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PCOS has a wide range of negative impacts on women’s health and is one of the most
frequent reproductive systemic endocrine disorders. PCOS has complex characteristics and
symptom heterogeneity due to the several pathways that are involved in the infection and the
absence of a comm14on cause. A recent study has shown that the main etiology and
endocrine aspects of PCOS are the increased level of androgen, which is also known as
“hyperandrogenemia (HA)” and secondly the “insulin resistance (IR)”. The major underlying
cause of the polycystic ovary is these two IR and HA, by initiating the disease and its severity
or duration. As a consequence, study on Pathogenesis is crucial to understand the effect of
“HA” and “IR” on the pathophysiology of numerous symptoms linked to PCOS. A deep
understanding of the pattern of the growth in PCOS for HA and IR can help ameliorate the
condition, alongwith adjustments in nutrition and life, as well as the discovery of newmedicinal
products. However, further research is required to clarify the mutual role of IR and HA on
PCOS development.

Keywords: polycystic ovary syndrome (PCOS), insulin resistance, androgen, hyper-androgenemia,
endocrine disorder
INTRODUCTION

PCOS, depending on the term employed, is the most predominant endocrine of reproductive
women affecting 6-22% of all women globally (1). PCOS has been defined as the present at least two
out of the following criteria since the Rotterdam Convention was set up in 2003: clinical or
biochemical hyperandrogenism (HA); oligo- or amenorrhea (OM); or ovarian morphological
polycystic (PCOM) (2). Along with these three basic characteristics of PCOS, many women also
experience many additional comorbidities or concomitant conditions, including insulin resistance
(IR) (3), which increases their chance to develop Mellitus diabetes, low-level inflammation,
dyslipidemia, and obesity (4, 5).

This definition generates numerous different phenotypes, including phenotypes A (HA, OM,
PCOM), B (HA, OM), C (HA, PCOM), and D (HA, PCOM). This is the definition that creates
different phenotypes (OM, PCOM). Numerous studies have shown a higher prevalence of PCOS,
n.org October 2021 | Volume 12 | Article 7417641
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IR, and other comorbidities among HA (A, B, and C) females,
while D was associated with a milder form of PCOS (6).
Although two or more women who match PCOS criteria are
certainly identified, women who meet only one criterion are
often neglected or lost to follow-up because their classification
does not comply with PCOS. While it is found that HA without
PCOM or OM is harmful to a range of cardiovascular risk
factors, women are often left without diagnosis or treatment).
While these women may not be experiencing “monthly
abnormalities or fertility problems”, “their risk of type 2
diabetes”, “obesity”, “hypertension”, “dyslipidemia”, “metabolic
syndrome”, “cardiovascular events” such as myocardial
inflammation or stroke may increase with HA-related
metabolic hazard (7).
POLYCYSTIC OVARY SYNDROME AND
THE OVARIAN CYCLE

Since no PCOS is known, the most frequently accepted models are
multifactorial, in which interactions between environmental and
individual features lead to the development of hyperandrogenemia,
the biochemical hallmark of the disease. The main cause of most
PCOS clinical symptoms is this alteration (8). During the ovary
cycle and folliculogenesis, PCOS inhibits several physiological
processes. The first phases of folliculogenesis are impaired with
increased amounts of Anti-Müllerian Hormones (AMH) (9). AMH
is a TGF family of 560 amino acid peptides released by granulosa
(GC). It is mainly rich in small antral follicles and has a considerable
inhibitory effect on the beginning of primordial follicles (FSH). The
AMH levels decline with the follicle, and it appears that low levels
for the development from the primordial to the principal phase,
prevailing follicle selection, and ovulation of this hormone are
required (10). The long-term disorder of ovarian physiology in
women with PCOS appears to be significantly influenced by
elevated levels of AMH (11) and by poor reproductive outcomes
associated with higher levels of AMH (12). PCOS also has the
character trait of hypothalamus-hypophysis-ovary axis (HHOA)
dysregulation, with increased frequency and amplitude of pulsatile
GnRH and luteinized hormone (LH) releasing hormones. More
androgen synthesis in the ovarian theca cell (TC) has increased
leve ls of that hormone (13) . On the other hand,
hyperandrogenemia lowers the sensitivity to estradiol and
progesterone of gonadotropic hypothalamic cells, reinforcing the
GnRH and LH hypersecretion (14). It is the first of several self-
reinforcing pathophysiological cycles in which the development
and advancement of PCOS and the existence of symptoms are
dependent on hyperandrogenism. Due to the constant proliferation
of follicles and the absence of a dominating unit, many of these
structures are overstimulated and so retain all of the characteristic
hormonal abnormalities, leading to the alternative proposed title
‘polyfollicular ovarian syndrome’ (15). Genetic factors could
potentially contribute by predisposing ovarian tissue to the
development of this condition in excessively high production of
androgen. A probable Mendelian pattern inherited in critical
genetic defects, though very variability in penetration based on a
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variety of environmental and epigenetic factors, such as exposures
to higher levels of androgen, is assumed to be the most widely
accepted model (16). The model is most commonly accepted. The
predisposal to hyperandrogenemia can all be affected by both
mutations in androgen receiver, sex hormone-binding globulin
(SHBG), and steroidogenic enzymes genes (17).
CLINICAL VIEW OF THE PCOS

In the clinical setting, PCOS manifests itself in a highly varied
manner, with a wide range of clinical manifestations (Table 1)
presents several sets of diagnostic criteria for PCOS (25). While
oligomenorrhea is indicative of ovulatory failure, apparent
eumenorrhea does not rule out anovulation altogether.
Progesterone values of 3-4 ng/mL on days 20–24 of the
menstrual cycle is adequate to diagnose an oligo/anovulatory
cycle. In contrast, a patient can be classified as anovulatory if at
least two following cycles demonstrate anovulation in the presence
of hypoprogesteronemia (31). Although IR has not been used as a
diagnostic criterion for PCOS in the past, the presence of this
change or Acanthosis nigricans in conjunction with
hyperandrogenic symptoms is strongly predictive of this
syndrome (32). Obesity, like IR, is a common complication in
women with PCOS. Nonetheless, these are not always co-
occurring, and they may exist independently, resulting in diverse
metabolic profiles. Each of these phenotypes exhibits distinct
biochemical characteristics that result in distinct risk profiles for
cardiovascular disease and fertility (33). Because androgen activity
is primarily directed towards the skin, various dermatologic
changes associated with hyperandrogenemia can be observed in
PCOS, including hirsutism, androgenic alopecia, and acne, as well
as seborrhea, onycholysis, and onychorrhexis (34).
INCREASED LEVEL OF INSULIN
(HYPERINSULINEMIA), INSULIN
RESISTANCE, AND HYPER-
ANDROGENEMIA (VICIOUS CYCLE)

It is commonly established that the participation of IR and
hyperinsulinemia in the development of PCOS is crucial for
molecular mechanisms underpinning the endoscope
hypersecretion feature of PCOS (35). The decrease in the level
of fasting insulin recorded by PCOS-treated women with insulin-
sensitizing medicine appears to decrease androgenemia while
increasing ovarian functionality (36).

On the other hand, whereas this link is generally seen as the
one-way highway between IR and hyperandrogenemia, newer
studies reveal that IR and hyperinsulinemia may extend. IR and
hyperandrogenemia, within the setting of PCOS, can establish a
vicious cycle that stimulates each other. This confluence of
endocrine and metabolic alterations also provides the basis to
further develop the complicating and metabolic therapy of these
individuals (37).
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THE POSSIBLE CAUSES OF PCOS

A mixture of environmental and genetic reasons is causing
PCOS. The following causes are highly related to PCOS:
excessive embryonic androgen exposure, reactive oxygen
species (ROSs), immunological, and endocrine abnormalities
(6, 38). At the same time, numerous genes or oligomers seem
to cause PCOS. Results of the genetic basis of HA and IR,
potential participation of environmental components in PCOS
were found in investigations including “family”, “twin babies”,
“genome-wide association studies (GWAS)”, genes connected
with certain loci, and fetal program (39, 40). Melatonin receptor
(MTNR1b) genes all have a relationship with 2PCOS (41, 42)
with microRNA expression, SNP rs10830963, and DNA
methylation. In patients with PCOS, the blood FSH levels and
control gene expression are linked with SLC18A2 genetic
variations in vitro. In PCOS, the GG allegorice has strong links
with the index of body mass (BMI), the hip ratio of waist to hip,
the resistance to insulin (IR), luteinizing hormone (LH) and LH/
FSH, and a high baseline FSH (43).

PCOS is a non-modifiable risk factor for type 2 diabetes,
according to the International Diabetes Federation (44). In the
relationship between PCOS and T2D, IR has been established as
a common component. Despite the fact that the pathogenesis of
IR in PCOS is complex, familial histories of IR, as well as obesity,
appeared to be particularly common in afflicted women (45).
Aside from that, both the parents’ family and personal histories
play a role in the illness being handed down to their children and
becoming a family disease. Aside from that, PCOS and T2D
Frontiers in Endocrinology | www.frontiersin.org 3
share similar traits, hence genetic susceptibility factors have been
discovered in both diseases (46). Men and women who are first-
degree relatives of PCOS patients have a higher risk of acquiring
IR, obesity, and diabetes. It’s unclear whether this has an impact
on inheritance methods. IR is well-known for producing pain in
PCOS patients who are slim or fat (47). In Virginia hospitals
(48), confirmed that PCOS is common in premenopausal women
with type 2 diabetes. Pancreatic -cell dysfunction is another risk
associated with PCOS and type 2 diabetes (49). T2D-related
genes play an important role in PCOS development (50). Positive
family histories of PCOS are thought to be a risk factor for PCOS
in women. There is evidence that a family history of T2D, as a
reflection of genetic risk, is linked to a higher risk of T2D
progression in PCOS women; with T2D and obesity-related
genes and polymorphisms linked to hyperandrogenism, which
has been linked to the PCOS phenotype; implying a significant
genetic background (51). Obesity exacerbates PCOS, which is
linked to a slew of reproductive, metabolic, and psychological
issues, including T2D (52). In 1921 (53), identified beard women
with diabetes, and T2D has been linked to PCOS ever since (53).
Hyperandrogenism, which is thought to contribute to IR in
PCOS and may promote hyperandrogenism, is one probable
route. IR does not have to develop in all PCOS women. Obesity is
one of the well-established linkages between IR and PCOS, and it
will be examined in greater depth in relation to the molecular
process. In contrast, the pathophysiology of PCOS differs
between obese and non-obese women. In obese people, PCOS
is a significant contributor in the development of IR and
hyperinsulinemia (54, 55). Women with PCOS may have a
higher risk of gestational diabetes (GDM), which is connected
to T2D, during pregnancy (56) GDM is a metabolic disorder that
affects pregnant women and is defined as carbohydrate
intolerance during pregnancy (57). PCOS is described as the
presence of small cysts forming in the ovaries, and PCOS and
GDM, which was previously referred to as PCOS and T2D, have
a similar association. Pan and colleagues (58). Both PCOS and
GDM are linked to a higher risk of pregnancy-related
hypertension, pre-eclampsia, and infant hypoglycemia. IR,
weight gain, and genetic factors were all associated to both of
these disorders (59). In reproductive ages, PCOS raises the risk of
type 2 diabetes and gestational diabetes mellitus. T2D affects 20%
of PCOS women at random, resulting in IGT as a common
anomaly (60). PCOS women have an abnormal glucose
tolerance, which leads to type 2 diabetes. According to clinical
investigations (48), individual family histories of T2D and
obesity will increase the prevalence of both diseases in PCOS
women; most notably, a family history of obesity greatly
contributes to the development of T2D in PCOS women (61).
PCOS AND HA

Molecular Defects of Hyperandrogenemia
The genetic processes behind polycystic ovarian syndrome
(PCOS) and functional hyperandrogenism are mostly unclear.
Because of the huge number of genetic variations linked to these
TABLE 1 | Summary of the PCOS diagnostic characteristics.

Manifestation Sample size Epidemiology Reference
Source

Manifestations of hyperandrogenism
Hirsutism 73 83.8% (18)

365 73.2% (19)
30 73% (20)

Acne 30 63% (20)
365 49.6% (19)

Alopecia 70 16% (21)
Seborrhea 115 34.8% (22)
Manifestations of ovarian dysfunction
Oligomenorrhea 30 20% (20)

412 74% (23)
Amenorrhea 365 21.5% (19)

30 43% (20)
Ultrasound polycystic ovaries 412 89% (23)

365 97.3% (19)
Condition
Obesity 394 80% (24)

267 42% (25)
Insulin resistance 200 71% (26)
Impaired fasting glucose 254 31.1% (27)
Type 2 diabetes mellitus 394 6.6% (24)
Arterial hypertension 346 9% (28)
Dyslipidemia 200 46.3% (26)
Metabolic syndrome 129 47.3% (29)
Mood disorders 103 21% (30)

30 53% 30 53% (20)
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disorders, a picture of a complex multigenic trait is emerging, in
which environmental factors play a significant role in the
hyperandrogenic phenotype’s presentation (62). The challenge
in establishing the molecular genetic foundation of these
disorders stems from the lack of precision in identifying ethnic
and environmental risk factors for hyperandrogenic disorders, as
well as the variability of diagnostic criteria used to define PCOS
(63). CAG repeats AR and PDE8A polymorphisms, with FST
SNP rs 3797297 in PCOS women (25, 31, 32). But the research
reveals that CAG microsatellite in the AR gene may not be the
fundamental cause of PCOS development frequently
polymorphic (64). Intrauterine growth resistances (IUGR),
increased androgen exposure, androgen receptors (AR),
especially neuron ARs, and poor living conditions include
sedentary behavior, longer eating and less training.
Hyperandrogenic PCOS (65) causes include PCOS ovarium
(66) were discovered to be related to the hypo androgenic
nature of the local ovarian immune system PCOS ovaries, but
considerable alterations are possible in reactive oxygen,
cytokines, and chemical species (67). In PCOS patients, GCs
are considered to be inflammatory in genes such IL1B,
Interleukin 8, LIF, NOS2, and PCOS2 (52). The leukemia
inhibitor GC is composed of interleukin-1beta, IL1B, and
interleukin-8 (IL9) (LIF). WNT5a is an inflammatory factor in
patients with ovarian grain cells (GCs). WNT5 expression in
PCOS increased mainly due to increased inflammation and
oxidative stress in the route of the PI3K/AKT-NF-B signal.
Expressions of WNT5a can be further stimulated by the NF-B-
dependent regulation (68) for pro-inflammatory cytokines
generated. PCOS patients in GCs were predominantly
hypothesized to contribute to HA following a process of
inflammation (69).

Major Cause of PCOS Is HA
Not merely a sign of clinical PCOS, but HA is the fundamental
reason. In utero with high androgen levels, PCOS is reported in
fetuses. Prenatal DHT Therapy, comprised of irregular estrogen
cycles and progesterone (P4) in a LET-induced mice PCOS
model, has discovered several PCOS-related endocrinal
anomalies. (Pre-infection androgenization; PNA). Girls with
preterm newborns are also susceptible to PCOS, and early
visceral and IR secretions prevent. For girls who are born at
the start of a small gestational age (SGA), the greatest danger of
PCOS is adrenarche (70). In PCOS women’s daughters during
childhood, early childhood, and prepuberty, the amount of anti-
mullerian hormone (AMH) is higher, the evidence suggests. In
addition, the link between the sensitivity of PCOS and the
common missense polymorphism enzymatic (rs710059) was
established in a study (71). Type I activity was further reduced
in PCOS patients using Type I (3-HSD) aromatase (CYP19). In
addition, AMH increases in GCs (72), and elevated AMH is
combined with insulin resistance/hyperinsulinemia in those with
insular induced CYP 19. The comparison between age-specific
and lean obesity shows a higher degree of HA in obese patients,
which shows negative effects from obesity. However, the
metabolic and replica aberrations in PCOS women are constantly
improved via lifestyle modifications and weight loss (67).
Frontiers in Endocrinology | www.frontiersin.org 4
The sensitivity and expression of Glu-4 (Glu-4) were established
to reduce the degradation of insulin by preventing the liver
from degrading and raising central fat that all were important
insulin resistance mechanisms. In summary, HA can help to
build IR.
PCOS AND HYPERINSULINEMIA

Important characteristics include insulin resistance (73), elevated
blood pressure, dyslipidemia, and central obesity (74), 50-70
percent of PCOS (67). The key characteristics of PCOS and
metabolic syndrome are. IR, irrespective of their BMI, is a
common feature in PCOS women (75). In obesity, IR typically
has a distinctive PCOS adiposity, especially in its central or
android form (76). Some PCOS women have a greater
phosphorylation-172-1 receptor substratum, which inhibits
insulin receptor signal (77). In PCOS, an MTNR1B mutation
can delay the synthesis of insulin and produce rapid levels of
blood glucose. Insufficient vitamin D can lead to IR in PCOS.
Vitamin D encourages the formation of adipose cells, influences
lipid and metabolic enzymes by carbohydrate activation, and
stimulates tissue breakdown in the adipose (78). Inextricably
connected are IR and HA. The excess androgen excess for
glucose metabolism sequela and antecedents for future
metabolic diseases is significantly higher for newborns exposed
to pre-natal androgen (PA). Testosterone may also encourage
enlargement of the adipocyte (67). In PA infants the average islet
size declined and islets grew proportionally and the fractional
area of islets remained constant. Furthermore, the babies showed
that the proliferative marker Ki67 was elevated and the cell/+ cell
ratio of the islets was increasing (79). Insulin causes theca cells to
generate and release androgens direct or indirect (75). Insulin the
IR stimulates androgen synthesis in the ovary and lowers the
amount of free testosterone (FT) accessible to the body, which
inhibits the development of sex hormone-binding globulin
(SHBG) in the liver. These results demonstrate that IR can
contribute to HA (67). Insulin resistance is a common
symptom of PCOS that is unrelated to weight. When
compared to weight-matched reproductively normal women,
insulin-mediated glucose clearance, which is primarily
determined by insulin action on skeletal muscle, is reduced by
35–40% in women with PCOS. 2 Obesity does not cause this
insufficiency, but it exacerbates it greatly (80). Hepatic insulin
resistance, defined as increased post absorptive glucose synthesis
and decreased sensitivity to insulin-mediated inhibition of
endogenous glucose production, is only seen in obese women
with PCOS when compared to healthy women of equivalent
body weight. 2 Obesity and PCOS have a compounding negative
effect on endogenous glucose production, which may play a role
in the etiology of glucose intolerance (81).

Fasting insulin levels are higher in people with PCOS. There
are, however, insulin secretion anomalies that are not linked to
fat. Women with PCOS and a first-degree relative with type 2
diabetes are more likely to have these abnormalities. PCOS
patients have high basal insulin levels but unusually low
carbohydrate insulin responses (8). In normal circumstances,
October 2021 | Volume 12 | Article 741764
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there is a consistent link between insulin secretion and
sensitivity, such that changes in insulin sensitivity are matched
by reciprocal changes in insulin secretion that maintain normal
glucose tolerance; this relationship is known as the “disposition
index”. When compared to weight-matched reproductively
normal women, women with PCOS, whether obese or not,
have a lower disposition index (82) Furthermore, PCOS and
obesity have a significant negative impact on the disposition
index (83).

Role of IR in PCOS
Women often experience PCOS (hirsutism, acne, and
alopecia), irregulate menstrual cycles, and biochemical
alterations associated with elevated testosterone levels, higher
dehydroepiandrosterone (DHEA), androstenedione (ASD),
reduced SHBG, and the binding protein insulin-related growth
factor (IGFBP). These changes are linked to insulin and
hyperinsulinemia resistance (66). PCOS is related to insulin
and endothelial dysfunction resistance from the start. The
levels of oxidative stress in children born to women with
PCOS are higher than in pregnant women (84). PCOS female
under cutaneous adipose tissue gene expression levels is greater
than the general population of CD11c (ITGAX) as well as the
alpha tumor necrosis factor (TNF). TNF can aggravate the
development of IR in PCOS women as an inflammatory agent.
Drops in nitric oxide (NO) and higher endothelin 1 levels (ET-1)
result in IR in endothelial artery cells. At the same time,
vasoconstrictors are produced and vasodilation induced by
insulin is reduced. Therefore, IR raises the risk of cardio visual
and metabolic illnesses for PCOS-positive women, according to
the American Heart Association (27). IR raises the likelihood of
getting type II diabetes. The release of insulin from pancreatic
cells is increased as a result of IR in PCOS women. Hepatic
production is elevated in IR and adipose tissue mobilized which
leads to increasing levels of plasma-free fatty acid (FFA).
Increased FFA contributes to IR by inactivating major
enzymes, including glucose transport functions, such as
dehydrogenase pyruvate (PDH). The process involves an
insulin signaling sequence that influences PI3 kinase-1 (IRS-1)
receptor substratum decrease, according to specialists. This
means that both hepatic glucose production and insulin
inhibition are enhanced. The liver function is also changed and
complies with IR (66).

Study shows that after 12 and 24 weeks of therapy, all
individuals had significantly lower plasma insulin levels (from
14.2 ± 1.1 to 11.7 ± 0.9 and 9.10 ± .8 mU/ml, p<0.004, p<0.03).
Triglyceride, total cholesterol, and the Homeostatic model
assessment (HOMA) index all fell considerably, but high-
density lipoprotein rose significantly. Of the 45 PCOS patients
39 had a hyperinsulinemic response during oral glucose
tolerance tests. All metabolic indices and the hepatic insulin
extraction index (HIE) were significantly reduced in this group.
In normoinsulinemic PCOS individuals, no alterations were
detected (6 out of 45) (85).

Patients with hyperinsulinemic PCOS had the most severe
metabolic abnormalities. A combination of nutraceutical
substances, including acetyl-L-carnitine, L-carnitine, L-arginine,
Frontiers in Endocrinology | www.frontiersin.org 5
and N-acetyl cysteine, significantly improved metabolic
indices and the HIE in overweight/obese PCOS individuals,
particularly hyperinsulinemic subjects. The improvement in
HIE supports the theory that liver function is compromised in
hyperinsulinemic PCOS.
MUTUAL ACT OF IR AND HA ON OVARIES
AND ADRENAL GLANDS

HA is mostly due to dysregulated steroid biology in women who
have PCOS that is to say to an imbalance in the function of the
adrenal cortex and of the ovary (86). The prevalence for women
with PCOS varies between 15% and 45% in adrenal
hyperandrogenism. The sulfotransferase function of
sulfotransferase 2A1 (SULT2A1) (87) mainly converts DHEA
into DHEAS in the suprarenal cortex. The adrenal gland
produces the majority of DHEAS that circulates due to its poor
expression in ovarian tissues. DHEA is the most abundant
human precursor to steroids, and up to 97% of circulating
DHEA is produced by the adrenal gland. In patients with
conventional anovulatory PCOS, DHEAS levels increased
substantially (67). However, and possibly especially, because of
their diurnal variation, intersubject variability, and heightened
stress, the diagnostic utility of DHEA in PCOS has been
constrained. Thus, elevated DHEAS shows an over-production
of androgen by the suprarenal glands. In certain PCOS women,
HA results in the creation of dysfunctional adrenal steroids
(functional adrenal androgen excess [FAH]). The production
of androgen in the adrenal reticular band is controlled by
adrenocortical hormones (ACTH). The Hyperactivity of
Adrenaline to ACTH is a characteristic of PCOS and AH
symptoms. Although polymorphisms of the 11-hydroxysteroid
dehydrogenase gene (HSD12B1) are not connected to PCOS
(88), in the case of HSD11B1 liver reliant peripheral cortisol
production it could result in compensatory HPA axis
stimulation. Ovarian testosterone may also impair liver enzyme
activity, which causes deleterious consequences. Regenerating
cortisol is an important source of cortisol in the suprarenal
system. Insulin, however, may boost HSD11B1 activity in
adipocytes using the P38 Signal Protein kinase (MAPK)
pathway. Hyperactivity in the HPA axis may also be associated
with the accelerated peripheral cortisol clearance for hepatic 5 in
women with PCOS as a consequence of IR (89). This can be
explained by IR/hyperinsulinemia. The compensatory HPA axis
is a fascinating approach for PCOS patients to comprehend AH.
One reason could be an AH in PCOS Induced by an acquired
mechanism such as insulin resistance/hyperinsulinemic,
P450c17 was an increase in 5-17 hydroxylase (CYP17) and/or
5-17.20 lysis activities. However, in a study that looked at specific
PCOS quantitative traits, no connection was identified between
CYP17 genes and typical PCOS quantitative traits. The 5-
P450c17 regulates post-translation pathways, including the lack
of serine kinase activity in PCOS patient’s results in an increase
in cortisol (including aldosterone) and insulin resistance (IR).
Short-term infusions of high insulin doses increased in PCOS
women, while metformin and pioglitazone lowered 17OHP and
October 2021 | Volume 12 | Article 741764

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Ding et al. Major Causes of PCOS
ASD when induced by ACTH. Deficiencies like these may
promote or contribute to obesity-related diseases such as
hyperinsulinemia and/or other metabolic issues. Additionally,
adrenal reticular cells synthesize DHEA from Pregnenolone,
which is derived from adrenocorticotrophic hormone (ACTH)
stimulation, due to the poor expression of type II 3-
hydroxysteroid dehydrogenase (HSD2) (90). Cortisol is the
primary synthesis of cortisol. This ratio, of 5 females for every
4 men, went raised in PCOS, due to the partial inactivity of 3-
hydroxysteroid dehydrogenase (3-HSD). This statement agrees
with IR (91) and is a viable candidate for AH in PCOS,
considering PCOS itself is an underlying condition for
P450c17 and 3-HSD regulation alongside the P450c17/3-HSD
regulation with ERK/MEK signaling pathways. Additionally, due
to higher quantities of DHEAS in the blood, AH’s popularity
may be racially biased. It has been claimed that T’s production of
AH begins at rest and then increases in response to ACTH. The
results indicated that testosterone injection increases DHEA
levels in the NCI-H295R human adrenocortical cell line and
that it also reduces DHEAS levels. T was also present in newish
adrenal tissue taken from typical women, but in the adrenal
glands of these ordinary women, T did not affect the quantity of
DHEA or DHEAS (89). Additionally, ovarian steroids have a
direct impact on adrenal steroid synthesis. Additional research
on production is needed. In persons with PCOS, metformin was
reported to reduce IR (also known as insulin resistance) as one of
the insulin sensitizers. We would like to notice that. In women
with glucose-mediated or rapid insulin levels, metformin
medication has been shown to decrease PCOS concentrations.
While metformin use was associated with decreased fetal insulin
concentrations among PCOS women, it did not impact fetal
insulin concentrations in PCOS women who were taking
metformin (92).

The level of insulin is lower in pregnant women (93).
However, lower insulin activity can be different from that for
women with type II diabetes or obesity in women with PCOS.
The fact that metformin promotes insulin secretion, especially in
the early stages of secretion, is unacceptable without the
traditional symptoms of PCOS (94). More research on
metformin’s influence on insulin levels is thus justified.
Interestingly, metformin drugs, perhaps due to reduced glucose
concentrations, were demonstrated to enhance HA. In PCOS
(95, 96), levels of insulin are elevated. That also means that HA
and IR are very strongly linked. Figure 1 demonstrates a
schematic representation of this PCOS hormone-releasing. In
PCOS, the HPO axis is out of whack. GCs first carry out this
function during the development of the sinus follicles, while
follicular theca and follicular GCs both play a critical role in the
synthesis of steroid hormones. GCs (Gastrulation Conditioned
Squamous Epithelial Cells) are first activated by FSH and
subsequently LH during the monthly cycle, whereas follicular
cells (Follicle Cells) only respond to LH. This two-cell, two-
gonadotropin (FSH, LH, and androgens) theory explains the
production of androgens from androgen precursors with
follicular theca, GCs, and LH, as well as FSH. To convert
cholesterol to androgens, three steroid enzymes (CYP11A, 3-
HSD, and CYS17) are expressed in the ovarian membrane cells.
Frontiers in Endocrinology | www.frontiersin.org 6
The CYP11A (or P450scc) mitochondrial enzyme clicks the
cholesterol side-chain and subsequently creates Pregnenolone
that spreads swiftly from mitochondria. Once converted to
pregnenolone, 17-hydroxy pregnenolone or P4 can be
metabolized further by CYP17 or 3-HSD, respectively.
Converting 17-hydroxypregnenolone to DHEA is catalyzed by
the CYP17 enzyme. ASD is a 3-HSD precursor to ASD; ASS is
the major precursor of follicular theca cells released by
dihydrotestosterone and testosterone. GCs absorb ASD. ASD
(98, 99).

In the presence of FSH and via a basal layer, CYP19 transforms
testosterone into estradiol. The major estrogen is estradiol (67).
Estradiol (E2) is then converted by a chemical process into estrone
(E1). 17-hydroxysteroid dehydrogenase type I is converted to
estradiol by 17-hydroxysteroid type 2 dehydrogenase. The
primary steroid 317 routes are arranged and regulated by the
hypothesis of two-cell-two-gonadotropin biosynthetic theory in
the small Antral follicle of PCOS. Due to increased frequency of
the release of GnRH by the hypothalamus, increased GnRH
sensitivity, and excessive insulin on hypophysial insulin
receptors, excess LH is produced in PCOS patients, thus
encouraging the production of excessive androgen by ovarian
stroma and follicular membrane cells (100). In between, androgen
releases from the suprarenal gland can be enhanced by IR, SHBG
synthesis limited, and free testosterone increased. The high levels
of androgen in the ovary contribute to the inhibition and
prevention of follicles in follicles. However, at the early follicle
level, the small follicles in the ovary can continue releasing E2. In
addition, androstenedione is metabolized by CYP19 to E1, leading
to increased levels of estrone in peripheral tissues. Continuous
secretion of E1 and certain E2 levels on the pituitary and
hypothalamic secretion does not produce an LH-pick-pick with
the center of menstruation, increase the amplitude and frequency
of LH Secretion, prove to be continuously high with no periodicity
(101). Estrogen also functions as a negative FSH feedback
mechanism, decreases the FSH level, and increases the LH/FSH
ratio. When the high level of LH is present, the ovary is activated
and androgens are produced, but the low level of FSH prevents
FIGURE 1 | Schematic representation of the PCOS ovarian hormones
(Adapted and modified from (97).
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follicle growth, creating a vicious cycle of hyperandrogenism and
anovulation. This allows for the development of polycystic
abnormalities in the ovary (102). Abbreviations: CGs: granular
cell; LH: Hormones luteinize; FSH: hormone follicle-stimulating;
DHEA: dehydroepiandrosterone; P4: progesterone; ASD:
Androstenedione; E2: estradiol.

PCOS has a distinct neuroendocrine phänotype defined
under the effect of IR, which improves the overall synthesis of
LH and FSH production via sustained, fast GnRH pulsation. The
LH/FSH ratio is thus increased (103). Increased CYP11A1 and
CYP17 expression may lead to an increase in the production of
androgen in women suffering from PCOS (89). The LH-
dependent character of ovarian hypertension may be useful to
explain why PCOS usually occurs as puberty reactivates the
reproductive hypothalamus-hospital axis and increases LH
secretion (104). In regulating the occurrence of HA in PCOS
thus, IR is crucial. The usual hallmark of PCOS is excess
testosterone of follicular origin. Tissue and GCs treated with
androgen have been observed to induce circadian rhythms.
Distributor-dependent phase-dependent activities. In
androgen-treated mice, estrous cycles were stopped. Flutamide
treatment nevertheless can restore the estrous cycle in PCOS
animals, lower ovarian-like follicles in LET females, and reduce a
variety of people’s PCOS symptoms, including P4 reactivity. Loss
of signals from androgen receptors (AR) improves the PCOS
model phenotype. Excess androgen may thereby modify the
hypothalamic-hypophytic-gonadal axis by AR, which reduces
the susceptibility of P4 to negativity. This leads to
neuroendocrine dysfunction in the PCOS (103) that
undermines ovarian function.
REPRODUCTIVE FAILURE DUE TO IR AND
HA IN PCOS

Reproductive abnormalities that present as infertility (75 percent
of anovulatory infertility is PCOS) and an increased risk of
abortion (105, 106) are the most important concern in PCOS
patients with childbearing age. Anomalies of ovulation are
induced by faulty endocrine metabolism, reduced oval
formation capability, and reduced endometrial receptiveness
(ER). The ovary, in which HA and IR may alter ovarian follicle
growth and also fertile oocyte formation, is the principal organ
affected (100). Anovulatory phenotype PCOS is more probable
than typical PCOS to have IR. Dominant follicular GCs create
large IGF-II volumes during the follicular phase in the follicular
fluid. The levels of the IGF-II in folic fluid have a positive
correlation with the diameter of the follicle and E2, but with
the androgen. Non-dominant follicles have low IGF-II levels and
this effect is not magnified, causing developing follicle defects.
HA leads to reduced levels of IGF-II in follicular fluid in women
with PCOS. The follicular theca cell death can be inhibited by
estrogen produced by many follicles that cause sinus follicles
stagnation, not obstruction in PCOS. In women with PCOS,
more LH encourages the development of ovarian theca cell
androgens, whereas inadequate FSH helps impaired
Frontiers in Endocrinology | www.frontiersin.org 7
folliculogenesis and anovulation. Insulin resistance/
hyperinsulinemia in women with PCOS encourages androgen
synthesis directly in ovarian and ductless glands, increasing
follicular maturation and leading to anovulatory infertility.
Intriguingly, IR/hyperinsulinemia promotes pituitary LH
release, boosting androgenic production and inhibiting SHBG
synthesis, resulting in high levels of FT (66). This disrupts both
ovarian and ovulatory functions. Ovulatory dysfunction (75) is
most typically caused by infertility. PCOS can lead to ovarian
failure in mutations in the gene of LH chorionic gonadotropin
(LHCGR) receptor. Exotropinism may also lead to ovarian
collagen fibrosis, which results in abnormal tunic thickness,
which makes follicles less susceptible to rupture, leads to un-
ruptured follicle luteinized (LUFS) syndrome, also linked to
infertility. Insufficiency in vitamin D has been associated with
poor outcomes in PCOS stimulation (107). The deficiency of
vitamin D3 (VitD3) leads to the normalization of serum AMH
and promotes follicles (101). That means, in the development of
PCOS oocytes, vitamin D plays a key part. HA, IR and higher LH
levels are generally strongly affected by the production of ovary
follicles and could lead to anovulatory cycles (66).
IR AND AGEING

Both sexes have a continuous increase in body weight with the
advancement of age, which is associated with a detrimental effect
on metabolic profile, and IR has long been considered the
primary pathophysiological link between obesity and metabolic
abnormalities (108, 109). Additionally, ageing is associated with
a steady increase in IR and -cell decompensation in a healthy
population, which results in the development of diabetic mellitus
(DM) (110). Nonetheless, the molecular mechanisms behind IR
in persons with DM are distinct from those underlying IR in
people with PCOS, and patients with DM exhibit varying degrees
of IR in various organs (111).

According to study, women with PCOS had a higher level of
intrinsic IR than their age- and BMI-matched contemporaries
(112, 113). Women with PCOS also had higher HOMA-IR
readings than women without PCOS, independent of BMI
(114). As a result, the notion that PCOS is a risk factor for the
development of diabetes in non-obese women with the syndrome
should be re-examined, particularly given that the current
findings come from a cross-sectional rather than a
prospective investigation.

It has been clear over the last two decades that both IR and
-cell dysfunction is necessary for the development of diabetes
mellitus, and that both of these illnesses are associated with
ageing (109, 115). If, on the other hand, IR improves with time in
non-obese PCOS women, this trait can compensate for the
decreased -cell secretion, hence lowering the risk of diabetes.
Additionally, while thin women with PCOS have intrinsic IR, the
degree of IR is comparable to that of their obese control peers (8,
116). As a result, obesity appears to be a substantial risk factor for
the development of IR, and one may argue that DM in women
with PCOS is an epiphenomenon caused by an elevated BMI,
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given the common coexistence of obesity and PCOS. This
concept was advanced by the Escobar-Morreale group, which
discovered that overweight and obese women have a significantly
higher prevalence of PCOS than lean women (28.3 vs. 5.5
percent, respectively), a finding validated by other study
groups (117, 118). Additionally, women with PCOS have a
high familial history of diabetes, which is another significant
risk factor for diabetes development (119).

The steady fall in IR throughout time may be a result of
the natural decline in androgen levels associated with ageing.
In PCOS, IR and hyperandrogenemia are mutually exclusive,
and numerous in vitro and in vivo investigations have indicated
that reducing androgen levels improves IR (120). Additionally,
a direct correlation between testosterone levels and the risk
of developing IR or DM has been established in pre- or
postmenopausal normal women (121). Androgen levels
continuously decline with time in women with PCOS and
controls, as previously demonstrated (122) and corroborated in
this study. Androgens, on the other hand, declined independent
of BMI, demonstrating that the relationship between androgens
and age is direct and not indirect via fat (123).
CURRENT CLINICAL TREATMENT
OF PCOS

It is difficult to produce a PCOS-specific medication (124) due to
its complexity and range of female clinical characteristics. The
majority of treatment regimens advise PCOS women to change
their lifestyles, such as exercise, diet, and weight loss. The
treatment in the first line of PCOS menstrual problems and
hirsutism/acne for women with PCOS can be used as oral
contraceptives (OCPs). The usage of androgen-excessive
behavior is anti-androgens. Medicines that sensitize insulin can
be used to treat low glucose tolerance or symptoms of metabolic
illness. Anovulatory infertility is treated using clomiphene citrate
or related estrogen modulators such as letrozole (LET) in women
with polycystic ovarian syndrome (PCOS) (125). The surgical
interventions are laparoscopic ovarian perforation (LOD) and
ovarian wedge resection (126). Patients with PCOS should have
their treatment progress modified to meet the treatment goals of
patients and doctors, as there are no single treatments now (127).
Women with PCOS should consider lifestyle changes first, such
as food re-calibration and increased physical activity [(128);
Consensus on infertility treatment related to polycystic ovary
syndrome], especially if their BMI is greater than 25 kg/m2. To
enhance fertility, 343 obese infertile women with PCOS were
randomly assigned to receive clomiphene citrate alone,
metformin alone, a combination of the two, or a lifestyle
change program (low-calorie diet and risk-free activity for 30
minutes per day) (129). Women in the lifestyle group
outperformed those in the pharmaceutical group in terms of
waist circumference, LDL cholesterol, and insulin levels,
although SHBG levels improved similarly in both groups.
More crucially, despite the fact that the difference was not
statistically significant, the pregnancy rate in the lifestyle group
Frontiers in Endocrinology | www.frontiersin.org 8
(20%) was significantly greater than in the combo group (14.8%).
30 obese, insulin-resistant PCOS women were randomly
assigned to lifestyle modification plus metformin or a placebo
for four months in a recent clinical trial (130). The researchers
discovered that a small weight loss achieved through lifestyle
adjustments was sufficient to alter PCOS patients’ menstrual
cycles, and that metformin had additive effects on insulin
resistance and hyperandrogenism. In obese PCOS women,
weight loss of just 5% of their starting body weight can result
in conception (131), whereas weight loss of 5–10% can lower
hyperandrogenism and insulin levels (132).

There is currently no credible evidence on which meal
composition is optimal for improving PCOS clinical results.
For 12 weeks, 28 overweight PCOS women were randomly
assigned to either a low-protein or high-protein diet (133).
Although there was no significant difference in food content,
both diets reduced body weight (7.5%) and belly fat (12.5%), as
well as improved pregnancy rates, menstrual cyclicity, lipid
profile, and insulin resistance. Weight reduction, clinical, and
biochemical changes were not statistically significant in a
randomized controlled experiment comparing high-protein
and high-carbohydrate diets (134). If fatty acid buildup in
androgen-secreting cells is linked to PCOS pathogenesis, the
fat content of the diet may become more important than the
other macronutrients. Saturated fatty acids, for example, were
found to concentrate in cells and enhance testosterone levels in
male rats to a greater extent than polyunsaturated fatty acids
(PUFA) but to a lesser amount than monounsaturated fatty acids
(MUFA) (135). Supplementing with PUFAs for an additional
three months after a three-month normal diet improved glucose
homeostasis, plasma lipids, and sex hormones in women with
PCOS, according to a prospective study (136). According to a
cross-over trial comparing eucaloric diets higher in MUFA to
those low in carbs, the low CHO diet had a lower acute insulin
response to glucose than the MUFA diet (CHO). Diets were only
examined for 16 days, which is insufficient time for fat
modulation to influence insulin sensitivity and testosterone
levels. Given the scarcity of publications evaluating the
significance of dietary fat content in women with PCOS, we
propose that more research be done to better characterize and
understand the impact of dietary fat on PCOS management.

After non-pharmacological approaches fail, medications for
insulin-related hyperandrogenism and insulin resistance can be
recommended to women wi th PCOS. Met formin ,
thiazolidinediones (TZDs, PPAR agonists), D-chiro- or myo-
inositols, and acarbose, among other insulin-sensitizing or
insulin-lowering medications, have been demonstrated to
diminish hyperandrogenemia in both lean and obese women
with PCOS (137). Metformin is a biguanide that lowers hepatic
glucose synthesis while improving insulin sensitivity slightly.
Furthermore, this medication reduces hunger in a substantial
percentage of PCOS women, and is thus frequently (138), but not
always (139), associated with weight loss. Metformin has been
proven to help all women with PCOS, including those without
insulin resistance or hyperinsulinemia (140), but it is more
helpful in lean PCOS women than obese PCOS women (141).
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Metformin’s benefits on PCOS are most likely mediated by a
reduction in insulin levels, which can be seen in both insulin-
sensitive and insulin-resistant PCOS women due to a decrease in
hepatic glucose production. Metformin appears to directly
inhibit androgen synthesis on the ovaries (142), which could
be linked to an increase in intracellular FFA buildup. This
hypothesis, on the other hand, needs to be tested in vitro.

TZDs are another type of insulin-sensitizing drug that can be
used to treat PCOS symptoms. In adipocytes and androgen-
secreting cells, TZDs increase gene transcription and activate
genes that code for insulin action and proper FFA metabolism.
TZDs, unlike metformin, are real sensitizers that help people with
normal insulin sensitivity maintain their insulin levels.
Troglitazone, rosiglitazone, and pioglitazone have all been
approved by the FDA; however, troglitazone has been
discontinued due to idiosyncratic hepatotoxicity. Several studies
(143, 144) have found that using one or more TZDs can benefit
women with PCOS with insulin resistance, ovarian dysfunction,
and hyperandrogenism. TZDs like metformin have been shown
to improve hyperandrogenism and ovulation rates in slim women
with PCOS and normal insulin levels (145). TZDs appear to be at
least as effective as metformin in treating the clinical symptoms of
PCOS (127). For example, in obese PCOS patients treated for 12
weeks with metformin, orlistat (a weight loss inducer), or
pioglitazone, all three medications effectively reduced
hyperandrogenemia characteristics (146).

The adrenal fasciculata and ovarian thecal cells both have
PPAR receptors, and their ligands have been demonstrated to
lower P450c17 and 3HSD2 activity in human adrenal cells while
enhancing testosterone synthesis in pig thecal and human ovarian
cells (147). Furthermore, PPAR agonists have been found in
human adrenal cells to reverse the increased expression of
P450c17 produced by MEK/ERK suppression (148). As a result,
PPAR appears to play a direct role in androgen synthesis,
suggesting that activating this receptor could assist to ameliorate
some of the insulin signaling protein anomalies connected to
PCOS hyperandrogenemia. Furthermore, because all insulin-
sensitizing medications improve adipocyte insulin sensitivity, it’s
possible that this is a common mechanism by which insulin
sensitization relieves hyperandrogenism.

Another line of treatment includes laparoscopic surgeries; this
technique is carried out under video surveillance in the lithotomy
position (149). As a result of developments in minimally invasive
surgery technology, laparoscopic surgeries that need fewer port
wounds, single incisions, or use of the natural orifice have gained
in favor (150, 151). As a result, the single-port laparoscopic
approach can also be used to execute LOD. The conventional
three-port wounds for LOD are summarized below. A 5–10 mm
trocar is placed in the umbilical position, and two 5 mm trocars
are placed in the right and left lower quadrants, 6–8 cm lateral to
the inferior epigastric artery and oblique to the pubic rami, to
position the video scope. To grip the utero-ovarian ligament and
move the ovary away from the intestine and ureter, a set of
grasping forceps is inserted via one of the 5 mm trocars. On a
single ovary or both ovaries, three to ten diathermic punctures
(each 3 mm in diameter and 2–4 mm in depth) are commonly
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conducted utilizing 600–800 joules (J) of energy. However,
because the clinical effects of LOD may be dose-dependent, it is
advised that each ovary receive at least 600 J, as recommended by
(152) in their initial study on the amount of energy utilized for
LOD. The duration of each penetration is between 2 and 4
seconds. After chilling the bilateral ovaries with an isotonic
solution, the existence of bleeding is detected. Finally, 500–1000
mL of normal saline should be injected into the cul-de-sac to cool
the ovaries and avoid heat harm to nearby tissues, as well as to
lower the chance of postoperative adhesion formation and
effectively treat postoperative shoulder tip pain (153, 154). In
order to maximize therapy response with the least amount of
follicle injury possible, the best amount of electrosurgical energy to
utilize at each puncture is uncertain (155). compared the effects of
LOD on metabolic consequences using two distinct cautery
procedures. In group A, four 5 s or five 4 s punctures were
employed with a voltage (V) of 3040 to obtain a total energy of 600
J per ovary. Group B’s energy measurement (based on ovarian
volume) was based on earlier research that employed 640, 450,
600, and 800 J per ovary (mean: 625 J). There were no significant
variations in AMH, testosterone, or dehydroepiandrosterone
sulphate (DHEA-S) levels between the two groups, according to
the researchers. Additional LOD procedures are required, such as
office micro laparoscopic ovarian drilling (OMLOD) performed
under augmented local anesthetic rather than general anesthesia
(156). OMLOD has a number of advantages, including a faster
recovery period, less pain, and less hospitalization. Fertiloscopy
(transvaginal hydro laparoscopy) has also been described as a
viable ovarian drilling approach (157). LOD has also been
proposed using a harmonic scalpel and a monopolar hook
electrode (158).
CONCLUSION AND FUTURE
PERSPECTIVES

PCOS is an extremely complex illness with several phenotypes
that sometimes makes it difficult to recognize and treat.
Therefore, many groups around the world developed criteria of
consensus. This article describes PCOS-based physiopathology,
which is linked to HA and/or IR-mediated symptoms. PCOS
androgenism has a convoluted etiology closely linked to the
ovaries and suprarenal. The development of systemic diseases in
PCOS can be influenced by HA and IR. They are intricately
connected to breeding processes, obesity, hypertension, NAFLD,
dyslipidemia sleep, neuroendocrine issues, apnea, AGEs, and
EDC impacts. PCOS is usually identified by irregular
menstruation or infertility in young women; PCOS can in its
later phases create a range of metabolic problems. Cognitive and
behavioral pathways are likely to be involved, as in women of
PCOS, in part because of their distressing symptoms; anguish
and despair, smoking and excessive alcohol use and inactivity are
widespread. Timely training and interventions to improve one’s
quality of life. Interactions with variables such as weight and food
are increasingly recognized as having the potential to change the
nature of PCOS. More studies are also needed to link the
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underlying causes of PCOS (HA and IR) with clinical events
and to develop more scientifically and clinically relevant
therapeutic approaches
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