAFs are considered one of the most abundant stromal cells
in the ecosystems of almost all solid tumors, including PTCs
(22). With the application of scRNA-seq technology, CAFs have
been shown to have heterogeneity and plasticity and play several
roles in the development of tumors, including promoting cancer
cell proliferation, resistance to therapy, and immune exclusion,
and restraining tumor progression (23). Current data show that
myofibroblastic CAF (myCAF) subsets are concentrated in
metastatic PTC. Since such CAFs are associated with an
extracellular matrix signature, which is considered to
contribute to therapy resistance (23), it is difficult to cure
metastatic PTC foci, and targeting such cells may be an
effective treatment. In addition, trajectory analysis showed that
Frontiers in Endocrinology | www.frontiersin.org 8
inflammatory CAFs and myCAFs are located on different
transcriptional states on one trajectory path in metastatic PTC
and inflammatory CAFs only in primary PTC, suggesting that
there is a state transition between the two, which may be
temporal and spatial gene expression differences for the
microenvironment between primary and metastatic lesions.

Metastasis cascade of cancer cells includes the key stage of
clonal growth at distant sites, and the characteristic of this stage
is that cancer metastases tend to recapitulate significant epithelial
features of their corresponding primary tumors (15). As in the
present single-cell data, the transcription of metastatic cancer
cells is consistent with that of their primary cancer cells. Two
recent studies on Sc-RNA seq sequencing and lineage tracing
show that cancer cells pre-metastasis have partial EMT (7) or
hybrid EMT state (24), suggesting that metastatic cancer cells
have their own reversible EMT genetic program. At the same
time, in this single-cell data, the ecosystem of metastatic cancer,
which is different from that of primary cancer cells, contributes
to immunosuppression and stromal environment of pro-
metastasis, indicating that it assists the transcriptomic
expression of metastatic cancer cells.

In conclusion, we comprehensively dissected ecosystem
differences during PTC progression. Our work suggests that
metastatic PTC might benefit from targeted therapy for specific
cell subtypes. Importantly, we identified the ecological
characteristics of PTC that are different from those of previous
bulk tissue studies, and anticipate that more datasets for PTC
ecosystems will become available with emerging single-
cell technologies.
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