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Carotid body paragangliomas (PGLs) are rare neuroendocrine tumors that develop within
the adventitia of the medial aspect of the carotid bifurcation. Carotid body PGLs comprise
about 65% of head and neck paragangliomas, however, their genetic background
remains elusive. In the present study, we report one case of carotid body PGL with a
somatic mutation in the gene encoding isocitrate dehydrogenase 2 (IDH2). The missense
mutation in IDH2 resulted in R172G amino acid substitution, which exhibits neomorphic
activity and production of D-2-hydroxyglutarate.
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INTRODUCTION

Paragangliomas (PGLs) are neuroendocrine tumors originating from the chromaffin cells in the
neural crest. PGLs can arise near the carotid artery, along nerve pathways in the head and neck.
Several studies recently revealed that PGLs are heterogeneous and can be categorized into disease
Clusters I and II, based on their molecular subtypes (1, 2). Cluster I PGLs carry genetic
abnormalities in metabolic pathways, such as loss-of-function mutations in the genes that encode
the succinate dehydrogenase (SDHx) and Von Hippel-Lindau (VHL) tumor suppressor protein (3).
Our recent studies also found that gain-of-function mutations in the oxygen-sensing domain in
hypoxia inducible factor 2 (EPAS1) can also be related to the development of Cluster I tumors (4).
Functional studies further indicate that Cluster I PGLs share many common molecular signatures
that are relevant to disease pathogenesis, including a pseudohypoxia phenotype, metabolic
reprogramming, and epigenetic shifts. Cluster II PGLs carry mutations in the kinase signaling
pathways, such as genes that encode NF1, RET, and MAX (5).

Isocitrate dehydrogenases (IDHs) are metabolic enzymes that are involved in Krebs cycle
metabolism. IDH1 is a cytoplasmic enzyme that converts isocitrate into a-ketoglutarate (a-KG) in
an NADP+-dependent manner. IDH2 is a mitochondrial enzyme that catalyzes a similar reaction with
IDH1. IDH3 is a mitochondrial enzyme that catalyzes irreversible oxidative decarboxylation of
isocitrate through an NAD+ dependent manner (6, 7). Several pioneering studies revealed that
missense mutations in IDH1/2 are frequently identified in several types of human malignancies,
including lower grade glioma, acute myeloid leukemia, cholangiocarcinoma, and chondrosarcoma (8–
11). Cancer-associated IDH mutations result in amino acid substitutions at the catalytic center of the
enzyme, which lead to neomorphic activity (change-of-function). The mutant IDHs consume a-KG
and NADPH and produce D-2-hydroxyglutarate (D-2-HG) and NADP+ (12, 13). Many recent
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findings have demonstrated that D-2-HG is an oncometabolite,
which promotes oncogenesis through metabolic reprogramming,
epigenetic shifts, and activation of oncogenic pathways (14, 15).
Notably, the glutaminolytic and reductive carboxylation are
remarkably impacted by cancer-associated IDH mutations,
which results in a distinctive metabolic signature among solid
cancers (16). The presence of an IDH mutation in PGL is of
significant interest. Zhang et al. reported one case of an IDH
heterozygous mutation accompanied by anATRXmutation in one
PGL case (17). The mutation of IDH2 was firstly described in a
case of head and neck paraganglioma (18). In the present study, we
provided detail histological analysis and 18F-FDOPA positron
emission tomography (PET) scan about this case. The presence
of IDH2-R172Gmutation was confirmed by an antibody targeting
the mutant enzymes. The R172G mutation results in the
production of D-2-HG.
MATERIAL AND METHOD

Tumor Specimen
The tumor specimen and the patient were previously reported
(18). A right carotid body tumor was surgically resected for
histology, genetics, and biochemistry analysis.

Whole Exome Sequencing and Data
Analysis
Genomic DNA was extracted from tumor tissue and patient
blood using DNeasy Blood & Tissue kit (QIAGEN). Library
preparation and exome enrichment were conducted using
SureSelect V7 kit (Agilent). The sequencing was performed on
a NovaSeq S4-300 chip. The resulting FASTQ data was aligned to
the human reference genome for variant annotation.

Sanger Sequencing
Sanger sequencing was performed as previously described (19).
Genomic DNA was amplified through polymerase chain reaction
(PCR) using Herculase II Fusion DNA polymerase (Agilent).
The amplicon was purified using Monarch PCR &DNA Cleanup
Kit (New England Biolabs, Inc.) and sent for Sanger sequencing
(Eurofin). The primers used for PCR and sequencing were: F: 5’-
CAG AGA CAA GAG GAT GGC TAG G -3’ and R: 5’-TGT
AAA ACG ACG GCC AGT GTC TGG CTG TGT TGT TGC
TTG-3’. Sequence analysis was performed using Geneious Pro
software (version 11.1.4).

Immunohistochemistry
Immunohistochemistry was performed as previously described.
Tumor tissues were fixed and sectioned to 10-micron slices. The
slices were labeled with primary antibodies and probed with
Vectastain ABC kit (Vector laboratories). The slices were then
exposed to 3,3′-Diaminobenzidine and mounted in Permount
mounting medium (Fisher Chemical). The samples were then
visualized by light microscopy (Olympus BX-43). The primary
antibody used in this study was anti-IDH1/2 Mutant (R132/
R172), clone MsMab-1 (1:200, MilliPore).
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Mutagenesis and Establishment of Stable
Cell Line
Mutagenesis was conducted as previously described (20). The
pCMV6-IDH2 wild type plasmid (Origene) was used as a
template. The coding sequence of IDH2 was transferred to
pLenti-C-myc-DDK-IRES-puro plasmid (Origene). The
mutagenesis reaction was performed using a Quikchange
Mutagenesis Lightning kit (Agilent). The sequence of the
mutant plasmid was confirmed by sequencing the entire
coding region of IDH2. The plasmid was then used for
lentivirus packaging. The hpheo-1 cells were kindly provided
by Dr. Hans Ghayee (University of Florida). The hpheo-1 cells
were infected with lentivirus with IDH2 coding sequence and
selected by puromycin. The mutagenesis primers used were: 5’-
CCA TGG GCG TGC CCG CCA ATG GTG ATG -3’; 5’- CAT
CAC CAT TGG CGG GCA CGC CCA TGG-3’.

Western Blot
The tissue specimens or cell pellets were lysed with
Radioimmunoprecipitation assay buffer (RIPA buffer, Thermo
Fisher) and quantified using the DC Protein Assay (Bio-Rad).
Protein samples were resolved on 4-12% Bis-tris gel (Thermo
Fisher) and transferred to PVDF membrane (MilliPore). The
membranes were labeled with primary antibodies and visualized
through chemiluminescence kit (Bio-Rad). The primary
antibodies used in this study include anti-IDH1/2 Mutant
(R132/R172), clone MsMab-1 (1:2,000, MilliPore); Flag (1:5,000,
Origene); and b-actin (1:5,000, Cell Signaling Technology).

Metabolite Extraction and Measurement
Stock solutions of D- or L-2-hydroxyglutaric acid (D- or L-2-
HG) disodium salt (10 mM), and the internal standards (IS) D or
L-2-HG -13C5 disodium salt (5 mM) were prepared in water and
stored at -50°C until use. Calibration standard of D- and L-2-HG
were prepared by serial dilutions of the stock with 80%methanol.
The working IS mixture (1 µM each) was prepared by diluting
the stock with 50% methanol. The TSPC (N-(p-toluenesulfonyl)-
L-phenylalanyl chloride) derivatization reagent was prepared in
acetonitrile (1 mg/mL). Tissues were homogenized in 80%
methanol (15-75 mg tissue/mL solvent) using the Bead Rupter
(Omni International). The supernatant was diluted with 80%
methanol if needed to ensure the 2-HG level was within the
linear range of the calibration curve. Samples were analyzed in
triplicate. TSPC derivatization was carried out according to
Cheng et al. (21) with slight modification. In a 0.5 mL micro-
centrifuge tube, 30 µL of sample (or standard) were mixed with
10 µL of IS and then vacuum dried. Two µL of pyridine and 100
µL of TSPC were added to the dried samples. After 30 min, the
reaction mixture was vacuum dried and reconstituted with 30 µL
of 50% acetonitrile for LC/MS/MS. LC was performed with a
Prominence 20AD system (Shimadzu). The injection volume
was 2 µL. Separation was achieved at 35°C with a 2.1 x 100 mm,
2.7 µm Cortecs C18 column (Waters). Mobile phase A was 5 mM
ammonium acetate in water and mobile phase B was methanol.
The flow rate was 300 µL/min and peaks were eluted with a 5-
min gradient from 25%-40%B. MS/MS was performed with a
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TSQ Quantiva triple quadrupole mass spectrometer (Thermo
Fisher) operating at selected reaction monitoring mode with
negative electrospray ionization. The TSPC derivatized peaks
were detected using the following m/z precursor > product ions:
2-HG (448 > 318); 2-HG -13C5 (453 > 318). D- and L-2-HG in
the homogenates were determined by a 9-level calibration curve
(0.05-25 µM) with linear regression (1/x weighting) using the
Thermo Xcalibur software.

Statistical Analysis
Statistical analysis was performed with GraphPad Prism software
(Version 6.01). A student t-test was applied for statistical
comparisons. All statistical tests were two-tailed. Results are
shown as Mean ± SEM, and P < 0.05 was considered
statistically significant.
RESULTS

Clinical Characteristics
The patient was a 57-year-old female presenting with a history of
multinodular goiter and benign thyroid nodules through fine
needle aspiration (FNA). The patient also has a family history of
thyroid cancer. The patient presented approximately 2.5 x 1.5 cm
mass at bifurcation of right common carotid artery with minimal
vascularity. Whole-body CT and neck MRI revealed a 2.7 x 2.0 cm
mass in the right neck suggestive of carotid body PGL
(Figures 1A, B). The mass was also positive on 18F-fluorodopa
(18F-FDOPA) PET/CT scan (Figure 1C). There was no evidence
of any other pheochromocytomas (PHEOs) or PGLs on the
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aforementioned scans. A 2.8 x 1.8 x 1.1 cm tumor mass was
surgically resected, and the operative findings and histopathology
confirmed right carotid body PGL. Immunohistochemical studies
also showed positivity for chromogranin A and synaptophysin. Six
years after surgery, based on follow-up imaging with whole-body
18F-FDOPA (Figure 1D) and 68Ga-DOTATATE PET/CT
(Figure 1E), as well as whole-body CT and neck MRI, there was
no evidence of any recurrent or new PGL.

This patient was enrolled under the protocol Diagnosis,
Pathophysiology, and Molecular Biology of Pheochromocytoma
and Paraganglioma (ClinicalTrials.gov Identifier: NCT00004847),
which was approved by the Eunice Kennedy Shriver National
Institutes of Child Health and Human Development and
Institutional Review Board. Written informed consent was
obtained from the patient.

Expression of IDH2 Mutant in Carotid
Body PGL
Histopathological examination confirmed the typical PGL
morphology (Figure 2A). The tumor tissue from the patient
exhibited strong immunopositivity for the IDH2 mutant enzyme
(Figure 2B). The IDH2 mutant immunopositivity was not seen
in PGLs with other genetic backgrounds, such as NF2, SDHx or
VHL. Further, we examined the expression of IDH2 mutant
through immunoblotting. The IDH2 mutant was expressed in
the protein lysate from the patient, but not in PGLs with other
genetic backgrounds as described above (Figure 2C). The
specificity of the IDH2 mutant antibody was confirmed by
testing the ectopic expression of the IDH2 R172G variant in
hPheo1 cell (Figure 2C).
FIGURE 1 | In this figure of a 47-year-old-woman, axial images (A, B) of contrast enhanced computed tomography (CT, A) and T1 weighted, fat suppressed
magnetic resonance imaging (B) demonstrates an intensely enhancing 2.7 x 2.0 cm mass (arrows; A, B) at the bifurcation of right common carotid artery causing
splaying of right internal and external carotid arteries. The anterior maximum intensity projection (MIP, C–E) of 18F-fluorodopa (18F-FDOPA) positron emission
tomography (PET) demonstrates an uptake in the carotid region (arrow, C). This mass was identified as a right carotid body paraganglioma. Six years later, follow-up
functional PET/CT imaging with 18F-FDOPA (D) and 68Ga-DOTATATE (E) shows no evidence of pheochromocytoma/paragangliomas (PHEOs/PGLs). Similarly,
whole-body CT (not shown here) imaging and neck MRI (not shown here) were negative for PHEOs/PGLs.
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Genetic Analysis
Whole exome sequencing was performed based on DNA
specimens from carotid body PGL and patient blood. A
somatic change in IDH2 was identified at the location of
arginine 172 residue. A follow-up Sanger sequencing
confirmed the presence of IDH2 c.514A>G variant, which
leads to R172G amino acid substitution (Figure 2D).

Quantification of D-2-HG
To confirm the catalytic function of the IDH2 mutant in cancer
tissue, we performed the mass spec measurement on D-2-HG in
frozen cancer tissue. We identified 15.39 pmol/µg protein, which
was significantly higher than in non-IDH-mutant cancer tissue
(0.0059 pmol/µg protein, Figure 2E, ****p<0.0001). The level of
L-2-HG was found not significantly changed between the tested
samples (Figure 2E, IDH2WT: 0.01436 pmol/µg protein,
IDH2R172G: 0.2407 pmol/µg protein).
DISCUSSION

In the present study, we described the presence of a somatic
IDH2 mutation in a carotid body PGL (Figure 1). Sequencing
analysis revealed a heterozygous IDH1 R172G mutation in
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tumor tissue, whereas this mutation was absent in germline
DNA (Figure 2D). Further, we confirmed the presence of an
IDH2 mutant enzyme through immunohistochemistry and
immunoblotting (Figures 2B, C). The IDH2 mutation
exhibited neomorphic activity, as mass spec analysis revealed
substantially elevated D-2-HG levels in tumor tissue (Figure 2E).

Mutations of IDH are highly prevalent genetic abnormalities
in human cancers (22). Cancer-associated IDH mutations occur
in the catalytic center, resulting in changes in the catalytic
function, production of D-2-HG, epigenetic reprogramming,
and tumorigenesis (23, 24). The identification of an IDH2
mutation in a carotid body PGL not only broadens the
understanding of these mutations in human cancers
(particularly PGL), but it also highlights the role of metabolic
deficiency in tumorigenesis of these tumors, implying possible
therapeutic regimen by targeting the distinctive metabolic
signature. Several small molecule inhibitors against IDH
mutant enzymes are currently under investigation through
clinical studies, which may be helpful for patients with IDH-
mutated PGLs.

Due to the critical role of IDH mutation in several types
human malignancies, pharmacological grade inhibitors have
been developed to suppress the neomorphic activity of IDH
mutant enzymes (25, 26). Several IDH mutant inhibitors are
currently examined through clinical studies, such as AG-120
A B

D

EC

FIGURE 2 | Hematoxylin and eosin staining revealed typical morphology of neuroendocrine tumors (A). Immunohistochemistry showed strong IDH2 mutant
expression in the tissue specimen from the index patient (B). Immunoblotting showed the expression of the IDH2 mutant enzyme in cancer tissue. Ectopic
expression of IDH2 was used as a positive control (C). Sanger sequencing showed a somatic mutation of the IDH2 gene in cancer tissue. The variant is not seen in
blood DNA (D). Mass spec analysis revealed the presence of high-level D-2-HG in cancer tissue. The level of L-2-HG was found not significantly changed. A non-
IDH-mutated tumor specimen was used as a control (E). ****p < 0.0001; ns, no significance.
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(e.g., NCT02073994 and NCT02074839), AG-221 (e.g.,
NCT02273739 and NCT03744390) , AG-881 (e . g . ,
NCT02481154 and NCT04164901), and BAY1436032
(e.g., NCT02746081 and NCT04603001). The discovery of an
IDH mutation in a neuroendocrine tumor suggests the possible
application of these inhibitors as potential therapeutic regimens
for this type of malignancy. Follow up studies are highly
encouraged to explore the prevalence of IDH mutations in
neuroendocrine tumors. In-depth cancer biology studies will
also be helpful to reveal the role of IDH mutations in the
pathogenesis of neuroendocrine tumors.
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