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The Renin Angiotensin System (RAS) is a hormonal system that is responsible for blood
pressure hemostasis and electrolyte balance. It is implicated in cancer hallmarks because
it is expressed locally in almost all of the body’s tissues. In this review, current knowledge
on the effect of local RAS in the common types of cancer such as breast, lung, liver,
prostate and skin cancer is summarised. The mechanisms by which RAS components
could increase or decrease cancer activity are also discussed. In addition to the former,
this review explores how the administration of AT1R blockers and ACE inhibitors drugs
intervene with cancer therapy and contribute to the outcomes of cancer.
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INTRODUCTION

The Renin Angiotensin System (RAS), a hormonal system responsible for blood pressure
hemostasis and electrolyte balance, chiefly consists of renin, angiotensinogen (AGT), angiotensin
I (Ang I), angiotensin converting enzyme (ACE), angiotensin II (Ang II), angiotensin II type 1
receptor (AT1R) and angiotensin II type 2 receptor (AT2R), frequently referred to as the classical
view of RAS. The alternative mainly consists of angiotensin 1-7 (Ang 1-7), MAS Receptor (MASR)
and angiotensin converting enzyme 2 (ACE-2) (1). At low blood pressure, the kidneys release pro-
renin into the blood, where it then converts to the active form – renin – which converts AGT to Ang
I. Following this, Ang I is either converted to Ang II or Ang 1-7, by the actions of ACE and
neprilysin, respectively. Furthermore, ACE2 is able to convert Ang II to Ang 1-7 (2–4). As an active
hormone of RAS, Ang II increases blood pressure to a normal level. It does, however, have reverse
effects in two types of G-protein couple receptors: AT1R and AT2R. The former is more common in
adult tissues such as liver, brain, and kidney tissue, while the latter is predominantly present in foetal
tissues, the ovary, and uterus (2).

In those suffering with hypertension, the overactivation of RAS – which leads to an increase in
the hypertension level – increases the incidence of cancer, as well as the risk of cancer progression
and mortality in cancer patients (2). Chronic inflammation and high Vascular Endothelial Growth
Factor (VEGF) levels during hypertension contribute to endothelial dysfunction and angiogenesis,
respectively, which may then be auxiliary factors during cancer development (5).

Cancer progression is a sequential process, beginning with the proliferation of cells at the site of
origin and results in metastasis to distant sites in the body (6). Metastasis is the most critical process
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during cancer development, attributed to cancer-related deaths
as the main cause. The veracity of this can be determined by the
fact that most colon cancer deaths are related to liver metastasis
(7). In hypertensive patients, the overstimulation of AT1R
contributes to the vascular remodelling that supports tumour
cell movement during metastasis (8). Furthermore, Ang II/AT1R
signalling activates NF-kB, which promotes tumour growth and
prevents apoptosis (9).

NF-kB is a transcription factor that is expressed in all cell
types, and it plays a crucial role during both cancer progression
and metastasis. It acts as a survival factor by promoting cancer
progression and inhibiting apoptosis. It also controls metastasis
by inducing adhesion molecules, such as E-selectin, that help
disseminate cancer cells, in order for them to adhere to the
vascular endothelial cells and subsequently enter the target site
(10). Moreover, it promotes the Epithelial Mesenchymal
Transition (EMT) process, where cancer cells lose their
polarity, adhesion, and migrate to invade neighboring tissues
(6, 11). The EMT process involves an increase in the production
of Matrix Metalloproteinases (MMPs) – such as MMP-2 and
MMP-9 – which act as degradative enzymes that support cancer
invasion and migration by extracellular matrix (ECM)
degradation. On the other hand, NF-kB promotes angiogenesis
during cancer progression, through the upregulation of VEGF,
which is responsible for neo-angiogenesis during both invasion
and migration (2, 10). It is posited that NF-kB activity could be
reduced by ACE inhibitors (ACEIs) and AT1R blockers
(ARBs) (12).

ACEIs and ARBs are widely used as anti-hypertensive drugs.
ACEIs reduce Ang II production, leading to the prevention of
signalling in Ang II receptors; ARBs, meanwhile, block the AT1R
signalling. They are suggested as an adjuvant therapy for cancer
patients, but their effect as antitumour agents has not yet been
agreed and confirmed, as they have conflicting effects on cancer
(2). As demonstrated in Table 1, a vast proportion of the studies
indicate the drugs’ efficacy in the regression of tumour
development, while a limited number of studies found that
ARBs such as losartan induce cancer progression, angiogenesis,
and increase the risk of cancer – lung cancer, in particular (15,
33). One possible reason behind that confliction is that some
ARBs, such as telmisartan, are able to activate the Peroxisome
Proliferator-Activated Receptor-gamma’s (PPAR-g) signalling,
which controls the proliferation of cancer and promotes
apoptosis. Other reasons to explain the confliction between
studies could be the study design, the type of cancer involved
in the study, the period of drug administration, or the intake of
multiple medications by the patient (2, 34).

RAS is not only expressed systemically – in the liver, kidney,
and lung – but is also expressed locally in different tissues – such
as breast, pancreas, brain, ovaries, adipose, and heart tissue –
where it is involved in tissue remodelling and endothelial
dysfunction (1, 35, 36). Dysregulation of local RAS contributes
to cancer metastasis, adhesion, invasion, angiogenesis,
proliferation, and EMT. The exact role of each part of RAS is,
however, contradictory depending on the type of cancer,
the stage of cancer, the dose of, and interval between, the
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administration of ARBs and ACEIs, the tissue affected, and the
expression level of Ang II receptors between cancers (2, 37). In
the following review of literature, the aim was to clarify and
summarise the effect of RAS components on the most
common cancers.
BREAST CANCER

Breast cancer is a serious worldwide health problem, with high
incidence and mortality rates among women. It is no longer
confined to just older women; recent years have witnessed an
increase, even amongst young women, of more aggressive
phenotypes (38). Previous studies reported that RAS
components are locally expressed in breast tissue and thus may
play role in breast cancer pathology (39). In normal breast tissue,
RAS activity mainly relies on the alternative pathway (ACE-2/
Ang 1-7/MASR), whilst in breast cancer tissue, the classical
pathway (ACE/Ang II/AT1R) was the prominent (40). So that,
Ang II and its receptors merited to be therapeutically targeted by
researchers using ARBs and ACEIs (41).

Ang II/AT1R axis plays a pivotal role in solid tumours. In
breast cancer, it has four functional effects. First, it promotes
tumour growth through the AKT and ERK1/2 signalling
pathways (9, 42) and activation of the CARMA3-Bcl10-
MALT1(CBM) signalling complex, which then induces NF-kB
production (43). Secondly, it induces EMT through AKT
phosphorylation (42) and the TGF-b/Smad signalling pathway,
where the Snail1-Smad3/4 complex reduces E-cadherin (11). In
addition, Oh et al. (11) revealed that the inhibition of smad4 in
breast cancer cells – those that have high levels of AT1R –
restored the E-cadherin level and reversed the epithelial
mesenchymal phenotype (11). Thirdly, it supports invasion
and angiogenesis through the induction of MMP-9, MMP-2,
and VEGF expression, which plays a role in ECM modulation
(11, 44). Fourth, it stimulates lymph node metastasis and cell
migration through CXCR4/Sdf-1a signalling, which activates
focal adhesion kinase (FAK)/Ras homolog gene family member
A (RhoA) signalling. FAK/RhoA signalling directs cell
movement, while CXCR4/Sdf-1a signalling helps tumour cells
to reach lymph nodes (45).

Interestingly, the effect of CBM-dependent NF-kB activation
is not only confined to tumour growth (46) but also extends to
affect the tumour’s microenvironment by stimulating the
secretion of VEGF, interleukin-6 (IL-6), IL-8, and IL-1B.
VEGF contributes to angiogenesis, while IL-1B modulates
immune tolerance to allow cancer metastasis (43).

In order to discern whether the functional effects of Ang II in
breast cancer through AT1R or AT2R, Cambados et al. (42)
demonstrated the effect of blocking AT1R or AT2R on Ang II
induced AKT and ERK1/2 signalling pathways in breast cancer
cells. Both AKT and ERK1/2 activity was significantly reduced
after only AT1R blocking, indicating that the detrimental
proliferative effect of Ang II in breast cancer was through
AT1R (42). The Ang II level was high in breast cancer-related
death, compared to that in unrelated breast cancer death, thus
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supporting Ang II’s role in breast cancer mortality. In addition,
Ang II induces breast cancer angiogenesis, cell proliferation (47),
and migration by stimulating the PI3K/AKT/NF-kB pathway
through AT1R (48).

Previous studies illustrated that AT1R was highly
overexpressed in breast cancer, therefore indicating its vital
role in breast cancer growth and progression. Furthermore, Oh
et al. (11) observed that AT1R function was supported by a high
co-expression of X-linked inhibitor of apoptosis and poly (ADP-
ribose) polymerase, which help cancer cells to evade apoptosis
and promote cancer progression (11). The expression of AT1R
was inversely correlated with the metastatic potential of breast
cancer cell lines. Kowalska et al. (49) observed that MCF-7 has
higher metastatic potential compared to the MDA-MB-231 and a
lower AT1R level (49). Moreover, AT1R was expressed in breast
cancer at a high clinical stage, and it was correlated with high cell
proliferation and vascular density (39).

The role of AT2R in breast cancer pathophysiology remains
unclear. Previous studies suggested that AT2R blocking may
delay cancer progression (50). Arrieta et al. (39) found that
AT2R expression was low in breast cancer cells compared to
the normal breast cells, indicating that AT2R may not be
associated with breast cancer cell proliferation (39). In a
different study, however, breast cancer tissue showed higher
AT2R levels compared to the normal tissue. This confliction in
the functional effect and expression level of AT2R may be due
to the functional association between AT2R and AT2R
Interacting Proteins (ATIPs), as ATIPs increase AT2R
Frontiers in Endocrinology | www.frontiersin.org 3
availability by transporting it from the cytoplasm to the cell
surface (51, 52).

The anticancer effect of Ang 1-7 through MASR has been
proven by different studies where Ang 1-7 was able to inhibit
fibrosis, reduce tumour weight and volume (40, 51), restore
mesenchymal epithelial transition, as well as impede
angiogenesis and metastasis induced by Ang II through
inhibition of VEGF and MMP-9 expression (42). In particular,
the presence of Ang 1-7 in breast cancer ameliorates the Ang II
effect, but the Ang 1-7 and MASR expressions are low in breast
cancer and continue decreasing with cancer progression (48).
High ACE expression reduces overall survival in breast cancer
patients, while high ACE-2 expression improves cancer
prognosis and is associated with low metastatic potential of
breast cancer (40).

There are many studies that have discussed the role and
efficacy of using ARBs and ACEIs in cancer treatment. With
regards to breast cancer, the majority of studies suggested that
there is no association between use of ARBs or ACEIs and breast
cancer risk (41), recurrence, and overall survival (51). Some
studies reported that hypertensive patients are at low risk of
breast cancer because they are using ACEI drugs that prevent
Ang II formation (47). Although the use of ARBs and ACEIs
in breast cancer treatment is debated, the inhibition of breast
cancer growth (47), angiogenesis (53), and metastasis (50) were
achieved by administrating AT1R blockers, which downregulate
VEGF in human breast cancer cells (39) and inhibit NF-kB (46).
Bakhtiari et al. (46) observed that the cytotoxic effect of
TABLE 1 | The effect of some of ARBs and ACEIs treatments on the most common types of cancer.

Drug Mode of action Experimental model Type of cancer Pharmacological Effect Reference

Enalapril and Aspirin ACEI Mice Pancreatic cancer - Inhibit cancer progression and invasive tumor formation. (13)
Losartan ARB Human cell lines and tissues EC - Inhibit cell proliferation. (14)

Human Lung cancer - Increase the risk of cancer. (15)
Human Melanoma - Promote cell proliferation. (16)
Mice and human Breast cancer - Reduce tumor growth and angiogenesis. (11, 17, 18)
Mice CRC - Decrease angiogenesis.

- Reduce lung metastasis.
(19)

Mice PC - Inhibit tumor size and growth. (20)
Mice Pancreatic Cancer - Reduce desmoplasia.

- Improve drug delivery.
- Inhibit cancer progression.
- Prolong survival.

(21, 22)

Mice Glioma - Inhibit tumor growth and promote apoptosis. (23)
Telmisartan ARB Human cell lines PC - Inhibit cell growth. (24)
Olmesartan ARB Mice Pancreatic cancer - Inhibit cell proliferation and tumor growth. (25, 26)
Captopril ACEI Mice NSLC - Reduce tumor volume.

- Delay lymph node metastasis.
(9, 27)

Mice CRC - Regress CRC liver metastasis. (28)
Mice RCC - Inhibit tumor growth.

- Reduce tumor size.
(9, 29)

Mice RCC - Promote tumor growth.
- Decrease survival.

(30)

Candesartan ARB Mice NSLC - Reduce tumor volume.
- Delay lymph node metastasis.

(27)

Mice Bladder cancer - Inhibit tumor growth and angiogenesis. (31)
Mice and human PC - Reduce tumor volume.

- Inhibit tumor angiogenesis.
(32)

Mice and human Breast cancer - Inhibit tumor growth and angiogenesis (18)
Perindopril ACEI Mice Breast cancer - Reduce tumor volume.

- Decrease VEGF levels.
(9)
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Olmesartan with Bay 11-7082 on the MCF-7 breast cancer cell
line was higher than treatment with Olmesartan alone.
Olmesartan inhibits cancer cell growth by blocking AT1R,
while Bay 11-7082 promotes cell apoptosis through NF-kB
inhibition (46). Blocking AT1R with losartan reduced the
CXCR4 expression on the MDA-MB-231 cell membrane and
Sdf-1a in lymph nodes, greatly reducing the metastatic potential
of breast cancer (15, 45).

Tamoxifen (TAM) is an Estrogen Receptor (ER) blocker that
is used to treat all the stages of ER positive breast cancer. Despite
its ability to reduce breast cancer recurrence and mortality, TAM
resistance occurs in breast cancer patients after 5 years of TAM
administration. Namazi et al. (50) tried to decipher the
mechanism behind TAM resistance using an AT1R blocker
(Losartan) and they found that AT1R was highly expressed in
TAM-resisting MCF-7 cells compared to untreated MCF-7. They
therefore suggested that blocking ER through use of TAM may
promote an AT1R signalling pathway to maintain tumour
growth and proliferation and, by using losartan, they observed
a significant decrease in cell proliferation and noted that ER
sensitivity was restored. They concluded that the combination
treatment of ER positive breast cancer with losartan and TAM
may prevent TAM resistance (50).

Recent studies suggest that the investigation of the tumour
microenvironment provides an overview demonstrating how
cancer cells interact with the surrounding environment, hence,
providing better understanding and, as a result, an increase in
possible therapeutic targets. Zhu et al. (54) explored the effect of
combinational therapy on breast cancer using a nano carrier
called Glycolipid-Based Polymeric Micelles (GLPM) to elucidate
how angiotensin II type 1 receptor blockers modulate the tumour
microenvironment. Telmisartan -ARB- loaded GLPM (GLPM/
Tel) was administrated alone, followed by the combinational
administration of GLPM/Tel and doxorubicin -apoptotic drug-
loaded GLPM in the breast cancer tumour’s microenvironment.
GLPM/Tel alone was able to improve drug distribution, suppress
Cancer-Associated Fibroblasts (CAFs) by decreasing a-smooth
muscle actin -markers of activated CAFs-, and destabilise
stromal components by downregulation of connective tissue
growth factors, while combinational therapy increased drug
efficacy through the PPAR-g pathway, as well as the uniformity
of drug penetration due to the previous effect of the GLPM/Tel,
administered alone, which relaxed blood vessels in the tumour’s
microenvironment (54).

There are numerous factors that contribute to breast cancer
etiology, including reproductive, environmental, and genetic
factors (53). Genetic variations of RAS components (ACE and
AT1R) affect their expression in breast tissue and, therefore, in
cancer activity. Singh et al. (55) explored the effect of
ACE insertion/deletion (I/D) and AGTR1 (A1166C) gene
polymorphisms on a protein level, and they found that DD
homozygote polymorphism of the ACE gene was associated with
high levels of ACE and Ang II. Additionally, in Northern Indian
women, the C allele of the AGTR1 gene is associated with high
sensitivity to Ang II (55). Moreover, interactions between genes
may be implicated in the risk of breast cancer: in Iranian women,
Frontiers in Endocrinology | www.frontiersin.org 4
it was observed that the interaction between AGTR1 gene
polymorphism and ACE gene polymorphism increased the risk
of breast cancer, whereas, in Chinese women, the same
interactions were not associated with breast cancer risk (53).

On the other hand, a previous study revealed that the AGTR1
gene polymorphism is not associated with the risk of breast
cancer in Brazilian and Iranian women, while it is significantly
associated with breast cancer in Caucasian women (53). Thus, we
can conclude that the polymorphisms of ACE and AGTR1 genes
could be considered as a risk factor of breast cancer, taking into
consideration racial disparity (Table 2) (55).
GYNECOLOGIC CANCERS

Ovarian Cancer
Amongst the group of gynecological cancers, ovarian cancer
has the highest mortality rate due to its ambiguous and
nonspecific symptoms (56). Ovarian cancer patients have short
overall survival rates as this type of cancer often has a worse
prognosis related to the lack of distinct validated markers that
can help provide accurate diagnoses at early cancer stages. RAS
was believed to be expressed locally in ovarian tissue, and
increases in the expression of its components – Ang II and
AT1R – were found to be correlated with neoplastic development
of ovarian tissue (13).

Considered the most aggressive type of gynecological cancers,
the metastasis process of ovarian cancer predominantly occurs
due to the formation of multicellular spheroids (MCS), which
help disseminate cells to aggregate with each other, avoiding cell
death and promoting cancer metastasis. AT1R is highly
expressed in ovarian cancer and known to promote both EMT
and metastasis to the peritoneal cavity, leading to increasingly
negative outcomes. Ang II/AT1R signals promote cancer
development and progression, causing them to emerge as
potential targets in the treatment of ovarian cancer. Zhang
et al. (57) found that Ang II was overexpressed in ovarian
cancer, stimulating AGT gene expression to produce more Ang
II. This vicious circle therefore leads to the progression of cancer
and the formation of MCS. Ang II/AT1R signalling activates the
ERK and PI3K/AKT pathways, inducing lipogenesis through
the activation of the Sterol Regulatory Element-Binding Protein
(SREBP) pathway. The SREBP pathway upregulates lipogenesis
enzymes, including Stearoyl-CoA Desaturase-1 (SCD1),
an endoplasmic reticulum enzyme responsible for lipid
desaturation. Cancer cells tend to avoid apoptosis through
lipid hemostasis, and reduction of endoplasmic reticulum
stress by activation of the lipid desaturation process, thus
relieving endoplasmic reticulum stress caused by saturated
fatty acid overload. Furthermore, the effect of Ang II is not
limited to AT1R but can also be converted to Ang 1-7 in the
presence of losartan -AT1R blocker-, which downregulates
AT1R. In a recent study, the co-treatment of ovarian cancer
with Ang II and losartan was able to reduce tumour size and
increase cell death, which was reduced in the presence of Ang II
alone. SCD1, which helps cancer cells to avoid cell death, was
September 2021 | Volume 12 | Article 736361
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notexpressed in the presence of losartan. Therefore, it was
concluded that, in the absence of the AT1R effect, Ang II could
be converted to Ang 1-7, acting through MASR to reduce cancer
metastasis (57).

Beyazit et al. (13) found that ACE was highly expressed in
ovarian cancer patients, regardless of the cancer stage, and
suggested ACE as a therapeutic target for future studies (13).
Previous study found that ATIPs that had a tumour suppressing
effect were downregulated in ovarian cancer cells, while the high-
mobility group, AT-hook 2 (HMGA2), was overexpressed. In
epithelial carcinoma, HMGA2 promotes tumour growth and
metastasis through activation of the ERK signalling pathway and
EMT phenotype, respectively. Ping et al. (58) investigated the
effect of ATIP3a induction in ovarian cancer, where they found
that the HMGA2 mediated tumour growth, migration and
invasion were attenuated, and the HMGA2 level was
downregulated. The ATIP3a, therefore, could be considered a
viable candidate for ovarian cancer therapy (58). Interestingly,
Cho et al. (59) suggested that ARBs were the most efficient type
of antihypertensive drugs in the reduction ovarian cancer
recurrence rate , as ovarian cancer t issue has high
concentrations of Ang II receptors (59).

Uterine Cancer
Uterine cancer is the fourth most common cancer among U.S.
women. It is classified based on the affected tissue into
endometrial carcinoma, other carcinomas, carcinosarcoma, and
sarcoma (60). RAS components are well-known to be expressed
normally in the uterus during the menstrual cycle, where Ang II
is required to induce VEGF production during the formation of
follicles, building a new endometrium, and the development of
oocytes. VEGF is the main regulator of blood vessel formation
and it is overexpressed in Endometrial Cancer (EC) compared to
the normal people. Additionally, the RAS components were
found to be dysregulated in EC, where cancer progression
requires Ang II mediated VEGF production. Estrogen/AT1R
signalling was shown to promote estrogen receptor proliferation
and, as a result of that, AT1Rwas highly expressed in primary stages
when compared to the advanced stages of EC. In addition,
inhibition of VEGF was able to reduce EC proliferation and
migration through a small interfering RNA and Ang II degrading
enzymes, respectively (14).

In terms of Ang II’s effect on EC cell lines, it promotes cell
proliferation, survival, EMT phenotype, and migration in a dose-
Frontiers in Endocrinology | www.frontiersin.org 5
dependent manner, where the amount of Ang II needed to exert
its tumorigenic effect increases as the EC progresses or loses the
differentiated phenotype. Ang II/AT1R also supports migratory
and invasive properties through the upregulation of EMT-related
genes and the downregulation of E-cadherin – a cell adhesion
gene – in the advanced stages compared to the early stages. TGF-
b is known to have a contradictory effect: in the early stages of
cancer, it exerts a tumour suppressor effect, while at the later
stages, it promotes cancer progression. Nowakowska et al. (61)
reported low expression of TGF- b at the early stages of EC and
high expression at advanced stages, with expression regulated by
Ang II. Interestingly, AT1R blocking had a slight effect on Ang
II-associated EC development, indicating that the effect of Ang II
could be adapted to another signalling pathway, in the absence of
AT1R (61, 62).

The tumour suppressing effect of AT2R in uterine
leiomyosarcoma was investigated by LÜtzen et al. (63), where
the selective blocking of AT1R in quiescent uterus cells promoted
cell differentiation and apoptosis through Ang II/AT2R-
mediated PPAR-g signalling. AT2R increased the expression of
Calponin and Smooth Muscle Protein 22a – differentiation
markers – reducing cell proliferation in uterine leiomyosarcoma.
In addition, AT2R interacted with ATIPs, activating downstream
apoptosis by binding with PPAR-g (63).

The genetic variations of AGT and AGTR1 genes in
Australian women were investigated by Pringle et al. (64).
They identified that the G allele of the AGT gene was
associated with a high expression of AGT, whilst the C allele of
the AGTR1 gene was associated with an increased AT1R level. In
EC, AGT overexpression was associated with the anti-angiogenic
effect of RAS, while high levels of AT1R was associated with
cancer growth and progression. Interestingly, the C allele of the
AGTR1 gene was predominant in Australian women with EC,
but not in the G allele of the AGT gene, which indicates the role
of gene polymorphism in EC (64).
PROSTATE CANCER

Prostate cancer (PC) is the most common male cancer and it has
two types: androgen-dependent PC and androgen-independent
PC (65). RAS was previously known to be expressed in normal
prostate tissue, as well as cancer cells, reflecting its influential
role in normal cell functioning and malignant transformation.
TABLE 2 | The effect of genetic variation of ACE and AGTR1 genes on breast cancer in different ethnicity (53, 55).

Country/Population Gene Polymorphism Breast cancer association

Mexican women D allele of ACE gene Increase risk of breast cancer
Mexican and Caucasian women C allele of AGTR1 gene Decrease risk of breast cancer
Chinese women AA (A240T) and insertion homozygote (II) of ACE gene Decrease risk of breast cancer
Egyptian postmenopausal women C allele of AGTR1 gene Increase risk of breast cancer
Kashmiri women Insertion homozygote (II) of ACE gene Increase risk of breast cancer

ACE heterozygote (ID) genotype Decrease risk of breast cancer
Ukrainian women AC genotype of AGTR1 and D allele of ACE gene Increase risk of breast cancer
North Indian women AC, CC (A1166C) and C allele of AGTR1

Deletion homozygote (DD) and D allele of ACE gene
Increase risk of breast cancer

Insertion homozygote (II) of ACE gene Decrease risk of breast cancer
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In normal prostate cells, it contributes to spermiogenesis, sperm
motility, and sperm survival. Domińska et al. (66) noticed that
the long exposure of normal prostate cells to Ang II affects cell
morphology, enhances cell proliferation and survival through
upregulation of BCL2/BAX ratios, and promotes ECM
degradation through the increase of MMP-2 and MMP-9
production. All the above-mentioned effects indicate that the
dysregulation of Ang II expression in the prostate increases the
risk of PC (66). It was found that Ang II upregulates survivin – a
PC prognostic marker – activating the IGFR1/AKT pathway in
PC cells. Activation of IGFR1/AKT signalling in androgen-
dependent prostate cancer cells resulted in androgen resistance.
Moreover, Ang II was able to enhance PC progression and
invasiveness, by increasing MMPs production (67).

Ang II receptors were found to be overexpressed at the early
stages of PC (67). In addition, Kowalska et al. (49) revealed that
there is a positive correlation between AT1R expression and the
metastatic potential of PC cells (49). While in vivo, the
overexpression of AT2R in PC was found to inhibit tumour
growth, reduce Ki-67 – associated with PC aggressiveness –
expression, and induce apoptosis. In addition, AT2R expression
was inversely correlated with the degree of PC aggressiveness
(68). Inhibition of AT1R, and stimulation of AT2R, were
suggested as potential therapeutic targets for PC treatment
(20). The effects of AT2R stimulation was investigated by Ito
et al. (69), who identified that in vivo and vitro stimulation of
AT2R by compound 21 – AT2R agonist – stimulates cell
apoptosis and decreases the expression of androgen receptors,
thus reducing cell proliferation. Therefore, AT2R stimulators
were suggested to be human PC candidates in chemo-preventive
therapy (69).

Long-term use of antihypertensive drugs (ARBs or ACEI)
have been found to reduce the risk of PC among hypertensive
patients (70). Additionally, using ARBs at high concentrations
(100-400µM) were observed to increase PC cell death via
promoting the cancer cell autophagy represented by the
presence of microtubule-associated protein 1A/1B-light chain
3-positive foci, and an increase in autophagy-related gene
expression. In addition to previous ARBs effects, fimasartan in
particular was able to reduce PC migration, thus it may prove to
be a promising therapeutic agent for PC in hypertensive
patients (71).

Furthermore, NFkB expression increases the metastatic
potential and drug resistance in PC, and it has been found to
be correlated with advanced stages of cancer, while androgen
receptor expression was found to be inversely correlated, as
prostate cancer becomes androgen-independent in the late
stages. The expression of the NFkB family and androgen
receptors were found to be affected by Ang II during PC
development (72). In androgen-independent PC, Ang II/AT2R
and Ang 1-7 were found to reduce Protein Tyrosine Kinase
(PTK) activity. PTKs promote PC progression in advanced
stages, where they were found to be upregulated. Therefore,
the presence of Ang II and Ang 1-7 were suggested to be
crucial in the advanced stages of PC or in androgen
independent PC, to provide a protective effect. As a result,
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ACEIs were recommended to be administrated carefully, as
their effect may not be always against cancer growth (73).
RENAL CANCERS

Hypertension has been considered as a renal cancer risk factor, as
they share mutual Ang II- mediated signalling pathways – such
as the pathways that are involved in the induction of
proliferation and the inhibition of apoptosis. In addition,
overactivation of RAS induces oxidative stress, as well as DNA
damage and mutation, increasing the susceptibility of developing
kidney cancer, with an accumulation of mutations in the rat
treated with 400µg Ang II/kg per day for 20 weeks (74).

Renal cell carcinoma (RCC) is a kidney cancer that is mostly
detected after distant metastasis and eventually results in
nephrectomy, due to the lack of effect by conventional therapy.
Furthermore, it has a high recurrence rate after surgery. These
concerns promoted researchers to identify prognostic markers
and, from this, possible therapeutic targets to improve cancer
prognosis and treatment (75, 76).

AT1R and MASR were found to be upregulated in bladder
cancer, while AT2R was downregulated. The effect of AT2R
stimulation in bladder cancer was demonstrated by Pai et al. (70),
where the tumour growth and angiogenesis inhibited through
inactivation of the ERK pathway, and VEGF production reduced,
respectively. Moreover, AT2R stimulation induces apoptotic
signalling pathways, including P38 MAPK, caspase-3, and
caspase-8 (77). Furthermore, AGTR2 expression were able to
increase the overall survival of bladder cancer patients (78).

Ang II/AT1R arm was found to be overexpressed in RCC and
to promote cell growth, proliferation, and lung metastasis
through upregulation of VEGF – an angiogenic factor – and
stimulation of CD43, an inflammatory cytokine (75, 76). In
contrast to the well-known anti-tumour and protective effect of
Ang 1-7/MASR signalling in many tumors, Ang 1-7/MASR
signalling was found to stimulate RCC by increasing the
migration ability in clear cell carcinoma and renal cell
adenocarcinoma (76).

In addition, Araújo et al. (75) found that the use of ARBs or
ACEIs alone was able to reduce renal cancer growth and lung
metastasis via downregulation of VEGF, while combinational use
of ARBs and ACEIs was less effective. Combinational treatment
may prove to be less efficient, as the inhibition of AT1R and Ang
II production at the same time increases the bradykinin
production – which promotes cancer growth – inhibiting the
Ang II/AT2R-mediated tumour suppression effect and allowing
renin production, which promotes Ang II-independent growth
signalling pathways. Thus, the overall effect of combinational
treatment could support the tumourigenic effect more than
antitumourigenic effect (75, 76).

In contrast to the previous study, Xie et al. (33) reported
that long-term use of ARBs and ACEIs increased the risk of
kidney cancer, and only ARB was correlated with the risk of
bladder cancer. In addition, other studies indicated that there was
no association between antihypertensive drugs and the risk of
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kidney and bladder cancer. These contradictory observations might
be due to the degree of hypertension in the patient, and both the
time and dose of antihypertensive drug administration (33).

Interestingly, the combinational treatment of kidney cancer with
Sunitinib – a receptor tyrosine kinase inhibitor – and Captopril –
ACEI – was able to reduce cell viability, which had not been
obtained in each of them alone (76). In case of bladder cancer,
ACEIs and ARBs were able to increase the chances of recurrence-
free survival after immunotherapy, but the mechanism behind this
remains unknown (79). Bladder cancer also has resistance against
conventional therapy, although it is mostly non-invasive and could
be removed by a cystectomy, but the problem remains due to the
fact that it will recur in 75% of patients after a specific period of time
(77, 80).
GASTROINTESTINAL CANCERS

1-Liver Cancer
Liver cancer is the second leading cause of cancer-related death
worldwide (81), with hepatocellular carcinoma (HCC) and
intrahepatic cholangiocarcinoma being the most common types
of liver cancer (82). RAS plays a pivotal role in the angiogenesis of
normal and abnormal liver tissue. Understanding the regulation of
the angiogenesis during HCC development helps to improve cancer
diagnosis (83). Due to the high recurrence rate of liver cancer after
surgical removal with more aggressive potential, the need arises to
find adjuvant therapy that increases disease-free survival, and
overall survival, among liver cancer patients (84). Ye et al. (83)
compared the level of RAS components (Ang II, Ang 1-7, and ACE-
2) during abnormal development of liver disease, from fibrosis to
HCC. They found that as the disease severity increased, Ang II, Ang
1-7, VEGF, and CD34 are upregulated, while ACE-2 levels are
downregulated. They therefore revealed that RAS is critical for HCC
progression and angiogenesis, and the reduction of ACE-2 might be
correlated with HCC poor prognosis (83).

In a later study conducted by Liu et al. (85), Ang II was shown
to upregulate AT1R and stimulate cell proliferation in HCC, by
increasing proinflammatory cytokines and nicotinamide adenine
dinucleotide phosphate oxidase activity, which increases Reactive
Oxygen Species (ROS) level (86), while Qi et al. (87) found that
Ang II promotes EMT, migration, and invasion through
activation of the TGF-b signalling pathway in HCC (87).

AT1R was found to be overexpressed in liver cancer and to
promote Ang II-mediated angiogenesis and fibrosis through the
upregulation of VEGF-A, TGF-b, and increasing microvascular
density (37, 84, 88). Sartans – ARBs – in addition to being
nontoxic and safe with regards to long-term use, were suggested
by Facciorusso et al. (84) as potential therapeutic agents due to
their efficacy in prolonging survival, as well as in reducing the
recurrence rate after surgical resection of liver cancer (84).
Moreover, the effect of Candesartan – ARB – was estimated by
Fan et al. (88), enabling the attenuation of Ang II/AT1R/VEGF
mediated angiogenesis, metastasis, and tumour growth in liver
cancer at dose of 2 and 10 mg/kg/day (88). Telmisartan – another
ARB – was found to reduce cell proliferation through activation
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of the AMP-activated protein kinase (AMPK) alongside
inhibition of the mammalian Target of Rapamycin (mTOR)
signalling pathways, which inhibit cell cycle regulatory proteins
such as cyclin D1 and cyclin E, thus arresting the cell cycle in
poorly differentiated HCC cells (89). Furthermore, Feng et al.
(90) found that Irbesartan – ARB – effectively attenuated
VCAM-1-mediated HCC cells adhesion during lung metastasis
through inhibition of Ang II/AT1R-activated P38/MAPK
pathway which responsible for increased VCAM-1 expression
during HCC metastasis (90).

On the other hand, combinational treatment of HCC with
azilsartan – an ARB – and Bay11-7082 – an NFkB antagonist –
was found to induce apoptosis pathways by elevating ROS, thus
releasing cytochrome c from the mitochondria into the cytosol
and reducing the Bcl-2/Bax ratio in HCC (25). Another study
found that losartan as an ARB supported Lenvatinib anticancer
effect in the liver cancer through inhibition of Ang II-mediated
cancer cell growth and increasing cell apoptosis. Besides that,
losartan as an adjuvant therapy showed an antiangiogenic
activity by reducing VEGF-A production induced by Ang II
and Lenvatinib (91). In addition to the ARBs, the effects of ACEIs
on HCC were evaluated by Saber et al. (92), leading them to
conclude that ARBs and ACEIs have the potential to trigger HCC
regression and angiogenesis suppression in mice models treated
with diethylnitrosamine (92).

Ang 1-7 was known to play an antitumorigenic role in the
majority of cancerous tissues. Its effect on HCC in mouse models
was investigated by Liu et al. (37), where cell proliferation and
angiogenesis were inhibited, and cell apoptosis was activated,
following Ang 1-7 treatment in a dose and time-dependent
manner (37). The antiproliferative effect of Ang 1-7 was
demonstrated by the low expression of AT1R and the high
expression of AT2R and MASR. Upregulation of AT2R was
suggested to promote apoptosis by increasing caspase-3 and p38-
MAPK activity. Interestingly, the anticancer effects of Ang 1-7
are not only mediated by MASR, but AT2R partially contributes
to growth inhibition and the apoptosis induction effect excreted
by Ang 1-7 in HCC (37). Moreover, the antiangiogenic effect of
Ang 1-7 was evidenced by decreasing vascular density and
VEGF-A expression. The possible mechanisms by which
Ang 1-7 decreases VEGF-A expression in HCC was suggested
to be, the inhibition of ERK signalling, in addition to
the downregulation of hypoxia inducible factor-1a and
cyclooxygenase 2 (37).

Colorectal Cancer
Colorectal Cancer (CRC) is one of the most common cancers
among both men and women. Age, sex, nutrition, genetic
background, and obesity are considered as CRC risk factors
(93). RAS components play an important role in the normal
physiological function of the colon, where the Ang II – through
AT1R and AT2R – stimulates sodium and water absorption and
secretion, respectively. It was found that RAS components are
dysregulated in CRC, which indicates the contribution of RAS in
CRC pathology. CRC predominantly metastasizes to the liver,
where the angiotensinogen production is normal, leading to the
notion that RAS also plays a pivotal role in CRC metastasis. In
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CRC liver metastasis, ACE, Ang II, and MASR were found to be
upregulated, while AT1R noted as being downregulated in
comparison to the normal liver tissue. ACE converts the
angiotensinogen produced by the liver into Ang II, which,
through AT1R, stimulates angiogenesis and metastasis through
the upregulation of VEGF and TGF-b, respectively. Although
AT1R downregulated in the liver during CRCmetastasis, Kupffer
cells (KCs) showed overexpression of AT1R, which was posited
as being responsible for promoting CRC liver metastasis (94, 95).
Shimizu et al. (95) confirmed the previous suggestion by
investigating the effect of AT1R knockout in CRC mice
models, where they found that liver metastasis was suppressed
and TGF-b production was downregulated in KCs, thus
indicating that liver metastasis is promoted by KCs,
stimulating TGF-b production through AT1R signalling (95).

RAS inhibitors are associated with decreased risk and
mortality of CRC (96). ACEIs and ARBs treatments were
found to increase recurrence-free survival in the early stages of
CRC and left-sided CRC cases. Conversely, the overexpression of
the AGTR1 gene – which was observed in the advanced stages –
was associated with poor recurrence-free survival (97). In
addition, ARBs were able to increase overall survival as well as
progression-free survival (PFS) in patients with metastatic CRC
who underwent first line chemotherapy (98).

Moreover, activating protein-1 (AP-1) complex was proved to
initiate CRC. The administration of Irbesartan – an ARB – were
found to inhibit the AP-1 pathway by inhibiting JUN gene
expression, which encodes AP-1 (99). Ruderman et al. (100)
observed the inhibitory effect of losartan on colorectal cancer
mice models by downregulating VEGF protein, decreasing the
number of tumours, and abolishing changes in blood supply
during neoplastic angiogenic transformation (100). While in case
of Captopril and Irbesartan were found to reduce tumour size by
supporting the antitumour effect of KCs in CRC liver metastasis.
Moreover, captopril was found to downregulate ACE expression,
thus inhibiting Ang II production and promoting Ang 1-7
production, which plays an antiproliferative role through the
MASR in CRC liver metastasis (94).

Pancreatic Cancer
Pancreatic cancer is expected to be the second leading cause of
death among cancer patients in the United States by 2030.
Pancreatic Ductal Adenocarcinoma (PDAC) and pancreatic
endocrine tumours are the main types of pancreatic cancer.
Although it can be treated by chemotherapy and/or a
pancreatectomy, eventually it will recur and develop.
Additionally, its ambiguous, refractory nature and the absence
of early diagnostic markers are considered to be obstacles
towards better outcomes and treatment. RAS components were
suggested to be novel biomarkers or therapeutic targets in some
cancers. In PDAC, Ang II was found to promote desmoplastic
reaction and cell proliferation by activation of the protein kinase
C (PKC) and ERK signalling pathways, which promote
pancreatic stellate cells to overproduce TGF-b. TGF-b
overproduction contributes to the desmoplastic reaction
(101, 102).
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Ang II receptors are known to be expressed locally in both
normal and cancerous pancreas tissue. AT1R was found to be
highly expressed in pancreatic cancer, while AT2R exhibited low
expression compared to the normal surrounding tissue. AT2R
agonists emerged as potential therapeutic agents for PDAC, as
they were able to inhibit cell growth and induce cell apoptosis in
AT2R-expressing PDAC cells (103).

In the case of AT1R, its overexpression was found to promote
pancreatic cancer progression by interfering with the
antitumorigenic role of MicroRNA 410 (miR-410), which
inhibits cell proliferation, angiogenesis, and invasion.
Moreover, miR-140 was found to be downregulated in cancer
cells compared to the surrounding normal tissue, indicating
AT1R’s oncogenic role in pancreatic cancer (104). Therefore,
based on previous studies, therapeutic strategies that involve
AT2R agonism and AT1R antagonism are recommended for
better pancreatic cancer outcomes.

The use of ARBs was shown to decrease the risk of death and
increase overall survival in pancreatic cancer patients who
underwent surgical removal (105). Losartan was demonstrated
as being able to inhibit cancer progression and prolong survival
in pancreatic cancer (21).

Esophagus Cancer
Esophageal Squamous Cell Carcinoma (ESCC) and Esophageal
Adenocarcinoma (EAC) are types of esophagus cancer, with
ESCC being the most common type among esophagus cancer
patients (106, 107). Although it can be treated, its overall
prognosis remains unsatisfactory (106). RAS was previously
suggested to be associated with hallmarks of cancer. Ang II via
AT1R was suggested to be involved in Barrett’s esophagus
transformation into EAC, as it had a regulatory effect on EAC
development related proteins (108).

AT1R was found to be overexpress at high tumor stages and
associated with low overall survival and poor prognosis. Moreover,
Ang II/AT1R signaling was suggested to promote ESCC progression
through mTOR activation in dose-dependent manner. The
inhibition of AT1R either by AT1R blockers or siRNA were
found to reduce cell proliferation in ESCC (106). In another
studies, RAS inhibitors such as Captopril, Losartan, and
Irbesartan showed improvement in the overall survival, inhibition
of cell proliferation, and suppression of neovascularisation by
decreasing VEGF production in ESCC, with each effect being
dose-dependent. RAS inhibitors were therefore recommended as
salvage therapy for ESCC (109).

Matsui et al. (107) investigated the effect of Telmisartan –
ARB – on ESCC in vivo and vitro. They reported that the
telmisartan did not affect apoptosis, but it was able to inhibit
cell proliferation by reducing cyclin A2 and cyclin-dependent
kinase 2 expression, which led to cell cycle arrest at the S-phase
(107). With regards to EAC, telmisartan illustrated an
antiproliferative effect through cell cycle arrest at the G0/G1
transition by reducing cyclin E and cyclin D1, and suppressing
cell cycle regulatory proteins through the AMPK/mTOR
signalling pathway. Therefore, telmisartan is suggested to be a
potent antiproliferative therapy for esophagus cancer (110).
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LUNG CANCER

Lung cancer is a complicated disease, consisting of several types
of cancer, including adenocarcinomas, small cell lung cancer,
and non-small cell lung cancer (NSCLC) (111). It has a low
survival rate and a high mortality rate due to the propensity for
late diagnosis at advanced stages of the disease, with the early
stages being asymptomatic (112, 113). RAS components are
known to be expressed in lung tissue and to contribute to lung
cancer pathology (114).

Cancer Stem Cells (CSC) are immortal cells present in the
tumour’s microenvironment. They are thought to mediate both
cancer metastasis and its aggressiveness and are implicated in
the tumour’s resistance against conventional therapy. Cell
surface expression of CD133, CD44, and CD24 were
determined as CSC markers (115). Ang II was found to
promote cell proliferation and stimulate CSC-like phenotypes
by increasing the CD133 expression in lung cancer cells (27).
Interestingly, K. Yang et al. (116) revealed that, in the human
NSCLC cell, Ang II/AT1R signalling was able to suppress anti-
tumour immunity through the activation of programmed death
ligand-1 expression, which inhibits T-cell activity in the tumour
microenvironment (116).

Ang II was found to promote lung cancer progression through
Epidermal Growth Factor Receptor (EGFR) transactivation, which
activates the MEK/ERK pathway, or through AT1R activation,
which upregulates micro RNA-21 (miRNA-21) – an oncogene –
to stimulate the PI3K/AKT pathway through phosphatase and
tensin homolog – a tumour suppressor – inhibition. In addition,
miRNA-21 was found to be associated with short disease-free
survival and short overall survival in NSCLC patients,
subsequently leading to the suggestion that utilising the silencing
of miRNA-21 as a potential lung cancer therapy needs more
investigation (117).

Furthermore, EGFR was previously ascertained as promoting
cancer development through the activation of the Mitogen-
Activated Protein Kinase/Signal Transducer and Activator of
Transcription (MAPK/STAT) signalling pathway, leading to
EGFR tyrosine kinase inhibitors (TKIs) being administrated as
an anticancer drug agent. Interestingly, NSCLC patients who are
using TKIs were found to have longer PFS after ACEIs/ARBs
treatment (114). In addition, telmisartan – ARB – treatment was
shown to inhibit tumour growth, invasion, and migration in
NSCLC, and to activate NSCLC apoptosis through inhibition of
the PI3K/AKT signalling pathway (112). In a retrospective study
of Korean cohort with median follow-up time 7.8 years, ARBs
were found to decrease the risk of lung cancer compared with
calcium channel blockers use among hypertension patients (118).

NSCLC constitutes the majority of lung cancer cases, with a
low overall survival rate due to acquired drug resistance during
treatment (112). In platinum-resistant NSCLC, AT1R, ACE, and
VEGF were found to be upregulated, while ACE2 was
downregulated. Following stimulation of ACE2 expression,
tumour growth was inhibited and the production of AT1R,
ACE, and VEGF were reduced, due to ACE2 being known to
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convert Ang II to Ang 1-7, which has been proven previously to
reduce tumour growth, invasion, and angiogenesis through
reduced VEGF production in NSCLC. Thus, ACE2 was
suggested as an antiproliferative and antiangiogenic agent after
the development of platinum-resistance in NSCLC (119).
Moreover, most recent study conducted by Geng et al. (120)
found that Ang 1-7/MasR downstream signalling play role in
platinum-resistance NSCLC through inhibition of cancer growth
and angiogenesis (120).

On the other hand, Tumour Necrosis Factor-Related
Apoptosis-Inducing Ligand (TRAIL) resistance is an emerging
concern in NSCLC cancer therapy, as TRAIL induces cancer cell
apoptosis. One of the suggested mechanisms of TRAIL resistance
is the autophagy process, which helps cancer cells to survive
under stress conditions, such as chemotherapy. Combinational
therapy of TRAIL treatment with candesartan – an ARB – was
able to re-sensitise TRAIL, inhibit autophagy, and promote
programmed cell death (121).

AT2R stimulation was shown to promote lung cancer
apoptosis (27), leading to the suggestion of using AT2R
plasmid in lung cancer gene therapy by Alhakamy et al. (122)
and Ishiguro et al. (123). This is because AT2R overexpression
was demonstrated to successfully and safely reduce lung cancer
growth by apoptosis induction (122, 123). In addition, the
inhibition of AT1R and stimulation of AT2R were suggested to
be lung cancer therapeutic targets. A multi-walled carbon
nanotube was used as a nano co-delivery system, complexed
with the vector carrying AGTR2 gene and candesartan – an
AT1R blocker – to investigate the effect of AT2R overexpression
and AT1R blocking in lung cancer. This was observed by the
potent inhibition of tumour growth and prevention of new blood
vessels forming (124).

NSCLC is divided into Lung Adenocarcinoma and Lung
Squamous Cell Carcinoma (LSCC). AGTR1 promoter,
methylation, was found to be significantly high in LSCC
compared to the normal surrounding tissue, prompting CHEN
et al. (125) to suggest AGTR1 hypermethylation as an LSCC
biomarker (125).

In contrast to aforementioned beneficial effects of ACEIs and
ARBs in lung cancer, Kristensen et al. (126) found a positive
association between the administration of high doses of ACEIs
and the risk of lung cancer among hypertensive danish
population (126). ACEIs administration could induce
bradykinin accumulation which induce cancer proliferation
and migration through B2 receptors (127). Another case-
control study revealed that long term use of ACEIs and ARBs
at high doses was associated with an increased risk of
adenocarcinoma but not LSCC or small cell lung carcinoma
(128). This contradiction in the studies’ findings could be
explained by presence of confounding factors such as age,
smoking, sex, obesity, alcohol consumption, and genetic
background which could create bias in the final outcomes in
relation to the lung cancer. However, the observed protective
effect of ACEIs and ARBs against cancer mortality such in Brugts
et al. (129) study and other studies cannot be neglected.
September 2021 | Volume 12 | Article 736361

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Almutlaq et al. Renin Angiotensin System in Cancers
SKIN CANCER

Skin cancer is chiefly divided into melanoma and non-
melanoma. Non-melanoma skin cancer is further subdivided
into squamous cell carcinoma and basal cell carcinoma.
Although melanoma is less common compared to non-
melanoma types, it is the most lethal of the two (130).
Moreover, it is an aggressive skin cancer that metastasizes
predominantly to the lung, with lung metastasis positively
correlated with short overall survival of melanoma patients.
AT1R was found to be expressed in melanoma and in Myeloid
Derived Suppressor Cells (MDSC) of pulmonary metastasis in
mice models. MDSC are hematopoietic cells known to play an
immunosuppressive role in the tumour’s microenvironment.
Andrade et al. (2015) found that the number of MDSCs were
reduced and the AT1R downregulated in lung metastasis mice
models that had been treated with M1 – a homeopathic
medicine. This led to the conclusion that the inhibition of
melanoma growth and metastasis to the lung may partially be
achieved by suppressing AT1R (131, 132).

The complex interaction of RAS components was found to
play a critical role in skin cancer. Ang II was found to increase
cell proliferation and invasion by increasing MMPs production
and activity in human melanoma, and that effect was suggested
to be through AT2R. On the other hand, N+/H+ Exchanger
Isoform1 (NEH1) activity promotes cell motility in skin cancer.
The interplay between RAS components and NEH1 activity in
human melanoma was demonstrated by Olschewski et al. (133),
where they identified that Ang II stimulates NEH1 activity and
cell proliferation through the Ca+2/calmodulin signalling
pathway, and that the effect was abolished by losartan – an
AT1R blocker (133).

Additionally, Ang II/AT1R promotes pulmonary metastasis in
melanoma by increasing E-selectin expression, helping in the
adherence of melanoma cells to the lung during the
endothelium adhesion stage of metastasis process. In an AGTR1
gene-lacking melanoma mice model, Ang II treatment did not
affect cell proliferation, and the pulmonary metastasis was
suppressed (134).

In a different study, Ang II was able to reduce cell migration
by increasing adhesion, contraction, and the spheroid
morphology of human melanoma cells, which helps to prevent
the spreading of cancer cells. Furthermore, the blocking of AT1R
supports the antimigratory effect of Ang II, while AT2R blocking
had no effect (133).

In contrast to the previous studies, Renziehausen et al. (16)
concluded that AT1R have an Ang II-independent
antitumorigenic effect, while AT2R promotes cancer growth in
an Ang II-dependent manner in melanoma cancer cells. They
also found that the suppression of AT1R, either by losartan
treatment or by shRNA, resulted in the growth promotion of
AT1R-expressing melanoma cells. In addition, ectopic
expression of the AGTR1 gene in melanoma cell lines led to
cell death, while the loss of AT1R was suggested to be associated
with a melanoma-aggressive phenotype. With regards to AT2R,
Ang II treatment promotes cell proliferation in AGTR1 gene-
lacking melanoma cells but not in AGTR1 and AGTR2 genes
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lacking melanoma cells, which proves the Ang II-dependent
proliferative effect of AT2R. Moreover, AT2R agonist induces
cell proliferation, while AT2R antagonist decreases melanoma
cell growth (16).

In non-melanoma skin cancer, AT1R was found to be
overexpressed in both head and neck squamous cell carcinoma
(HNSCC). Ang II/AT1R signalling was found to stimulate the
motility and invasion ability of HNSCC, while Ang 1-7 inhibits
that effect only in the presence of Ang II. AT1R blockers and
ACEIs were able to inhibit HNSCC invasion and growth,
respectively (135). Recently Drucker et al. (136) revealed that
there is no association between ARBs or ACEIs administration
and the risk of skin cancer in people older than 65 years (136). In
terms of genetic variations, low expressions of ACE and AGT
genes are suggested to be associated with a low risk of basal cell
carcinoma (137).
THE EFFECT OF UROTENSIN II (UII) IN
THE COMMON TYPES OF CANCER

A major cellular homeostasis component, urotensin II (UII)
contributes to the development of both acute and chronic
diseases, inflammation, liver cirrhosis, and other conditions
(138). It has been determined to affect angiogenesis and
mitogenesis, using its receptor (UII-R) to exert a potent
angiogenic effect in vivo as well as in vitro (139). Furthermore,
according to research evidence, UII vasoconstriction and
vascular impairment are underpinned by the Ang II pathway,
as vascular responses to UII are inhibited when the angiotensin-
converting enzyme pathway is suppressed. At the same time,
Ang II seems to worsen UII-induced endothelial dysfunction
(140). A noteworthy observation from a rat model study is that
UII and Ang II exhibit synergistic action when administered
together in the aorta, eliciting a strong contractile effect
accompanied by heightened activity of PKC and phosphorylation
of PKC-a/bII and myosin light chain (141).

Breast Cancer
A number of tumor cell lines have been found to express UII and
UII-R. When UII activates UII-R, extremely complex
downstream signalling pathways are activated (142). A
correlation has been proposed to exist between UII and UII-R
expression and both menopausal status and extra-nodal and
lymphatic invasion in the context of breast cancer tissue (139).
Furthermore, the biology of breast cancer tumor seems to
depend greatly on the UII protein, since breast cancer patients
have been observed to have markedly lower plasma levels of this
protein. Additionally, the likelihood of breast cancer
development may be promoted by Thr21Met polymorphism in
the UTS2 gene possibly through its influence on the molecular
mechanisms underpinning disease pathogenesis (143).

Prostate Cancer
During the invasion of prostate cancer cells, UII-R expression
downregulation has a substantial inhibitory effect on cells
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motility that paralleled by reduction in the expression of CD61
and CD11a integrin as well as phosphorylation of FAK tyrosine.
Hence, UII-R may serve as a marker of prognosis for human
prostate adenocarcinoma (144). Furthermore, Gleason score
upstaging and upgrading in cancer cases have significant
ramifications for treatment. Biopsy and radical prostatectomy
samples have been reported to have decreased tumor expression
of UII-R when the Gleason score and clinical stage of prostate
cancer were higher (145). On the other hand, it has been
observed that prostate cancer presents a high grade and
advanced stage when UII-R expression intensity is high (146).
Such contradictory findings call for further research to clarify
the matter.

Renal Cancers
In the context of kidney cancer, human renal cell carcinoma
markedly proliferates under UII therapy (143), while bladder
cancer prognosis is better when UII-R is expressed at heightened
levels (145). One study reported that non-muscle invasive and
muscle invasive bladder cancer could be differentiated based on
UII-R expression in 130 tissue specimens of bladder cancer (145).
Furthermore, it has also been proposed that bladder cancer is
modulated with UII-R participation, with bladder cancer cells
being potentially dependent on UII/UII-R mediated pathway for
movement, infiltration, and progression (147).

Gastrointestinal Cancers
1-Liver Cancer
The heightened expression of UII and UII-R mRNA and protein
promotes the growth of human HCC by activating the PKC,
ERK1/2, and p38 MAPK signaling pathways (148). Furthermore,
UII stimulates the release of reactive oxygen species, which
seem to not only accompany the activation of the PI3K/Akt
and ERK signaling pathways but also speed up the G1/S
transition, which could be the mechanisms underpinning UII-
mediated ROS in the promotion of proliferation of cells (149).
It is also worth noting that, by encouraging VEGF to be
produced and by intensifying HCC tumor growth and
progression, UII may participate in tumor angiogenesis (85). It
has been observed that HCC tissue has considerably high levels
of UII and UII-R mRNA expression (85), which may activate
migration and invasion within HCC as well (150, 151).
Furthermore, HCC is more likely to recur, invade, and
metastasize following radical therapy due to the poor
prognosis. It has also been noted that, in HCC cases, UII-R
expression is favorably related to tumor number, volume,
histology, node metastasis, recurrence, and mortality. Hence,
prognosis in HCC cases subjected to radical liver resection may
be estimated based on UII-R level (151).

2-Colorectal Cancer
One study evidenced that, by contrast to healthy colon, colon
adenocarcinomas had significantly higher expression of UII-R
protein and mRNA; in particular, the expression of UII-R mRNA
was eight times higher in colon cancer. On the one hand, UII
stimulated colon cancer cells to grow, whilst on the other hand,
cell growth, motility, and infiltration were suppressed when
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certain antagonists were used to block UII-R. It can thus be
concluded that colon cancer may develop with the involvement
of the UII-R-related pathway and treatment benefits could be
derived from targeting UII-R (152).

Lung Cancer
Research has indicated that human lung adenocarcinoma A549
cells have expression of both UII and UII-R mRNAs and
proteins. Furthermore, those cells proliferate at a heightened
level when UII is administered. One study using nude mouse
models of human lung adenocarcinoma A549 cells discovered
that UII treatment was associated with a marked increase in the
volume and weight of the tumor by contrast to models without
UII treatment. Such results support the fact that human lung
adenocarcinoma may be promoted by UII in the form of an
autocrine/paracrine growth stimulating factor (153).
CONCLUSION AND FUTURE
PERSPECTIVES

In this review, the effect of RAS components on the most
common types of cancer was discussed (Figure 1).
Throughout, it was identified that RAS play a pivotal role in
the most common cancers, as it is expressed locally in all normal
and cancerous tissues. Dysregulation of RAS components in
tumours caused diverse effects on each type of cancer and
sometimes even on different stages of the same cancer type. In
the majority of studies, Ang II was found to promote cancer
progression, growth, EMT, angiogenesis, and metastasis in
breast, lung, uterine, prostate, renal, liver, colorectal,
pancreatic, and esophageal cancer, chiefly through AT1R and
the inhibition of cancer progression, growth, and angiogenesis,
inducing cell differentiation and apoptosis in breast, lung,
uterine, prostate, renal, liver, ovarian, and pancreatic cancer
through AT2R. In contrast, Ang 1-7 inhibits cancer
progression, growth, cell motility, angiogenesis, invasion,
metastasis, tumour size and weight in breast, lung, prostate,
ovarian, and liver cancer. Few studies reported the
antitumourigenic effect of Ang II/AT1R, as well as the
tumourigenic effect of Ang II/AT2R and Ang 1-7/MASR in
cancers. As in case of skin cancer, Ang II supports cancer
progression through both Ang II receptors. At the same time,
AT1R has dual effects: the aforementioned tumorigenic effect
and the Ang II-independent antitumorigenic effect. The dualism
of AT1R function during skin cancer may partially explain why
the use of ARB in some clinical and preclinical studies of skin
cancer promoted cancer growth. Moreover, in the case of kidney
cancer, Ang 1-7 – through the MASR – promotes cancer
metastasis, which could explain the reason behind the
increased risk of kidney cancer among ACEI users, where the
ACEIs prevent Ang II production, thus promoting Ang I’s
conversion to Ang 1-7 and causing carcinogenesis in kidney
cancer. For each case of cancer, and before a decision on whether
ARBs and ACEIs are suitable as prophylactic agents, adjuvant
therapies, or in combination with other drugs, it is necessary to
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consider each part of RAS and how it interacts in this type of
cancer, or at this stage of cancer.

In conclusion, the ACE/Ang II/AT1R axis has a tumourigenic
role , while the ACE-2/Ang 1-7/MASR axis has an
antitumorigenic role in most cancers. Moreover, ACEIs and
ARBs mostly improve cancer outcomes. In future, more
studies concerning the relationship between RAS components
and cancer mechanisms are warranted, as are investigations
focusing on the role of ACEIs and ARBs in different cancers in
large population, with a long follow-up duration, and the
adjustment of potential confounding factors. Further studies
are also necessary to determine the optimal dose-response, as
ACEIs and ARBs exhibited a positive impact in most studies,
increasing the likelihood of them accelerating the development
of cancer therapy.

Additionally, knowledge is limited about how UII contributes
to tumor biology. UII participation in the pathophysiology of a
wide range of conditions determines the perspectives for the
development of UII-R inhibitors to treat various cancers (e.g.
prostate, liver, colon cancer) in which heightened UII/UII-R
activity encourages tumor cells to growth, migrate, and infiltrate.
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Moreover, future research stands to gain from both basic
experimental studies on UII and UII-R and large-scale
clinical studies.

Research is also needed to establish the levels of expression of
UII and its receptor in certain cancers (e.g. ovarian, pancreatic,
esophagus, skin cancer). Such research can corroborate the
findings from earlier work that identified UTR as a new cancer
prognosis biomarker. In addition, it has been observed that, in
the context of angiogenesis, UII and Ang-II exhibit synergistic
action in promoting VEGF production in adventitial fibroblasts,
which is a major step in tumor angiogenesis (141). However, the
synergy of UII and Ang-II has not been investigated in relation to
cancer. Therefore, new targets for treatment could be discovered
by examining the possible mutual effect of UII and Ang-II or the
nature of their interaction in the context of cancer progression.
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Domińska K, Piastowska-Ciesielska AW. Angiotensin II Promotes
Endometrial Cancer Cell Survival. Oncol Rep (2016) 36(2):1101–10. doi:
10.3892/or.2016.4887
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GLOSSARY

RAS renin angiotensin system
AGT angiotensinogen
Ang I angiotensin I
ACE angiotensin converting enzyme
Ang II angiotensin II
AT1R angiotensin II type 1 receptor
AT2R angiotensin II type 2 receptor
Ang 1-7 angiotensin 1-7
MASR MAS Receptor
ACE-2 angiotensin converting enzyme 2
VEGF vascular endothelial growth factor
EMT epithelial mesenchymal transition
MMPs matrix metalloproteinases
ECM extracellular matrix
ACEIs ACE inhibitors
ARBs AT1R blockers
PPAR-g peroxisome proliferator-activated receptor-gamma’s
CBM CARMA3-Bcl10-MALT
FAK focal adhesion kinase
RhoA Ras homolog gene family member A
IL-6 interleukin-6
ATIPs AT2R interacting proteins
TAM Tamoxifen
ER estrogen receptor
GLPM glycolipid-based polymeric micelles
GLPM/Tel Telmisartan loaded GLPM
CAFs cancer-associated fibroblasts
MCS multicellular spheroids
SREBP sterol regulatory element-binding protein
SCD1 stearoyl-CoA desaturase-1
HMGA2 high-mobility group, AT-hook 2
EC endometrial cancer
PC prostate cancer
PTK protein tyrosine kinase
RCC renal cell carcinoma
HCC hepatocellular carcinoma
ROS reactive oxygen species
AMPK AMP-activated protein kinase
mTOR mammalian target of rapamycin
CRC colorectal cancer
KCs Kupffer cells
PFS progression-free survival
AP-1 activating protein-1
PDAC pancreatic ductal adenocarcinoma
miR-410 microRNA 410
ESCC esophageal squamous cell carcinoma
EAC esophageal adenocarcinoma
CSC cancer stem cells
NSCLC non-small cell lung cancer
EGFR epidermal growth factor receptor
miRNA-21 micro RNA-21
MAPK/
STAT

mitogen-activated protein kinase/signal transducer and activator of
transcription

TKIs tyrosine kinase inhibitors
TRAIL tumour necrosis factor-related apoptosis-inducing ligand
LSCC lung squamous cell carcinoma
MDSC myeloid derived suppressor Cells
NEH1 N+/H+ Exchanger Isoform1
HNSCC head and neck squamous cell carcinoma
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