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Sodium-glucose cotransporters inhibitors (SGLT2-i) and GLP-1 receptor agonists (GLP1-
RA) are glucose-lowering drugs that are proved to reduce the cardiovascular (CV) risk in
type 2 diabetes mellitus (T2DM). In this process, the renin-angiotensin-aldosterone
system (RAAS) is assumed to play a role. The inhibition of SGLT2 improves
hyperglycemia hampering urinary reabsorption of glucose and inducing glycosuria. This
“hybrid” diuretic effect, which couples natriuresis with osmotic diuresis, potentially leads to
systemic RAAS activation. However, the association between SGLT2-i and systemic
RAAS activation is not straightforward. Available data indicate that SGLT2-i cause plasma
renin activity (PRA) increase in the early phase of treatment, while PRA and aldosterone
levels remain unchanged in chronic treated patients. Furthermore, emerging studies
provide evidence that SGLT2-i might have an interfering effect on aldosterone/renin ratio
(ARR) in patients with T2DM, due to their diuretic and sympathoinhibition effects. The
cardio- and reno-protective effects of GLP-1-RA are at least in part related to the
interaction with RAAS. In particular, GLP1-RA counteract the action of angiotensin II
(ANG II) inhibiting its synthesis, increasing the inactivation of its circulating form and
contrasting its action on target tissue like glomerular endothelial cells and cardiomyocytes.
Furthermore, GLP1-RA stimulate natriuresis inhibiting Na+/H+ exchanger NHE-3, which is
conversely activated by ANG II. Moreover, GLP1 infusion acutely reduces circulating
aldosterone, but this effect does not seem to be chronically maintained in patients treated
with GLP1-RA. In conclusion, both SGLT2-i and GLP1-RA seem to have several effects
on RAAS, though additional studies are needed to clarify this relationship.

Keywords: diabetes mellitus type 2, cardiovascular disease, cardiovascular risk, diabetic kidney disease, sodium-
glucose cotransporter-2 inhibitor, glucagon-like peptide-1 receptor agonist, aldosterone, renin
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INTRODUCTION

Cardiovascular disease (CVD) is the main cause of morbidity
and mortality in patients with type 2 diabetes (T2DM), with a
relevant impact on the economic costs for health care systems
and on the quality of life for many patients (1, 2). Due to the
increasing epidemic boost of T2DM in recent years, whose trend
will be confirmed in the next decades (3, 4), the need of reducing
the CV risk in diabetic patients has become a priority. Therefore,
the research has focused on new drugs that have been showed to
have pleiotropic effects beyond hypoglycemic action.

Among the novel therapies, great interest has been aroused by
sodium–glucose cotransporter-2 inhibitors (SGLT2-i) and
glucagon-like peptide-1 receptor agonist (GLP1-RA), that have
changed the management of diabetic patients. Indeed, the
experience of several randomized control trials has been included
in the most recent guidelines (5, 6), which recommended these
classes of drugs for patients with T2DM and CVD.

In patients with T2DM, the treatment with SGLT2-i has been
associated with a reduction in hospitalization for heart failure
and cardiovascular deaths, regardless of pre-existing
cardiovascular disease (7–11). Moreover, among patients with
T2DM and established cardiovascular disease, some trials
reported the additional benefit of a lower rate of major adverse
cardiac events (MACE) in patients treated with SGLT2-i (7, 10).

Several studies (12–15) have demonstrated that GLP1-RA
treatment variably reduced MACE incidence, mainly in T2DM
patients with established cardiovascular disease or multiple
cardiovascular risk factors, although only one of them (12)
showed a benefit on mortality risk. Conversely, the positive
effects of SGLT2-i on hospitalization for heart failure has not
been reported for GLP1-RA.

This heterogeneity in CV benefits across the trials, also among
studies in which drugs of the same class have been used, could be
explained by different study designs (i.e. inclusion criteria,
follow-up period) (16), but it could be also due to peculiar and
still unknown effects of each drug.

Indeed, the underlying mechanisms of these drugs on the CV
system are not definitively understood. It has been suggested that
the endocrine system could play a role, especially the renin-
angiotensin-aldosterone system (RAAS). This review aims to
summarize the available evidence on this topic.
THE RENIN-ANGIOTENSIN-
ALDOSTERONE SYSTEM (RAAS)

It is well known that the RAAS is one of the most important
regulators of arterial blood pressure, with a key role in
cardiovascular and renal diseases, mainly mediated by
inflammatory processes (17, 18). Although renin was
discovered more than a century ago and the detection of
angiotensin I, angiotensin II and aldosterone in the ‘50s
allowed the definition of the classical RAAS pathway from
1961 (19), the research in this field continues and new
evidence has recently emerged.
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The cascade of the systemic RAAS starts with the liver
angiotensinogen (AGT), which is converted to Angiotensin I
(ANG I) by renin, a hormone secreted by the juxtaglomerular
cells. The angiotensin-converting enzyme (ACE), secreted by
lung and kidney, converts ANG I to ANG II, whereas the
angiotensin-converting enzyme 2 (ACE2) further cleaves ANG
II to ANG (1,7). The balance between ACE and ACE2 activity
influences the ultimate effect of RAAS, since ANG II promotes
vasoconstriction and proliferation while ANG (1,7) stimulates
vasodilation and apoptosis (20). ANG II acts through two
receptor subtypes, the AT1R and the AT2R (21). While AT1R
mediates classic ANG II actions such as vasoconstriction,
aldosterone release, and sodium and water retention, ANG II
signaling through AT2R has opposite effects and may represent a
protective mechanism against an overstimulation of AT1R (21).

Recently, three new axes have been identified, emphasizing
the role of the kidney in this picture (22):

1. The ACE2/ANG(1-7)/Mas receptor pathway (23, 24): Ang-
(1-7) binds to the G protein-coupled receptor Mas, which is
expressed in renal proximal tubular cells, afferent arterioles,
cardiac myocytes, and neuronal cells; this pathways is
responsible of the ANG(1-7) vasodilatory effects, through
the release of bradykinin, prostaglandin and endothelium-
dependent nitric oxide.

2. The prorenin/PRR/MAP kinases ERK1/2 axis: in the past
years, renin was considered simply as an enzyme catalyzing
the conversion of AGT into ANG I. However, recent studies
have highlighted that prorenin and/or active renin can bind
to prorenin receptor (PRR), which is expressed in glomerular
mesangial cells, collecting ducts, and the subendothelium of
renal arteries. The binding of prorenin to PRR triggers the
phosphorylation of mitogen-activated protein kinases/
extracellular regulated kinases 1/2 (MAPK/ERK1/2), which
is demonstrated to be an ANG II-independent mechanism
involved in the development of diabetic nephropathy (25)

3. The ANGIV/AT4/IRAP cascade: ANG IV (derived from the
metabolization of ANG II through aminopeptidases A and
N) binds the AT4 receptor, which has been identified as the
insulin-regulated aminopeptidase (IRAP), but the role of this
pathway in the blood pressure and renal regulation is still
uncertain (22).

These new axes have raised great interest because their
targeting could provide novel therapeutic strategies for
hypertension, cardiovascular and kidney diseases.

Similarly, the discovery of a RAAS chronobiology could
represent a milestone to change the paradigm of treatment of
these pathologies. The concept of the circadian rhythmicity in
the human secretion of renin and aldosterone, under the
influence of posture, sodium intake and age, is well known
from decades (26). More recently, Mochel et al. have
demonstrated that sodium intake interacted with the tonic and
the phasic secretion of renin in dogs, suggesting that variations in
feeding time could impact the chronobiology of the RAAS and
blood pressure (27, 28). Moreover, Mochel et al. postulated that
the optimal efficacy of drug affecting RAAS (for example ACE
October 2021 | Volume 12 | Article 738848

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Puglisi et al. Effects of SGLT2-i and GLP1-RA on RAAS
inhibitors) should be expected with bedtime dosing (29). This
hypothesis has been confirmed in clinical trials including
hypertensive patients that demonstrated an improved blood
pressure control (30, 31) and reduction of cardiovascular
events (31) when anti-hypertensive drugs have been
administered at bedtime.
HYPERGLYCEMIA AND RAAS IN
THE KIDNEY

High glucose levels in the proximal tubule can cause increased
reabsorption of glucose, sodium and water, favored by the
upregulation of SGLT2 activity and expression of Na-K-2Cl
cotransporter, acquaporin-2, and urea transporters, as reported
in diabetic patients (32). The resulting decrease in distal sodium
chloride delivery promotes renal hemodynamic dysfunction by
impairing the tubulo-glomerular feedback (TGF). This distal
tubular condition is perceived as a low effective circulating
volume stimulus, at the level of juxtaglomerular apparatus,
which promotes the inhibition of adenosine production that is
associated with a vasodilatory response of the afferent arteriole
(33). The concomitant RAAS activation, which increases ANG II
levels, causes efferent arteriolar vasoconstriction with consequent
increase in renal perfusion and glomerular hyperfiltration.
Noteworthy, hyperglycemia induces the synthesis of AT1R,
which plays a pivotal role in reno- and cardiovascular disease.
AT1R expression in mesangial cells and podocytes, induced by
high glucose levels, promotes intracellular expression of
profibrotic and pro-inflammatory mediators, such as
transforming-growth factor beta (TGF- b), vascular endothelial
growth factor (VGEF), and interleukin-6 (IL-6) leading to
hyperplasia and hypertrophy, mainly of the proximal tubule,
together with extracellular matrix production (34).

Accumulated evidence has shown that the RAAS is no longer
considered to act just as an endocrine system, but also as a
paracrine, autocrine and intracrine system. At tissue level, RAS
(renin-angiotensin system) can be upregulated with non-
hemodynamic effects (35).

Several studies reported that inappropriate ANGII/AT1R
activation occurs because of different mechanisms, particularly
in patients with T2DM. Firstly, hyperglycemia promotes local
ANG II production in cardiomyocytes stimulating intracellular
chymase and/or internalized prorenin, leading to diabetic
cardiomyopathy. Secondly, high glucose concentrations have
been shown to enhance the tissue response to ANG II. The
third mechanism whereby diabetes upregulates ANGII/AT1R is
ACE2 downregulation, resulting in local ANG (1-7) reduction
and, consequently, in an imbalance of the RAS.

Lastly, diabetic patients have a high prorenin levels that could
contribute more significantly than renin to the pathogenesis of
end-organ damage by stimulating PRR intracellular
signaling (35).

Also at kidney level, RAS compartmentalization and
independent regulation have been shown to play an important
role in the pathogenesis of hypertension and diabetic
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nephropathy (36). Indeed, it has been recognized that
inappropriate activation of intrarenal RAS prevents the kidney
from keeping normal Na+ balance at normal renal perfusion
pressures together with promoting glomerular, tubular and
interstitial inflammation and fibrosis.

Additional evidence for an independent intrarenal RAS
included observations that intrarenal ANG II contents
markedly increased compared to circulat ing levels .
Furthermore, the intrarenal RAS can autoamplify ANG II
production resulting in continuously intrarenal activation. In
fact, the inter-relationship of AT1Rs to the intrarenal ANG II
content is based on a feed-forward mechanism by which ATR1
binding mediates ANG II intracellular accumulation (37).

The reasons for elevated renal ANG II levels have been
debated for years. AGT is present in the proximal tubule and
concurrent increases in AGT-mRNA/protein in renal tissue
homogenates has been explained as indicating that
transcriptional activation of the AGT gene would be
responsible for renal ANG II increase. However, more recent
studies have demonstrated that the hepatic biosynthesis of AGT
is the major source of renal ANG II concentrations and its renal
expression depends on the integrity of the glomerular sieving
function (38).

In fact, when the glomerular capillary wall, acting as a
molecular barrier, is impaired, AGT protein is leaked into the
tubular lumen and then reabsorbed at S1, S2 and S3 segments of
proximal convoluted tubules (38). Matsutsaka et al. observed, in
a murine model of selective podocyte damage, that massive
filtration of liver-derived AGT led to enhanced renal ANG II
content although renal renin was suppressed (39). Furthermore,
augmented intraglomerular pressure induced by increased ANG
II concentrations can promote further podocytes damage
ensuring the formation of a feedback mechanism for ANG II
synthesis, which is one of the key aspects of progressive
glomerular disease (38).

The AGT reabsorption is a megalin-dependent process.
Megalin, also known as low-density lipoprotein-related 2, is a
multiligand endocytic receptor in the low-density lipoprotein
family (LDL). Megalin is expressed along the apical aspect of
proximal tubules, where it is responsible for hepatocyte-derived
AGT reabsorption and its homeostasis in kidney. A recent study
(40) demonstrated that inhibition of megalin, by antisense
oligonucleotides, diminished both AGT and renin intra-tubular
accumulation, while leading to increases of urine AGT and renin
levels. Noteworthy, renal ANG II concentration decreased
without affecting plasma ANG II concentrations. In addition to
a regulatory role in intrarenal RAS homeostasis, megalin seems
also to indirectly contribute to atherosclerosis development
increasing renal ANG II levels (40).
THE EMERGING ROLE OF SGLT2-i IN
CARDIO-NEPHROPROTECTION

SGLT2 is a low-affinity high-capacity co-transporter distributed
mainly along the early segments of the proximal renal tubule. It is
October 2021 | Volume 12 | Article 738848
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responsible for up to 97% of glucose renal reabsorption and for
about 5% of total renal Na+ reabsorption.

SGLT2-i are a relatively new class of antidiabetic drugs with an
emerging role in cardio-nephroprotection. They improve glycemic
control by inducing glycosuria, osmotic diuresis, and reduced
glucose-sodium proximal tubule reabsorption. Inhibition of
SGLT2 reduces sodium reabsorption in the proximal tubule and
enhances Na+ delivery to the macula densa, promoting finally the
TGF activation with consequent afferent arteriole vasoconstriction
and reduction of the single-nephron-glomerular-filtration-rate
(Figure 1). Attenuation of glomerular hyperfiltration results in
prevention of long-term glomerular damage, contributing to
reduce the progression of diabetic kidney disease (DKD) (41).
Noteworthy, SGLT2-i have been shown to interfere with sodium-
hydrogen exchanger (NHE-3), which is primarily responsible for
sodium tubular reuptake following filtration and is markedly
increased in heart failure (HF) (42).

The increased sodium delivery to the macula densa
theoretically results in low renin levels per se. It has been
suggested that SGLT2-i could exert a RAS-inhibition-like
effect, without being associated with a real RAS-suppression. In
fact, the more significant hemodynamic effects of this agents,
conveyed by TGF restoration, led to afferent arteriole
vasoconstriction as compared to efferent vasodilation observed
with RAS-inhibition (43). The same authors reported an increase
in all renal RAS markers under empagliflozin treatment during
clamped euglycemia and hyperglycemia, reflecting a modest RAS
activation because of osmotic diuresis. Moreover, the increased
renal RAS activity might have been important in maintaining a
normal glomerular filtration in this setting.

Pre-clinical studies in genetically modified animal model of
T2DM (OLETF rats, Otsuka Long Evans Tokushima fatty rats)
have shown high PRA (plasmatic renin activity) levels, without
any change in aldosterone levels under dapagliflozin chronic
treatment, in accordance with the aforementioned observations
Frontiers in Endocrinology | www.frontiersin.org 4
of an independent intrarenal RAS (36). Similarly, available
clinical data have shown that PRA levels significantly increased
after one month of treatment with SGLT2-i, while plasma
aldosterone levels did not (44). Noteworthy, neither PRA nor
plasma aldosterone significantly changed after six months of
treatment, confirming the transient diuretic effect of SGLT2-i.
Given the reabsorption of renin by proximal tubule cells through
megalin, and the broad expression of ACE within the kidney,
allowing locally synthetized ANG II independent action, the
interference of SGLT-2-i with intrarenal RAS could explain
such results.

Moreover, in recent years the use of small interfering RNAs
(siRNA), selectively targeting AGT, as a novel approach of
interfering with the RAS has shown beneficial cardio- and
nephroprotective properties. Indeed, N-acetylgalactosamine-
conjugated siRNA targeting AGT was highly effective in
suppressing circulating AGT, thereby reducing blood pressure
as ACE-inhibitors (ACE-i) and angiotensin-II receptor blockers
(ARBs) (45). A study conducted by Uijl E. et al. on hypertensive
mice highlighted that siRNA, especially in combination with
valsartan, suppressed circulating and renal ANG II, resulting in
renin levels increase, without affecting aldosterone levels. A
concurrent decrease in NHE-3 has also been observed (46).
Combining the AGT targeting siRNA with an ARB led to a
stronger hypotensive effect likely because of the concomitant
AT2R stimulation. However, the resulting complete ANG
suppression II lowered proteinuria and cardiac hypertrophy,
without a further improvement of glomerulosclerosis. This
observation suggested that the complete inhibition of renal
RAS could be detrimental (46).

Similarly, a possible SGLT2- i interfering effect on AGT/ANG
II system together with intrarenal ANG II/AT2R pathways,
especially when combined to RAAS blockers, can be argued.

In experimental models, OLETF rats have shown local RAS
activation, which resulted in oxidative stress and kidney
FIGURE 1 | Regulation of single nephron glomerular filtration rate (SNGFR) by the tubular-glomerular feedback (TGF) and intrarenal RAS regulation in physiological
conditions, in patients with diabetic nephropathy, and in diabetic patients treated with SGLT2-inhibitors. Aa, Afferent arteriole; Ea, Efferent arteriole; SGLT, Sodium-
glucose cotransporters; T2DM, Diabetes Mellitus Type 2.
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progressive damage, whereas treatment with dapagliflozin
remarkably lowered the urinary ANG II and AGT levels (36).
In contrast, Yoshimoto et al. reported that treatment with
SGLT2-i did not affect the urinary AGT/creatinine ratio in
T2DM patients (47). Taken together, this evidence suggests
that the heterogeneity of studies models and the interaction of
many adaptive mechanisms might explain the variable results in
the recent studies concerning the influence of SGLT2-i treatment
on the RAAS, although an activation of intrarenal RAS in
chronic treated patients has been excluded (42).

However, the renal beneficial effect of SGLT2-i has been
definitely reported in recent cardiovascular outcome clinical
trials and further confirmed in CREDENCE, DAPA-CKD,
EMPA-KIDNEY, which investigated renal outcomes as
primary endpoints also in non-diabetic patients with chronic
kidney disease (48). The potential main mechanism responsible
for SGLT2-i reno-protective properties probably resides in TGF
activation and glomerular hyperfiltration reduction. However,
SGLT2-i could reduce renal and extra-renal glucotoxicity by
inhibiting many pro-inflammatory pathways such as low serum
ketone levels, hyperuricemia, oxidative stress and advanced
glycation-end products (AGEs) induced by hyperglycemia (33).
Furthermore, SGLT2-i interference with either generation or
effect of ANG II at renal tissues site possibly plays a significant
role in this setting.

Indeed, there is a growing body of evidence suggesting a
significant beneficial class effect associated with SGLT2
inhibition, resulting in MACE, cardiovascular death and
hospitalization for heart failure (HHF) reduction, despite some
variabilities in the findings provided by individual CVOTs (40).

In populations that largely did not suffer from HF at the time
of the enrolment, treatment with empagliflozin, canagliflozin and
dapagliflozin had been able to decrease the risk of new-onset HF
events by about 30%. Furthermore, in the EMPA-REG
OUTCOME trial, empagliflozin reduced the risk of both pump
failure and sudden deaths (46).

In addition, in the EMPEROR-reduced trial, enrolling about
3700 patients affected by heart failure with reduced ejection
fraction (HFrEF), empagliflozin significantly reduced the risk of
heart failure hospitalization and decreased total hospitalization
for HF regardless of the presence of diabetes or baseline levels of
glycohemoglobin (HbA1c) (49, 50).

Since the SGLT2-i benefits on HF could not be explained by
anti-hyperglycemic action in any of these trials, multiple
hypotheses have been raised about the potential mechanisms
underlying their cardiovascular favorable effects.

It has been suggested that these drugs could act through the
non-classic RAAS pathways in the context of simultaneous
RAAS blockade. In fact, in the aforementioned trials most
patients received appropriate treatment for HF, including
ACE-i or ARBs. Therefore, the SGLT2-i induced elevated ANG
II levels could act through AT2R resulting in vasodilation,
sodium excretion, antiproliferative and anti-inflammation
effects (51).

In addition, it has also been observed a SGLT2-i induced
ACE2/ANG(1-7) pathway activation that may play a role in
Frontiers in Endocrinology | www.frontiersin.org 5
cardioprotection by competing with ANG II and AT1R (14).
Both heart and kidney are major sources of ANG (1-7), which
has broad effects in cardiovascular system, including
vasodilation, myocardial protection, antiarrhythmic,
antihypertensive, and positive inotropic effects (52).

Furthermore, the SGLT2-i “hybrid” diuretic effect, which
combines natriuresis and osmotic diuresis, might also have
cardioprotective properties leading to preload and myocardial
stretch reduction (“the diuretic hypothesis”) (51). This effect has
been observed especially in the early phase of treatment. In fact,
SGLT2-i induced osmotic diuresis and reduction in plasma
volume potentially activate systemic RAAS, leading to an
initial increase of renin levels in the first three-six months of
treatment (53). Conversely, in chronic treated patients the effects
on volume changes are slightly reduced because a new steady
state is reached, due to a counter-regulatory effect, resulting in a
lower total body sodium concentration and blood volume (53).

Therefore, SGLT2-i diuretic properties show a major
advantage compared to thiazides and thiazides-like diuretics,
which act on the Na+CL- -cotransporter in the distal convoluted
tubule, or loop diuretics, which block the Na-K-2Cl co-
transporter of both the Henle loop and the macula densa,
making the macula insensitive to the increased tubular sodium
coming from the Henle loop. In fact, loop diuretics do not
activate the TGF and sharply stimulate RAAS. As compared to
loop diuretics, SGLT2-i may distinctly regulate the interstitial
versus intravascular compartment selectively reducing interstitial
oedema, which has been observed in HF and DKD, with minimal
change in blood volume. Thus, the different volume regulation
by SGLT2-I may limit the aberrant neurohumoral and RAAS
stimulation that occurs in the setting of volume depletion (54,
55). On the other hand, loop and thiazide/thiazide like diuretics,
when used without a RAAS antagonist, do not protect glomeruli
from the increased pression and hyperfiltration (41).

Antihypertensive effects of SGLT2-i, which have been
reported in clinical trials, are presumably due to their
natriuretic effect. SGLT2-i induced natriuresis and glomerular
hemodynamics changes resemble, even partially, those observed
with sacubitril/valsartan, a first in-class angiotensin receptor
neprilysin inhibitor (ARNi). By inhibiting the NP (natriuretic
peptide) system, sacubitril/valsartan increases natriuretic
peptides (NPs) levels that, in turn, lead to vasodilation,
natriuresis and RAAS inhibition through intracellular cyclic
guanosine monophosphate (cGMP)-dependent pathways. Both
SGLT2-i and valsartan/sacubitril reduce Na+ reabsorption in the
proximal tubule and therefore stimulate TGF. Conversely,
sacubitril/valsartan has been shown to increase PRA, ANG I
and ANG II levels in a canine model of RAAS activation.
Furthermore, i t s ignificantly decreased aldosterone
concentrations, a known predictor of increased cardiovascular
mortality risk, which would indicate AT1R blockade (56, 57).

Finally, the prevalence of primary aldosteronism (PA), the
most common form of secondary hypertension, is reported to be
11-14% in patients with diabetes and hypertension. PA is also
associated with impaired glucose tolerance (IGT). Aldosterone/
renin ratio (ARR) is commonly used to screen for PA. Thus, the
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elucidation of whether the SGLT2-i diuretic effect can influence
ARR values for PA screening in patients with diabetes and
hypertension is an important clinical issue.

Emerging studies provided evidence that SGLT2-i might have
an interfering effect on ARR. Decreasing extracellular fluid
volume, they might decrease ARR like thiazide diuretics,
leading to false-negative screening for PA in patients with
T2DM (58). However, unlike thiazide and loop diuretics,
SGLT2-i are not associated to systemic sympathetic
hyperactivity, typically found in diabetes. The long-term
sympathoinhibition suppresses renin release, mimicking the
effects of beta beta-blockers through ß-1 receptors in the renal
iuxtaglomerular apparatus, leading to an increase of the ARR.
EFFECTS OF GLP-1 RECEPTOR
AGONISTS ON RAAS

GLP-1 receptor agonists (GLP1-RA) are a relatively novel class of
anti-diabetic drugs that improve glycemic control by
potentiating the physiological effect of the gut hormone GLP-1
(59). GLP-1 indeed stimulates postprandial insulin secretion,
inhibits glucagon release, and reduces food intake through the
delay of gastric emptying and the suppression of appetite (59).
Published trials showed that the treatment with GLP1-RA
reduced the risk of MACE and slowed the development of
albuminuria in diabetic patients, demonstrating a direct cardio
and reno-protective action of GLP1-RA, regardless the effect on
glycemic control (60, 61).

Since cardiovascular complications of diabetes (62, 63) as well
as diabetic nephropathy (64) are associated with an imbalance in
the activity of RAAS, the interaction with this system could
explain some of the beneficial effects of GLP1-RA. There is
indeed a strong evidence that GLP1-RA counteracts ANG II
action at different levels.

Both acute GLP-1 infusion (65, 66) and a single liraglutide
dose (67) decreased plasma ANG II concentration in healthy
subjects and type 2 diabetic patients, consistently with an
inhibitory effect of GLP-1 on renin secretion (68, 69).
However, the underlying mechanism has not been fully
elucidated. GLP-1 may decrease sodium reabsorption, thus
increasing NaCl delivery to the macula densa. The consequent
activation of the tubuloglomerular feedback could inhibit renin
secretion (70). Alternatively, GLP-1 may act directly on the
renin-secreting cells of the juxtaglomerular apparatus, where
the expression of GLP-1 receptors has been detected (69).
Moreover, GLP-1 could down-regulate ANG II production at
tissue level (37). Martins et al. (71) indeed reported that chronic
treatment with GLP-1RA exendin 4 (Ex4) in rats decreased renal
cortical ANG II content and urinary excretion of AGT, while
blockade of GLP-1 receptor with exendin 9 (Ex9) exerted
opposite effects. Treatment with GLP1RA also increased the
expression and the activity of ACE2 in organs like lungs (20,
72), heart (73, 74), and liver (75), restoring the ACE/ACE2
balance, which is impaired in kidney disease (76), diabetes
mellitus (20), and cardiac fibrosis (73); moreover, it has been
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reported that GLP-1RA down-regulated AT1 and up-regulated
AT2 in cardiomyocytes, glomerular capillaries and proximal
tubules of the renal cortex in rats (73, 74, 77), resulting in a
protective effect against ANG II-induced cardiac and kidney
fibrosis (73, 74, 77).

GLP-1 may also inhibit ANG II action at post-receptor level.
Several signaling pathways in response to ANG II are mediated
by reactive oxygen species (ROS) (78), whose production is
increased by ANG II in different cell types through Nox4
(NADPH [Nicotinamide adenine dinucleotide phosphate]
oxidase 4) stimulation (21). The increase in oxidative stress is
implicated in many pathological conditions associated with
RAAS hyperactivation, such as endothelial dysfunction (79),
cardiac hypertrophy (80), and diabetic nephropathy (81). GLP-
1 receptor stimulation may prevent the increase in ROS induced
by ANG II. Ishibashi et al. (82) showed that in vitro GLP-1
inhibited the ANG II-induced mesangial cell damage by
suppressing superoxide-mediated nuclear factor-kB activation.
Similarly, Okabe et al. (80) reported that treatment with
teneligliptin, a dipeptidyl peptidase (DPP)–4 inhibitor,
suppressed ANG II-induced increase in Nox4 mRNA in rat
cardiomyocytes, thus attenuating the ANG II-induced cardiac
hypertrophy. The antioxidant action of GLP-1 is mediated by the
activation of the cyclic AMP (cAMP) - protein kinase A (PKA)
pathway, which downregulates the activity of Nox4 (82, 83).
Moreover, Mima et al. (84) showed that the PKA pathway also
mediated the GLP-1-induced inhibition of ANG II signaling on
cRAF (Ser 259) in glomerular endothelial cells, providing a
further explanation for the renal protective effects of GLP-1.

Finally, GLP-1 and ANG II interact in the regulation of
sodium and water balance at proximal tubular apical
membrane. The tubular proximal reabsorption of sodium is
mainly mediated by the Na+/H+ exchanger isoform 3 (NHE3),
a protein located in the brush-border epithelium of the proximal
tubule (85). ANG II stimulates NHE3 activity, increasing
proximal tubule sodium and water reabsorption (86, 87).
Conversely, both acute GLP-1 infusion (65, 70) and a single
exenatide injection (88) induced natriuresis in healthy and obese
subjects. The natriuretic action of GLP-1 is mainly mediated by
inhibition of NHE3 activity through a PKA-dependent
mechanism (71, 89–91) (Figure 2).

Although data from literature indicate that GLP-1 inhibits
ANG II action, its effect on aldosterone is less established. Baretic
et al. (92) and more recently Heinla et al. (68) reported that a
single GLP-1 infusion decreased aldosterone levels in healthy,
normal weight subjects. Conversely, both Skov et al. (65) and
Asmar et al. (66) did not find changes in aldosterone
concentrations under comparable conditions. However,
aldosterone secretion is regulated by several factors besides
ANG II, including potassium concentration, ACTH, and
membrane depolarization of zona glomerulosa cells (93). Thus,
variations of each single factors could potentially explain the
discrepancies observed in the different studies (66). Moreover,
short-term experiments may not be able to detect the impact of
ANG II suppression on aldosterone levels, since aldosterone has
slower rates of secretion and degradation than ANG II (66).
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The chronic effect of GLP1-RA on adrenal function was
investigated by Sedman et al. (94), who reported increased
aldosterone and renin concentrations in healthy subjects after
three weeks of treatment with liraglutide. However, the finding
was considered secondary to the reduction of blood pressure
rather than a direct effect of the drug on the RAAS.
CONCLUSION

In conclusion, the emerging observation that some complications
of diabetes are associated with an hyperactivation of RAAS has
provided the pathophysiological basis to study the effects of GLP1-
RA and SGLT2-i on RAAS to better explain the cardio-reno-
protective effect demonstrated by the clinical trials, beyond their
role on glucose control. Although underlying mechanisms are still
not completely explained, the interaction with RAAS seems to play
a relevant role. Interestingly, the influence on RAAS should also be
Frontiers in Endocrinology | www.frontiersin.org 7
considered in the clinical practice during the screening of
suspected hyperaldosteronism due to the interfering regulation
of sodium and water balance or mimicking the effects of beta-
blockers (SGLT2-i).
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