Check for updates

OPEN ACCESS

EDITED BY Koninckx R. Philippe, KU Leuven, Belgium

REVIEWED BY Joanna Dietzel, Charité Universitätsmedizin Berlin, Germany Hina Rehman, Ministry of AYUSH, India Wajeeha Begum, National Institute of Unani Medicine, India

*CORRESPONDENCE Yi Guo Moctorguo1010@163.com

SPECIALTY SECTION

This article was submitted to Reproduction, a section of the journal Frontiers in Endocrinology

RECEIVED 15 August 2022 ACCEPTED 05 December 2022 PUBLISHED 05 January 2023

CITATION

Kong X, Fang H, Li X, Zhang Y and Guo Y (2023) Effects of auricular acupressure on dysmenorrhea: A systematic review and meta-analysis of randomized controlled trials. *Front. Endocrinol.* 13:1016222. doi: 10.3389/fendo.2022.1016222

COPYRIGHT

© 2023 Kong, Fang, Li, Zhang and Guo. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Effects of auricular acupressure on dysmenorrhea: A systematic review and meta-analysis of randomized controlled trials

Xianglu Kong¹, Hong Fang¹, Xiaoqian Li², Yanjuan Zhang¹ and Yi Guo^{3,4}*

¹Jiande hospital of integrated traditional Chinese and Western Medicine, Hangzhou, China, ²The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China, ³The 8th Clinical Medical College, Guangzhou University of Chinese Medicine, Foshan, China, ⁴Foshan Hospital of Traditional Chinese Medicine, Foshan, China

Background: Auricular acupressure (AA) is widely used in treatment of dysmenorrhea, but the safety and efficacy of auricular acupressure on dysmenorrhoea are still lack of evidence-based basis.

Objective: The purpose of meta-analysis was to evaluate the effects of auricular acupressure on dysmenorrhea.

Data sources: A systematic search was conducted in six electronic databases, including PubMed, Embase, Cochrane Central Register of Controlled Trials (CINAHL), Weipu (CQVIP), China National Knowledge Infrastructure (CNKI), and Wanfang databases, to retrieve studies published from the inception dates to June 10, 2022.

Study selection: Randomized controlled trials (RCTs) that investigated the effectiveness of AA on dysmenorrhea were identified.

Data extraction and synthesis: The data extraction and quality assessment of the included studies were performed by two reviewers independently. Outcomes were abstracted to determine the effect measure by using mean differences (MD), standardized mean differences (SMD), or odds ratio (OR) from a random effects model.

Main outcomes and measures: Cure rate, total effective rate, and visual analogue scale (VAS) were described as primary outcomes; Short-form Menstrual Distress Questionnaire (MDQs), symptom scores, serum nitric oxide (NO) level, and adverse events were recorded as secondary outcomes.

Results: Thirty-five RCTs involving 3960 participants were included in this study. Our findings indicated that, overall, AA was associated with a significant benefit in cured rate (OR = 1.95, 95%CI: [1.34, 2.83], P=0.0004, I² = 75%), total effective rate (OR = 3.58, 95%CI: [2.92, 4.39], P<0.00001, I² = 67%), VAS score (MD = -1.45, 95%CI: [-1.73, -1.17], P<0.00001, I² = 67%), and symptom scores

compared to the control group (SMD = -0.85, 95%CI: [-1.28, -0.43], P<0.0001, I^2 = 91%). However, no difference in serum NO (SMD = 0.77, 95%CI: [-0.39, 1.92], P = 0.19, I^2 = 89%) and MDQs (SMD = -0.58, 95%CI: [-1.26, 0.10], P = 0.10, I^2 = 79%) was found between the two groups. Furthermore, subgroup analysis results indicated that AA showed significant superiorities in increasing cured rate and total effective rate, and reducing VAS score and symptom scores when compared to analgesics and non-intervention. Moreover, AA presented the same superiorities when used as an adjunctive strategy to other therapy. However, these benefits were not detected in AA used alone when compared to the therapies, including Chinese herbs, acupuncture, external application of Chineseherbal medicine, moxibustion, auricular needle, and health education.

Conclusions: Overall, AA, as a potential safety therapy, is effective for the management of dysmenorrhea, such as increasing cured rate, total effective rate, VAS, and symptom scores. Nevertheless, AA showed no significant improvement in serum NO and MDQs. It is furtherly found that AA used alone is superior to analgesics and non-intervention regarding cured rate, total effective rate, VAS, and symptom scores. Furthermore, the same superiorities are observed when AA serves as an adjunctive strategy to other therapy. However, AA alone has little effect on them compared to other therapies, and there is no definite conclusion on the benefits of AA compared to placebo for patients with dysmenorrhea. Rigorous RCTs with blind method and placebo control are warranted to confirm these findings.

Systematic review registration: https://www.crd.york.ac.uk/prospero/, identifier CRD42022338524.

KEYWORDS

auricular acupressure, dysmenorrhea, menstrual pain, review, meta-analysis

1 Introduction

As one of the most common gynecologic complaints, dysmenorrhea always exhibits a complex of symptoms during menstruation or before it, inducing lower abdominal pain, headache, low back pain, pelvic pain, fatigue, nausea vomiting, which seriously compromises a woman's quality of life (1). It is estimated that 50% to 90% of adolescent girls and women of reproductive age experience dysmenorrhea, and it is a leading cause of recurrent absenteeism (2). Due to its high prevalence, dysmenorrhea has been a public health concern worldwide, which attracted increasing attentions. Nevertheless, it is often underdiagnosed, and inadequately treated, and even accepted as an inevitable symptom to menstruation by patients themselves (3). To date, there are some therapeutic methods used for prevention or treatment of perimenstrual pain, such as analgesics, hormonal contraceptives, relaxation, warmth, health education, exercise, and traditional Chinese medicine (e.g., Chinese herbal decoction, acupuncture, moxibustion, auricular acupressure and so on). Nonsteroidal antiinflammatory drugs (NSAIDs) and hormonal contraceptives are considered as first-line therapy (1). However, they mainly exert an effect on temporary pain relief, while the long-term efficacy is always unsatisfactory (4). Furthermore, adverse reactions and unnecessary medical expenses from them can't be neglected. Thus, it is essential to develop an effective, safe and feasible therapy to alleviate dysmenorrhea. In recent years, with continuous explorations of clinical practices, complementary and alternative medicine has come into widespread use owing to its fewer unpleasant side effects and high efficiency (5).

Auricular acupressure (AA) is a noninvasive treatment in traditional Chinese medicine technique, and it has been proved

to be a valuable strategy to improve menstrual symptoms through pressing vaccaria, magnetic beads and cowherb seeds sticked on auricular acupoints corresponding to all parts of the human body (6, 7). As a typical traditional Chinese medical therapy using acupoints without needle insertion, AA stimulates acupoints by pressure from fingers or automatically by the seeds themselves (8). Particularly, in Chinese medicine theory, menstrual symptoms are viewed to be caused by either stagnant qi or Blood or the lack of blood in the body. AA can reduce tension and contraction of uterine, promote wellness, and maintain the normal bodily functions through stimulating auricular acupoints to activate and adjust the flow of qi and Blood, and subsequently reduce pain, and provide comfort. As is reported previously, it can relieve pain and neuronal excitability through facilitating the normalization of pathological hypersensitive reflex pathways connecting the ear microsystem and somatotopic brain, and regulating proinflammatory cytokines, such as IL-1b, IL-6, and TNF (9). Therefore, AA has been proposed to be applied to improve dysmenorrhea. Recently, growing numbers of studies focusing on determining the efficacy of AA on dysmenorrhea. However, until now, the safety and efficacy of AA on dysmenorrhea are still lack of evidence-based basis, hence a systematic review and metaanalysis regarding AA for dysmenorrhea is required. Consequently, we aimed to evaluate the efficacy of AA on dysmenorrhea through this meta-analysis of randomized controlled trials (RCTs) to provide evidence-based support for the management of dysmenorrhea.

2 Methods

This study was reported following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines (10). Morever, the registered protocol of this study is available in PROSPERO (registration number is CRD42022338524).

2.1 Search strategy

In order to identify all relevant publications, 7 electronic databases including PubMed, Embase, Cochrane Central Register of Controlled Trials (CINAHL), VIP Database for Chinese Technical Periodicals (CQVIP), China National Knowledge Infrastructure (CNKI), and Wanfang databases were comprehensively searched from inception to June 10, 2022. A keyword such as "Auricular Acupressure", "dysmenorrhea", "randomized", "randomized controlled trial", etc. were used to search in each database, and we imposed no restrictions with respect to language. Reference lists of reviews published previously and Google scholar were also checked to find additional eligible studies. The detailed search strategy was described in Supplementary eFigure 1.

2.2 Selection criteria

PICOS (patients, intervention, comparator, outcomes, and study design) framework (11) was used to formulate inclusion and exclusion criteria in this study.

2.2.1 Patients

Inclusion criteria:

- Subjects with primary and secondary dysmenorrhea.
- Exclusion criteria:
- Participants with gynecological tumor.
- Participants with a history of gynecological surgery.

2.2.2 Interventions

Inclusion criteria:

AA should be applied in the experimental group in include study.

Exclusion criteria:

- Acupuncture,
- Auricular needle;
- Electrical acupoints stimulation.

2.2.3 Comparators

AA versus (VS) basic or conventional treatment; AA + basic or conventional treatment VS basic or conventional treatment used alone; AA VS non-intervention; AA VS placebo or sham acupressure.

2.2.4 Outcomes

The primary outcomes were listed as follow:

- Cure rate;
- · Total effective rate;
- Pain intensity evaluated by using visual analogue scale (VAS).
- Secondary outcomes
- Short-form Menstrual Distress Questionnaire (MDQs) (12);
- Symptom scores;
- Serum nitric oxide (NO) level;
- Adverse event.

2.2.5 Study design

Inclusion criteria:

- Clinical RCT;
- Published in a peer-reviewed journal;

- Exclusion criteria:
- Repeated publications;
- Comments, protocol, conference abstracts, metaanalysis, or reviews;
- The data were incomplete;
- Full-text unavailable literatures.

2.3 Study screening and data extraction

All the search results were imported to EndNote X8 (Bld 10063), a reference management software, to remove duplicate articles. Two independent researchers (XL Kong and H Fang) screened the retrieved literatures by reading the titles, abstracts, and full text, and then identify the included studies in accordance with the aforementioned criteria. Next, the two reviewers independently extracted relevant data from the included studies, including the author, publication year, sample size, auricular acupoints, intervention parameters, study design, and outcomes. When screening and extracting data, we resolved discrepancies through discussion until a consensus was reached.

2.4 Quality assessment

The Cochrane Collaboration's Risk of Bias tool was used to assess the quality of the included studies by the two independently reviewers from seven domains including random sequence generation, allocation concealment, blinding of participants and personnel, blinding of outcome assessment, incomplete outcome data, selective reporting, and other bias (13). The risk of each item is categorized as high, unclear and low.

2.5 Statistical analysis

All the data analysis were performed by using review manager (version 5.3, the Nordic Cochrane Centre, Copenhagen, Denmark) and Stata (version 13.0, the StataCorp LP, USA). For continuous outcomes, mean difference (MD) standardized mean difference (SMDs) with 95% confidence intervals (95% CI) were reported as the effect size. Meanwhile, dichotomous data were presented with as risk ratio (RR) with 95% CI. Moreover, the statistical heterogeneity was tested by using the Cochran Q-test and I². If I² statistic smaller than 50%, we considered the heterogeneous was acceptable (14) and a fixed effects model was adopted. Otherwise, the data was analyzed by using a random effects model (I² > 50%). Subgroup analyses were performed based on different comparators. In addition, Begg's test and Egger's test was conducted to estimate publication bias. The significant difference level was set at P < 0.05.

3 Results

3.1 Study selection

Totally 684 potentially relevant strings were identified after a systematic search from the 7 databases. We removed 167 duplicates, and preliminarily eliminated 476 studies through screening titles and abstracts one by one. Among the remaining 41 studies, 6 studies were excluded by reading full text. Finally, 35 RCTs (15–49) with sample sizes ranging from 12 to 160 were fulfilled our inclusion criteria, which involving 3960 patients. Flow diagram of the screening process was illustrated in Figure 1.

3.2 Study characteristics

The main characteristics of the included RCTs were showed in Supplementary eTable 1. Four (15–17, 40) of the included studies examined the effectiveness of AA in contrast to placebo. Two (16, 17) among the 36 studies were designed as single-blind RCTs, and one (15) of them was a double-blind RCT. Treatment courses of the included studies ranged from one to six menstrual cycles, while the treatment lasted three menstrual cycles in the most of them (n=20). The first six auricular acupoints selected in the included studies were Internal Genitals (TF2, n=36), Endocrine (CO18, n=34), Shenmen (TF4, n=27), Liver (CO12, n=24), Sympathetic (AH6a, n=23), and Kidney (CO10, n=23).

3.3 Risk of bias

"Randomized" were described in all the included studies, while one study (41) reported an inappropriate method for sequence generation and was rated as "high risk". Three of the included RCTs (15, 16, 31) were conducted with concealed allocation, and they were judged "low risk" for allocation concealment. The most included RCTs were judged "high risk" for blinding of participants and personnel because acupuncturists and participants could not be blinded, except for four studies (23, 24, 31, 40) using a placebo intervention. Two studies (18, 43) reported with a more than 15% dropout rate, so their "incomplete outcome data" were assessed as "high risk". The detailed results are depicted in Figure 2.

3.4 Meta-analysis

3.4.1 Primary outcomes

3.4.1.1 Cured rate

Twenty-six RCTs reported data regarding cured rate. Metaanalysis results indicated that, overall, AA was associated with a significant benefit in cured rate (OR = 1.95, 95%CI: [1.34, 2.83],

P=0.0004, $I^2 = 75\%$). After subgroup analysis, we found that AA showed a significantly higher cured rate when compared to analgesics (OR = 3.28, 95%CI: [1.37, 7.85], P=0.008, I² = 83%) and non-intervention (OR = 2.93, 95%CI: [1.35, 6.37], P=0.007, I² = 0%). Moreover, a significantly greater cured rate was observed in patients receiving AA combined with other therapy compared to those treated with other therapy alone (OR = 1.98, 95%CI: [1.03, 3.78], P=0.04, $I^2 = 80\%$), whereas no significant difference was detected when AA alone compared to other therapy (OR = 1.16, 95%CI: [0.68, 1.98], P=0.59, I² = 56%). Only one study examined the efficacy of AA compared to placebo so that meta-analysis was not applicable, and no cured case was reported in the two groups in the study (Figure 3). Additionally, no difference was found in subgroup analysis comparing AA to Chinese herb (OR = 1.64, 95%CI: [0.63, 4.30], P=0.31, $I^2 = 75\%$), acupuncture (OR = 0.41, 95%CI: [0.15, 1.13], P=0.09, $I^2 = 0\%$), external application of Chinese herbal medicine (OR = 0.93, 95%CI: [0.43, 1.99], P=0.85, $I^2 = 0\%$),

moxibustion (OR = 0.48, 95%CI: [0.04, 5.52], P=0.55, $I^2 = 77\%$), auricular needle (OR = 0.19, 95%CI: [0.01, 4.06], P=0.29, $I^2 =$ Not appliable), or health education (OR = 4.26, 95%CI: [0.46, 39.54], P=0.20, $I^2 =$ Not appliable) (Supplementary eFigure 2).

3.4.1.2 Total effective rate

A total of twenty-eight RCTs reported data on total effective rate. Pooled data revealed that, overall, there was a significant increase in total effective rate (OR = 3.58, 95%CI: [2.92, 4.39], P<0.00001, I² = 67%). A subgroup analysis was performed according to different comparators, and the results suggested that AA was superior to analgesics (OR = 5.98, 95%CI: [3.99, 8.97], P<0.00001, I² = 7%) and non-intervention (OR = 87.84, 95%CI: [30.63, 251.95], P<0.00001, I² = 53%). Moreover, AA combined with other therapy showed a higher total effective rate than other therapy used alone (OR = 2.92, 95%CI: [2.01, 4.24], P<0.00001, I² = 30%). However, no significant

$ \begin{array}{c} Circle WY 2002 & 6 & 7 & 7 & 1 & 4 & 2 & 37 & 4 & 61 & 16 & 17 & 4 \\ L V 2001 & 7 & 25 & 12 & 33 & 224 & 0.68 & 0.16 & 1.42 \\ L V 2001 & 7 & 13 & 4 & 4 & 14 & 22 & 7 & 227 & 228 & 0.68 & 0.16 & 1.42 \\ L V 2001 & 15 & 10 & 0 & 7 & 16 & 27 & 7 & 27 & 228 & 12.63 & 7 \\ We 10 & 2017 & 1 & 4 & 4 & 5 & 4 & 27 & 228 & 12.63 & 7 \\ We 10 & 2017 & 1 & 6 & 6 & 5 & 4 & 27 & 228 & 12.63 & 7 \\ Zhang Zr 2017 & 1 & 6 & 6 & 5 & 4 & 27 & 228 & 12.63 & 7 \\ Zhang Zr 2017 & 1 & 6 & 6 & 5 & 4 & 27 & 228 & 12.63 & 7 \\ Zhang Zr 2017 & 21 & 6 & 5 & 4 & 27 & 7 & 316 & 91.64 & 68 & 68 & 7 & 7 & 88 & 138 & 94.83 & 98 \\ Zhang Zr 2017 & 21 & 0 & 0.1 & 13 & 3 & 327 & 403 & 01.27 & 11.84 \\ Zhang Zr 2017 & 21 & 0 & 0.1 & 13 & 3 & 327 & 403 & 01.27 & 11.84 \\ Zhang Zr 2017 & 21 & 0 & 0.1 & 13 & 3 & 327 & 403 & 01.27 & 11.84 \\ Zhang Zr 2017 & 21 & 0 & 0.1 & 13 & 3 & 327 & 403 & 01.27 & 11.84 \\ Zhang Zr 2017 & 21 & 0 & 0.1 & 13 & 3 & 327 & 403 & 01.27 & 11.84 \\ Zhang Zr 2017 & 21 & 0 & 0.1 & 13 & 3 & 327 & 403 & 01.27 & 11.84 \\ Zhang Zr 2017 & 21 & 0 & 0.1 & 10 & 13 & 84 & 278 & 0.38 & 01.27 & 11.84 \\ Zhang Zr 2018 & 21 & 0 & 0.3 & 21 & 32 & 228 & 328 & 12.76 & 138 & 028 & 048 & 01.16 & 0.08 & 01 & 00 & 0.08 $	Study or Subgroup 1.1.1 Auricular acupre	Experimental Events Total essure therapy	Events VS Analg	Total	Weight	Odds Ratio M-H, Random, 95% Cl	Odds Ratio M-H, Random, 95% Cl
Hu S0 2015 4 20 2 77 2.2% 2.08 [0.5, 12.4] LU 22 2006 159 160 74 160 27% 91.81 [2.20, 383.21] Qiao L 2017 4 20 2 20 2.2% 2.28 [2.8, 132] We IS 2017 3 4 46 13 44 37% 2.28 [1.3, 12.6] Zhan D 277 1 3 0 65 20 65 3.3% 128 [1.2, 6.37] We IS 2017 3 1 64 91 36 43 37% 2.28 [1.3, 1.84] Zhan D 277 1 3 0 65 20 65 3.3% 128 [1.3, 7.85] Total events 322 168 Heterogenely: Tat" = 1.2; Ch ² = 40.60, df = 7 ($P = 0.0001$); $P = 35\%$ Trati event 322 168 Heterogenely: Tat" = 1.2; Ch ² = 40.60, df = 7 ($P = 0.00001$); $P = 35\%$ Trati event 32 1 10 3.5% 139 [1.2, 6.37] Chen J 2016 2 9 50 43 100 3.5% 139 [0.2, 16.19] Wang X2 016 2 9 50 43 100 3.5% 139 [0.2, 16.19] Wang X2 016 2 9 50 44 3 100 3.5% 139 [0.2, 16.19] Wang X2 016 2 9 50 44 3 100 3.5% 139 [0.2, 16.19] Wang X2 016 2 9 50 44 3 100 3.5% 139 [0.2, 16.19] Wang X2 016 5 25 4 22 7% 137 [1.77, 154] Lu Y0 2016 5 25 4 20 27% 137 [1.77, 154] Lu Y0 2016 5 25 4 20 27% 138 [1.76, 16.19] Wang X2 014 42 80 3.7% 3.08 [0.2, 16.19] Wang X2 014 42 80 3.7% 10.58 [0.2, 16.19] Wang X2 014 42 80 0 43 50 3.4% 0.20 [0.1, 7, 71] Mang X2 014 42 80 0 43 50 3.4% 0.20 [0.1, 7, 71] Mang X2 014 42 80 0 43 50 3.4% 0.20 [0.1, 7, 72] Wang X2 014 42 80 0 43 50 3.4% 0.20 [0.1, 7, 72] Wang X2 014 42 80 0 43 50 3.4% 0.38 [0.2, 16.19] Wang X2 016 5 30 15 30 3.7% 10.59 [0.4, 5.20] Total events 26 7 199 7 10.0% 1.59 [1.3, 2.40] Lu Y2 020 1 42 2 0.0 (1.5 20 1.5% 13.50 (0.3, 3.76] Total events 2.10 (0.6, 2.167 = 0.0.4) Total events 2.10 (0.6, 2.167 = 0.0.4) Total events 1 10 0 40 3.3% 0.67 [0.3, 3.76] Total events 1 10 0 40 3.3% 0.67 [0.3, 3.76] Heterogenely: Tat" = 0.8; Ch ² = 0.50; Total events 1 10 0 40 3.7% 2.20 [0.7, 3.2, 40] Lu Y2 020 1 4 7 0 30 0 30 Not estimable Total events 10 9 40 10 40 3.3% 0.67 [0.3, 3.76] Heterogenely: Tat" = 0.8; Ch ² = 0.20; The 2.27 (0.2000); P = 55%. Total events 10 9 40 10 40 3.3% 0.67 [0.3, 3.76] Heterogenely: Tat" = 0.8; Ch ² = 0.50; Total events 10 9 5 40 1 0 40 3.3% 0.67 [0.3, 3.76] Heterogenely: Tat" = 0.8; Ch ² = 0.79; Total (e9					3.7%	4.91 [2.18, 11.04]	
L UY N 2018 7 35 12 35 32% 0.48 0.16 1.42 LL 22 2008 153 160 7 4 160 2.7% 0.48 0.16 1.42 Other 2017 4 20 2 20 2.2% 2.26 0.36 13.07 Well 2017 4 4 80 15 40 3.37% 2.76 12.2.6 3.07 Well 2017 4 4 80 15 40 3.37% 2.76 12.2.6 3.07 Subtraction (95% C) 4 492 451 22.2. 3.28 (1.5.7, 7.85) Total events 32 168 Heterogeneity. Tar 1.23, Chr ⁴ - 40.6, Chr ² C ϕ - 0.0001); # = 63% Tast for overall effect 2.2 + 67 (ϕ = 0.000) 1.2 Auricular accursus the trarger other therapy Chen J.2017 21 30 11 30 32% 4.03 (1.37, 11.84) Den Y 2015 2 50 1 50 32.6 4.03 (1.37, 11.84) Den Y 2015 2 50 1 50 32.7 (1.5.7, 7.85) Tast for overall effect 2.2 + 67 (ϕ = 0.000) 1.2 Auricular accursus the trarger other therapy Chen J.2017 21 30 11 30 32% 4.03 (1.37, 11.84) Den Y 2015 2 50 1 30 1.87 (1.5.86) LL S 2013 9 50 1 1 90 32% 4.03 (1.3, 1.86) LL S 2013 9 50 1 1 90 32% 4.03 (1.1, 1.84) UNA SL 2016 15 30 32 2.27 (5.004) Wang SL 2016 15 30 0 80 32.7% 1.38 (1.0, 1.86) Wang SL 2016 115 30 0 80 32.7% 4.03 (1.45, 1.18) Wang SL 2016 115 30 0 80 32.7% 4.03 (1.45, 1.18) Wang SL 2016 115 30 0 80 32.7% 4.03 (1.45, 1.18) Wang SL 2016 115 30 0 80 33.5% 4.03 (0.1, 1.5, 1.50) Wang SL 2016 115 30 0 80 33.5% 4.03 (0.1, 1.5, 1.50) Wang SL 2016 115 30 0 80 33.5% 4.03 (0.1, 1.5, 1.50) Wang SL 2016 115 30 0 80 33.5% 4.03 (0.1, 1.5, 1.50) Wang SL 2016 115 30 0 80 33.5% 4.03 (0.1, 1.5, 1.50) Wang SL 2016 115 30 0 80 33.5% 4.03 (0.1, 1.5, 1.50) Wang SL 2016 115 30 0 80 33.5% 1.26 (1.6, 0.5, 1.50) Wang SL 2016 12 1.20 (Cher 6.06, 1.51 2.20 (Cher 6.02, 1.55, 6.57) Tast and the transition of the transport of the transpor							
Liu ZP 2006 188 160 74 160 2.7% 91.61 p_{20} 2.35 21 Gio L 2017 31 48 19 44 3.7% 2.278 [1.22, 6.37] Wei B 2017 31 48 19 44 3.7% 2.278 [1.22, 6.37] Wei B 2017 31 48 19 44 3.7% 2.278 [1.22, 6.37] Wei B 2017 31 48 19 44 3.7% 2.278 [1.2, 6.37] Wei B 2017 31 48 19 44 3.7% 2.278 [1.2, 6.37] Wei B 2017 31 48 19 44 3.7% 2.278 [1.2, 6.37] Wei B 2017 31 48 19 44 3.7% 2.278 [1.2, 6.37] Wei B 2017 31 48 19 44 3.7% 2.278 [1.2, 6.37] Wei B 2017 31 48 19 44 3.7% 2.278 [1.2, 6.37] Wei B 2017 19 45 20 67 7 0 00001; I ⁺ 8.3% Testfor overall effect Z = 2.67 (P = 0.006) 1.12 Auricular cargressure therapy + other therapy VS other thrapy Chen J 2017 21 30 11 30 3.2% 4.03 [1.37, 11.84] Deng X 2015 2 40 4 5 100 3.25% 1.03 [1.3, 10.7] Geng X 2015 2 5 4 25 2.5% 1.31 [1.3, 10.64.7] Liu VD 2016 5 25 4 25 2.5% 1.34 [1.3, 10.64.7] Liu VD 2016 5 25 4 25 2.5% 1.34 [1.3, 10.64.7] Liu VD 2016 5 25 4 25 2.5% 1.34 [1.3, 10.64.7] Liu VD 2016 5 25 4 25 2.5% 1.34 [1.3, 10.64.7] Liu VD 2016 5 25 4 25 2.5% 1.34 [1.3, 10.64.7] Liu VD 2016 5 25 4 25 2.5% 1.34 [1.3, 10.64.7] Liu VD 2016 5 25 19 20 94 3.5% 1.276 [1.6, 1.42] Liu VD 2016 15 30 8 30 2.5% 2.257 [1.3, 10.3, 76] Total events 2.67 199 Heterogenety, Tau ² = 1.08, Chr = 5.06.3 (if = 1.2 (P < 0.00001); P = 50% Testfor overall effect Z = 2.02 (P = 0.04) Total events 2.77 190 Heterogenety, Tau ² = 0.03; Che ² = 0.03 (J ² = 0.02001); P = 50% Testfor overall effect Z = 0.03 (P = 0.02); P = 50% Testfor overall effect Z = 0.03 (P = 0.02); P = 50% Testfor overall effect Z = 0.37, P = 0.000; P = 50% Testfor overall effect Z = 0.37, P = 0.000; P = 50% Testfor overall effect Z = 0.37, P = 0.000; P = 50% Testfor overall effect Z = 0.37, P = 0.000; P = 50% Testfor overall effect Z = 0.31 (P = 0.02); P = 50% Testfor overall effect Z = 0.31 (P = 0.02); P = 50% Testfor overall effect Z = 0.31 (P = 0.02); P = 50% Testfor overall effect Z = 0.31 (P = 0.02); P = 50% Testfor overall effect Z = 0.31 (P = 0.02); P = 0.00001; P = 75% Total events 31 27 Heterogenety, Tau ²							
$ \begin{array}{c} { \text{Giao } L.2017 & 4 & 20 & 2 & 20 & 2.2\% & 2.25 \text{ (0.36)} 13.97 \\ { \text{Wi RO } 2007 & 44 & 60 & 26 & 64 & 3.7\% & 3.18 \text{ (1.46, 6.98)} \\ { \text{Zhang } 27.2017 & 30 & 65 & 20 & 65 & 3.2\% & 1.33 \text{ (1.46, 6.98)} \\ { \text{Zhang } 27.2017 & 30 & 65 & 20 & 65 & 3.2\% & 1.33 \text{ (1.46, 6.98)} \\ { \text{Testfor overall effect } Z = 2.67 (P = 0.008) \\ \hline \\ \textbf{1.12 Arricular accessive therapy + other therapy V5 other thrapy \\ \text{Chen } J.2017 & 21 & 30 & 16 & 72 (P = 0.00001); P = 63\% \\ \hline \\ \textbf{Testfor overall effect } Z = 2.67 (P = 0.008) \\ \hline \\ \textbf{1.12 Arricular accessive therapy + other therapy V5 other thrapy \\ \text{Chen } J.2017 & 21 & 30 & 142 & 44 & 32.2\% & 0.36 (0.12, 107) \\ \text{Gao } 67.2014 & 30 & 442 & 443 & 32.2\% & 0.36 (0.12, 107) \\ \text{Gao } 67.2014 & 30 & 442 & 443 & 32.2\% & 0.36 (0.15, 1.43) \\ \text{Liu } Y2006 & 7 & 35 & 12 & 326 & 3.2\% & 1.03 (0.16, 1.42) \\ \text{Liu } Y2009 & 7 & 35 & 12 & 326 & 3.2\% & 0.38 (0.16, 1.42) \\ \text{Liu } Y2009 & 7 & 35 & 12 & 30 & 3.2\% & 2.275 (0.38, 116) \\ \text{Wang SL 2016 } 15 & 30 & 0 & 30 & 3.2\% & 2.275 (0.38, 116) \\ \text{Wang SL 2016 } 16 & 10 & 40 & 3.4\% & 200 (0.75, 2.00) \\ \text{Wang XX 2014 } 42 & 00 & 43 & 50 & 3.4\% & 4.57 (1.45, 1.43) \\ \text{Zhang } 1.2017 & \text{CD} & 36 & 10 & 20 & 32\% & 1.28 (5.0, 26.60) \\ \text{Yola events } 207 & 199 & 24 & 428 & 3.5\% & 1.38 (0.53, 2.76) \\ \text{Testfor overall effect } 7 = 2.06 (P = 0.002); P = 80\% \\ \text{Testfor overall effect } 7 = 2.06 (P = 0.002); P = 80\% \\ \text{Testfor overall effect } 7 = 2.06 (P = 0.002); P = 50\% \\ \text{Testfor overall effect } 7 = 0.53 (P = 0.002); P = 50\% \\ \text{Testfor overall effect } 10 & 30 & 0 & 30 & \text{Not estimable} \\ \text{Not estimable} \\ \text{Wang SL 2016 } 8 & 30 & 0 & 30 & \text{Not estimable} \\ \text{Testfor overall effect } 7 = 0.53 (P = 0.002); P = 50\% \\ \text{Testfor overall effect } 7 = 0.53 (P = 0.022); P = 50\% \\ \text{Testfor overall effect } 7 = 0.53 (P = 0.022); P = 50\% \\ \text{Testfor overall effect } 7 = 0.53 (P = 0.020); P = 50\% \\ \text{Testfor overall effect } 7 = 0.53 (P = 0.020); P = 50\% \\ \text{Testfor overall effect } 7 = 0.53 (P = 0.020); P = 50\% \\ Testfor over$	Liu ZP 2006	158 160			2.7%		
Wei B 2017 31 48 19 48 3.7% 2.78 1.22 6.37 WN RO 2007 44 60 25 64 3.7% 3.19 11.46, 6.98 Zhang Z' 2017 30 65 20 65 3.8% 1.33 10.94, 3.95 Subiolat (16%, C) 492 168 Heteroperaky. Tar# 1.23, C/h = 4.06, 0.06 47 (P^{-0} 0.00001), P 83% Test for versal effect 2 - 267 (P^{-0} 0.000 The J 2017 21 30 11 30 3.2% 0.38 (0.12, 16) Gao GY 2014 30 48 24 49 3.7% 1.57 (0.74, 3.76) Chen J 2017 21 30 11 50 3.2% 0.38 (0.12, 16) Gao GY 2014 30 48 24 49 3.7% 1.57 (0.74, 3.76) Lu S 2013 9 50 1 50 1.5% 10.78 (1.34, 8.47) Lu Y 2009 7 35 12 35 3.2% 0.38 (0.14, 1.40) Lu Y 2009 7 35 12 35 3.2% 0.38 (0.14, 1.40) Lu Y 2009 7 35 12 35 3.2% 0.38 (0.14, 1.40) Lu Y 2009 7 35 12 35 3.2% 0.38 (0.14, 1.40) Lu Y 2009 7 35 12 0.94 3.4% 0.38 (0.14, 1.40) Lu Y 2010 16 5 00 6 30 0.3 (% 4.27) (1.45, 1.43) Zhang J 2018 16 40 10 40 3.4% 0.23 (0.14, 1.40) Wang SL 2018 15 40 10 40 3.4% 0.23 (0.14, 1.40) Wang SL 2018 15 40 12 0.94 3.560 2.3% 0.38 (0.14, 1.40) Wang SL 2018 15 10 0.92 41.7% 1.38 (1.53, 3.76) Total events 267 199 Heterogenety. Tar# -1.08; Che = 0.03, Id = 12, 04 - 0.00001; P = 80% Test for overall effect 2 - 2.06 (P - 0.00001; P = 80% Test for overall effect 1 a 20 (P - 0.0001; P = 80% Test for overall effect 1 a 20 (P - 0.00001; P = 80% Test for overall effect 1 bit 30 0 2 2 80 1.1% 10.03 (0.61, 7.62) Lu S 2013 4 50 1 50 0 3.02 % 1.33 (0.62, 3.30) Deng Y 2014 1 15 1 15 1.2% 1.00 [0.6, 17.62] Lu S 2013 4 50 1 7 40 Heterogenety. Tar# - 0.38; Che = 0.33, df = (P - 0.000; P = 56% Test for overall effect 1 bit 30 0 30 Not estimable Subtoal (95% C) 30 30 30 Not estimable Test for overall effect 1 bit 39 48 3.77 27.81 (2.3, 3.72) Total events 317 140 Heterogenety. Tar# - 0.38; Che = 0.27, P = 0.007; P = 56% Test for overall effect 1 bit 39 49 50 7.77 2.78 (2.36, 1.35, 5.57) Total events 317 140 Heterogenety. Tar# - 0.38; Che = 0.27, P = 0.007; P = 56% Test for overall effect 1 bit 39 40 9.77 2.78 (2.36, 1.35, 5.57) Total events 317 140 Heterogenety. Tar# - 0.38; Che = 120.37, df = 2(P - 0.0000);							
Wu RD 2007 44 60 25 54 3.7% 3.19 [1.45, 6.89] Total events 32 168 Heterogenety Tar ² + 1.2; CVP = 40.80, d= 7.7 + 0.0001); P= 83% Test for overal effect 2.257 (P= 0.0001); P= 83% Test for overal effect 2.2 05 (P= 0.0001); P= 83% Test for overal effect 2.2 05 (P= 0.0001); P= 83% Test for overal effect 2.2 05 (P= 0.0001); P= 83% Test for overal effect 2.2 05 (P= 0.0001); P= 83% Test for overal effect 2.2 05 (P= 0.0001); P= 83% Test for overal effect 2.2 05 (P= 0.0001); P= 83% Test for overal effect 2.2 0.6 (P= 0.0001); P= 80% Test for overal effect 2.2 0.6 (P= 0.0001); P= 80% Test for overal effect 2.2 0.6 (P= 0.0001); P= 80% Test for overal effect 2.2 0.6 (P= 0.0001); P= 80% Test for overal effect 2.2 0.6 (P= 0.0001); P= 80% Test for overal effect 2.2 0.6 (P= 0.0001); P= 80% Test for overal effect 2.2 0.6 (P= 0.0001); P= 80% Test for overal effect 2.2 0.6 (P= 0.0001); P= 80% Test for overal effect 2.2 0.6 (P= 0.0001); P= 80% Test for overal effect 2.2 0.6 (P= 0.0001); P= 80% Test for overal effect 2.2 0.5 (P= 0.0001); P= 80% Test for overal effect 2.2 0.5 (P= 0.0001); P= 80% Test for overal effect 2.2 0.5 (P= 0.0001); P= 80% Test for overal effect 2.2 0.5 (P= 0.0001); P= 80% Test for overal effect 2.2 0.5 (P= 0.0001); P= 80% Test for overal effect 2.2 0.5 (P= 0.0001); P= 75% Test for overal effect 2.2 0.5 (P= 0.0001); P= 75% Test for overal effect 2.2 0.5 (P= 0.0001); P= 75% Test for overal effect 2.2 0.5 (P= 0.0001); P= 75% Test for overal effect 2.2 0.5 (P= 0.0001); P= 75% Test for overal effect 2.2 0.5 (P= 0.0001); P= 75% Test for overal effect 2.2 0.5 (P= 0.0001); P= 75% Test for ov							
Subtolal (9%) (1) 492 451 25.2% 3.28 [1.37, 7.85] Total events 32 Test for overall effect 2 = 2.57 ($P = 0.0001$); $P = 0.3%$ Test for overall effect 2 = 2.57 ($P = 0.0001$); $P = 0.3%$ Test for overall effect 2 = 2.57 ($P = 0.0001$); $P = 0.32$, $P = 0.001$, $P = 0.001$, $P = 0.001$ Name 32 ($P = 0.0001$); $P = 0.0001$ Total events 2 = 50 44 51 00 3.2% 4.031 0.37, 11.84 U is 2013 19 50 44 24 44 257 40 27 ($P = 0.001$); $P = 0.001$ Name 32 ($P = 0.0001$); $P = 0.0001$; $P = 0.00$							
Total events 322 168 Heterogenesity Tart 122, Ch ² = 40.00, df = 7, P = 0.00001); P = 83%. Test for overall effect $Z = 2.67, P = 0.0000$ 1.1.2 Auricular accupressure therapy V other thrapy V Chen JJ 2017 21 30 11 30 3.2% 0.36 [10.12, 10.7] Gao OV 2014 30 44 24 43 24 43.7% 1.57 [10.17] Gao OV 2014 30 45 24 43 27% 1.57 [10.17] Gao OV 2014 30 45 24 43 27% 1.57 [10.17] Gao OV 2016 15 30 8.20 12.9% 3.56 [6.7] Lin Y 2009 7 7 35 11 2 35 3.2% 0.46 [10.13, 16.60] Un YY 2009 7 7 35 11 2 35 3.2% 0.46 [10.13, 16.60] Wang SL 2016 15 30 8.30 3.2% 2.75 [0.33, 81.0] Wang SL 2016 15 30 8.30 3.4% 2.2001 0.77, 5.20] Wang SL 2016 15 30 8.30 3.4% 2.2001 0.77, 5.20] Wang SL 2016 15 30 8.30 3.4% 2.2001 0.77, 5.20] Wang SL 2016 15 30 8.30 3.4% 2.2001 0.77, 5.20] Wang SL 2016 15 0.01 40 592 4.172. 1.48 [1.03, 3.78] Total events 207 119 Heterogenesity Tau* 1.08 (Chi* 20.60, df = 12.2% -0.00001); P = 80%. Test for overall effect $Z = 2.50, P = 0.03$ 1.1.3 Auricular accupressure therapy V 5 other thrapy Cat ZL 2016 8 30 8 30 3.1% 4.57 [1.48, 1.43] Lin Y 2014 41 7 33 7 31 3.1% 0.92 [1.03, 3.78] Un Y 2014 41 70 22 50 3.3% 1.50 [0.43, 3.50] Lin CX 2021 0 30 0 2 30 Not estimable Subtotal (9% Ci) 34 50 1.50 1.7% 4.26 [0.46, 39.54] Lin X 2016 41 70 33 0 0 0 30 Not estimable Test for overall effect $Z = 0.50$ Heterogenesity Tau* 1.30, df = 9 0 = 0.02; P = 56%. Test for overall effect $Z = 0.50$ Heterogenesity Tau* 0.30, df = 9 0 = 0.02; P = 56%. Test for overall effect $Z = 2.50$ (P = 0.02; P = 56%. Test for overall effect $Z = 0.50$ Heterogenesity Tau* 0.30, df = 9 0 = 0.02; P = 56%. Test for overall effect $Z = 0.50$ (P = 0.02; P = 56%. Test for overall effect $Z = 0.50$ (P = 0.02; P = 0.6%. Test overall effect $Z = 0.50$ (P = 0.02; P = 0.6%. Test overall effect $Z = 0.50$ (P = 0.72; P = 0%. Test overall effect $Z = 0.50$ (P = 0.02; P = 0.6%. Test overall effect $Z = 0.50$ (P = 0.02; P = 0.6%. Test overall effect $Z = 0.50$ (P = 0.02; P = 0.6%. Test overall effect $Z = 0.50$ (P = 0.02; P = 0.6%. Tes						3.28 [1.37, 7.85]	-
Helerogeneity: Tar = 1.22; $Ch^2 = 4.0.80$, $df = 7(9 - 0.00001)$; $P = 83%$. Test for overall effect 2 = 2.87 ($\theta = 0.008$) 1.12 Arricular accpressure therapy - other thrapy Chen J. 2017 21 30 11 30 3.2% 4.031(3.7, 11.84) Deng X.2015 8 300 11 30 3.2% 0.33(9.12, 10.7) Ga G GY 2014 30 48 24 48 3.7% 1.67 (10.74, 3.76) Li S 2013 9 50 1 50 1.8% 1.0.76 (1.31, 86.47) Li S 2013 9 50 1 150 1.8% 1.0.76 (1.31, 86.47) Li W YO 2016 5 2 25 4 25 2.2% 3.38 (0.48 (0.16, 1.42) Li W Y 2012 6 3 31 2 30 3.2% 3.38 (0.25, 16.18) Wang S 2.018 16 30 6 30 3.1% 4.57 (1.45, 14.38) Zhang L 2012 6 3 81 20 94 4.59 12.0 80.7 (2.10) Wang S 2.019 16 30 6 30 3.1% 4.57 (1.45, 14.38) Zhang L 2012 6 3 81 20 94 4.5% 12.0 80.14 (1.00) Wang S 2.011 6 30 6 30 3.1% 4.57 (1.45, 14.38) Zhang L 2012 6 3 81 20 94 4.5% 12.0 80.10, 26.603 Subtoal (95% C) 540 592 41.22% 1.38 (1.00, 8.13) Chen WY 2002 54 76 35 50 3.2% 0.36 (0.12, 10.70) Helerogeneity: Tar = 1.08; Che ² = 0.04) 1.1.3 Arricular accpressure therapy VS other thrapy C G at Z. 2010 62 91 33 90 4.0% 3.69 (2.00, 6.83) Chen WY 2002 54 76 35 50 3.2% 0.36 (0.12, 1.07) Deng X.2011 6 30 1. df = 1.2 $\theta < 0.00001$; $P = 80\%$ Test for overall effect Z = 2.0 $\theta = 0.002$; $P = 56\%$. 1.1.4 Arricular accpressure therapy VS Placebo Li D 2014 7 33 7 31 3.1% 0.02 (0.8, 1.33 (0.8), 2.78] U M 2016 8 300 1.5% 0.10 30 (0.3) 3.4% 10.28 (0.3) 3.4% 10.39 (0.3); 2.44 Subtoal (95% C) 30 0 30 Not estimable Total events 0 0 0 Helerogeneity: Tar = 0.38; (-0.6) = 0.02; $P = 56\%$. Test for overall effect Z = 2.72 ($\theta = 0.002$; $P = 56\%$. Test for overall effect Z = 2.72 ($\theta = 0.002$; $P = 56\%$. Test for overall effect Z = 2.72 ($\theta = 0.002$; $P = 56\%$. Test for overall effect Z = 2.72 ($\theta = 0.002$; $P = 72\%$ Helerogeneity: Tar = 0.38; (-0.6) = 10.27; $P = 0\%$. Test for overall effect Z = 2.72 ($\theta = 0.002$; $P = 72\%$ Test for overall effect Z = 2.72 ($\theta = 0.002$; $P = 72\%$ Test for overall effect Z = 2.72 ($\theta = 0.002$; $P = 72\%$. Test for overall effect Z = 2.72 ($\theta = 0.002$; $P = 0.02$							
Chen JJ 2017 21 30 11 30 32% 403 [13,11.84] Geny X 2015 8 30 15 30 32% 403 [13,21,134] Geny X 2015 8 30 15 30 32% 512 150 Geny X 2015 15 20 60 43 100 32% 113 [03,5 650] LU YY 2010 7 35 12 35 22% 0.48 [0.5, 16.14] LU YY 2012 7 6 31 2 30 2.2% 3.38 [0.5, 16.14] Wang SL 2018 15 40 10 40 3.4% 2.00 [0.7, 5.20] Wang SL 2018 15 40 10 40 3.4% 2.00 [0.7, 5.20] Wang SL 2018 15 40 10 43 50 3.4% 0.38 [0.1, 1.60] Wang SL 2018 15 40 10 40 3.4% 2.00 [0.7, 5.20] Wang SL 2018 15 40 10 40 3.4% 2.00 [0.7, 5.20] Wang SL 2018 15 40 10 40 3.4% 2.00 [0.7, 5.20] Wang SL 2018 15 40 10 40 3.4% 2.00 [0.7, 5.20] Wang SL 2018 15 40 10 40 3.4% 2.00 [0.7, 5.20] Wang SL 2018 15 40 10 40 3.4% 2.00 [0.7, 5.20] Wang SL 2018 15 40 10 40 3.4% 2.00 [0.7, 5.20] Wang SL 2018 15 40 10 40 3.4% 2.00 [0.7, 5.20] UW ang SL 2018 15 40 10 40 3.4% 2.00 [0.7, 5.20] UW ang SL 2018 15 30 6 80 3.1% 4.57 [1.45, 14.39] Zhang L 2012 63 81 20 94 3.3% 12.95 [1.30, 3.78] Total events 207 199 Heterogenetity Tar ⁴ = 1.30; Ch ² = 60.61; df = 12 (P = 0.0001); P = 80% Test for overall effect Z = 2.06 (P = 0.04) 1.1.3 Auricular acupressure therapy Cal ZL 2010 62 91 33 90 4.0% 3.69 [2.00, 6.83] Chen WY 2002 54 76 35 50 3.7% 1.05 [0.42, 1.07] Deng X 2015 8 30 15 30 2.2% 0.38 [0.12, 1.07] Deng X 2015 8 30 15 30 2.2% 0.38 [0.12, 1.27] Deng X 2015 8 30 8 8 30 3.1% 10.00, 2.05, 17.82] Li H 2014 41 7 28 50 3 1.50 1.7% 4.26 [0.46, 9.94] Li CX 2021 0 30 2 30 1.1% 0.10 [0.23, 1.44] Wang SL 2016 9 40 10 40 3.3% 0.07 [1.31, 2.44] Subtotal (9% C) 9 40 10 40 3.3% 0.07 [1.31, 2.44] Subtotal (9% C) 9 40 10 40 3.3% 0.07 [1.31, 2.44] Subtotal (9% C) 9 50 10 50 1.7% 4.26 [0.46, 9.95, 4] Total events 0 0 0 Heterogenetity Tar ² = 0.31, Ch ² = 0.22 (P = 0.02); P = 56% Test for overall effect X = 0.35 (P = 0.22); P = 56% Test for overall effect X = 0.35 (P = 0.02); P = 56% Test for overall effect X = 0.35 (P = 0.02); P = 56% Test for overall effect X = 0.35 (P = 0.02); P = 56% Test for overall effect X = 0.35 (P = 0.000); P = 75% Test for overall effe	Heterogeneity: Tau ² =	1.23; Chi ² = 40.6	0, df = 7 (001); l²=	83%	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1.1.2 Auricular acupre	essure therapy	+ other th	erapy V	S other th	агару	
$ \begin{array}{c} \operatorname{Ga}_{0}^{\circ} \operatorname{C2}_{014}^{\circ} 2014 & 30 & 48 & 24 & 48 & 3.7\% & 1.67 [0.74], 3.76 \\ \operatorname{LG}_{014}^{\circ} 2016 & 29 & 50 & 43 & 100 & 3.5\% & 1.58 [0.52], 3.84 \\ \operatorname{LG}_{014}^{\circ} 2016 & 5 & 52 & 44 & 25 & 2.7\% & 1.31 [0.31], 5.60 \\ \operatorname{Lu}_{1} \operatorname{VY}_{2009}^{\circ} 7 & 35 & 12 & 23 & 3.2\% & 2.78 (0.33), 8.10 \\ \operatorname{Wang}_{015}^{\circ} 2.016 & 15 & 30 & 8 & 30 & 3.2\% & 2.75 (0.33), 8.10 \\ \operatorname{Wang}_{015}^{\circ} 2.016 & 15 & 30 & 8 & 30 & 3.2\% & 2.78 (0.33), 8.10 \\ \operatorname{Wang}_{015}^{\circ} 2.018 & 16 & 40 & 10 & 40 & 3.4\% & 2.20 [0.77, 5.20 \\ \operatorname{Wang}_{025}^{\circ} 2.018 & 16 & 40 & 10 & 40 & 3.4\% & 2.38 [1.02], 3.76 \\ \operatorname{Heterogenetic}_{1}^{\circ} \operatorname{Ta}_{01}^{\circ} = 0.01; df = 12 (p^{\circ} - 0.00001); P^{\circ} = 80\% \\ \operatorname{Test}_{015}^{\circ} \operatorname{Ta}_{015}^{\circ} 10 & 52 & 01 & 57 & 199 \\ \operatorname{Heterogenetic}_{1}^{\circ} \operatorname{Ta}_{01}^{\circ} = 0.06; fd = 12 (p^{\circ} - 0.00001); P^{\circ} = 80\% \\ \operatorname{Test}_{015}^{\circ} \operatorname{Cal}_{015}^{\circ} 2.06 (p^{\circ} = 0.02) \\ \operatorname{Li}_{1.13}^{\circ} \operatorname{Auricular}_{015}^{\circ} \operatorname{Cal}_{01}^{\circ} df = 12 (p^{\circ} - 0.00001); P^{\circ} = 80\% \\ \operatorname{Test}_{015}^{\circ} \operatorname{Cal}_{01}^{\circ} df = 20 & 33 & 04 & 40\% & 3.69 [2.00, 6.83] \\ \operatorname{Che}_{015}^{\circ} \operatorname{Cal}_{01}^{\circ} df = 30 & 30 & 40\% & 3.69 [2.00, 6.83] \\ \operatorname{Che}_{015}^{\circ} \operatorname{Cal}_{015}^{\circ} df = 30 & 30 & 3.7\% & 1.69 [0.48, 2.30] \\ \operatorname{Deng}_{015}^{\circ} \operatorname{Cal}_{015}^{\circ} df = 30 & 30 & 3.7\% & 1.69 [0.48, 2.30] \\ \operatorname{Lu}_{015}^{\circ} \operatorname{Cal}_{013}^{\circ} df = 40 & 10 & 40 & 3.3\% & 0.27 [0.3, 2.34] \\ \operatorname{Lu}_{015}^{\circ} \operatorname{Cal}_{010}^{\circ} df = 30 & 30 & 30 & \text{Not estimable} \\ \operatorname{Viang}_{015}^{\circ} \operatorname{Cal}_{015}^{\circ} df = 30 & 30 & 30 & \text{Not estimable} \\ \operatorname{Viang}_{015}^{\circ} \operatorname{Cal}_{015}^{\circ} df = 2.033, df = 9 (p^{\circ} - 0.02); P^{\circ} = 56\% \\ \operatorname{Test}_{000}^{\circ} \operatorname{Cal}_{010}^{\circ} ff = 2.033, df = 9 (p^{\circ} - 0.22); P^{\circ} = 56\% \\ \operatorname{Test}_{000}^{\circ} \operatorname{Cal}_{010}^{\circ} ff = 2.033, df = 10^{\circ} p^{\circ} \operatorname{Cal}_{010}^{\circ} ff = 2.033, df = 40^{\circ} ff = 2.033, df = 8^{\circ} ff = 2.037 \\ \operatorname{Total}_{015}^{\circ} \operatorname{Cal}_{010}^{\circ} ff = 2.033, df = 9 (p^{\circ} - 0.22); P^{\circ} = 56\% \\ \operatorname{Test}_{000}^{\circ} \operatorname{Cal}_{010}^{\circ} ff = 2.033, df = 10^{\circ} ff = 2.026 \times 10^{\circ} ff = 2.026 \times 10^{\circ} ff = 2.026 \times 10^{\circ} ff = 2.026 \times$	Chen JJ 2017	21 30	11		3.2%	4.03 [1.37, 11.84]	
$ \begin{array}{c} \operatorname{Kong} AJ 2016 & 29 & 50 & 43 & 100 & 3.9\% & 1.83 [02, 3.64] \\ \operatorname{Lu} VD 2016 & 5 & 25 & 4 & 25 & 2.7\% & 1.31 [03, 5.60] \\ \operatorname{Lu} VD 2016 & 5 & 25 & 4 & 25 & 2.7\% & 1.31 [03, 5.60] \\ \operatorname{Lu} VD 2012 & 6 & 31 & 2 & 30 & 2.2\% & 3.36 [0.62, 18.19] \\ \operatorname{Wang} SL 2018 & 16 & 40 & 10 & 40 & 3.4\% & 2.00 [0.7, 5.20] \\ \operatorname{Wang} XD 2014 & 42 & 60 & 43 & 50 & 3.4\% & 0.38 [0.14, 1.00] \\ \operatorname{Wang} XD 2014 & 42 & 60 & 43 & 50 & 3.4\% & 0.38 [0.14, 1.00] \\ \operatorname{Wang} XD 2014 & 42 & 60 & 43 & 55 & 3.7\% & 4.57 [14.5, 14.39] \\ \operatorname{Zhang} L 2012 & 63 & 81 & 20 & 94 & 3.8\% & 1.295 [5.30, 26.60] \\ \operatorname{Subtcal} (95% CI) & 540 & 552 & 41.2\% & 1.98 [1.03, 3.78] \\ \operatorname{Test for overall effect Z = 0.04 / 1 \\ \hline 1.1.3 \operatorname{Auricular acupressure therapy VS other therapy \\ \operatorname{Cal} ZL 2010 & 62 & 91 & 33 & 90 & 4.0\% & 3.69 [2.00, 6.83] \\ \operatorname{Chen} WY 2005 & 44 & 76 & 35 & 50 & 3.7\% & 1.00 [0.06, 1.76] \\ \operatorname{Li} HB 2014 & 7 & 33 & 7 & 31 & 3.1\% & 0.92 [0.28, 3.02] \\ \operatorname{Li} HB 2014 & 7 & 33 & 7 & 13 & 3.1\% & 0.92 [0.28, 3.02] \\ \operatorname{Li} HB 2014 & 7 & 33 & 7 & 13 & 3.1\% & 0.92 [0.28, 3.02] \\ \operatorname{Li} HB 2014 & 7 & 33 & 28 & 0.38 [0.13, 1.00] [0.3, 2.314] \\ \operatorname{Wang} SL 2016 & 8 & 30 & 8 & 30 & 3.1\% & 1.00 [0.32, 3.14] \\ \operatorname{Wang} SL 2016 & 8 & 30 & 8 & 30 & 3.1\% & 1.00 [0.32, 3.14] \\ \operatorname{Wang} SL 2016 & 8 & 30 & 2 & 30.3 \\ \operatorname{Total events} & 197 & 140 \\ \operatorname{Heterogeneity}. Tau' = 0.36, Ch'' = 20.33, d = 9 (P = 0.02); P = 56\% \\ \operatorname{Test for overall effect Z = 0.59 \\ \hline 1.1.4 \operatorname{Auricular acupressure therapy VS Placebo \\ \operatorname{Lu} CX 2021 & 0 & 30 & 0 & 30 \\ \operatorname{Vielt} B2017 & 31 & 48 & 19 & 46 & 3.7\% & 2.78 [1.22, 6.37] \\ \operatorname{Total events} & 35 & 2.0 \\ \operatorname{Heterogeneity}. Tau' = 0.00; Ch'' = 0.123, d' = 9(P = 0.02); P = 56\% \\ \operatorname{Test for overall effect Z = 2.12 (P = 0.007) \\ \end{array}$	Deng X 2015	8 30	15	30	3.2%	0.36 [0.12, 1.07]	
Li S 2013 9 9 50 1 50 1.2 M/S 10.76 (1.3, 88.47) Li V 72 016 5 25 4 25 27% 1.31 (0.31, 5.60) Liu V 72 009 7 35 12 35 3.2% 0.48 [0.16, 1.42] Li V 72 012 6 31 2 30 2.3% 3.26 [0.25, 18.19] Wang SL 2016 15 30 8 30 3.2% 2.75 [0.33, 8.10] Wang SL 2018 16 40 10 40 3.4% 2.00 [0.77, 5.20] Wang SV 2014 42 60 43 50 3.3% 4.57 [1.45, 1.39] Li V 2020 16 30 6 30 3.1% 4.57 [1.45, 1.39] Zhang L 2012 63 81 20 94 3.3% 12.95 [3.03, 26.60] Subtotal (95% Ct) 540 592 41.2% 1.98 [1.03, 3.76] Total events 207 199 Heterogeneity. Tau ² = 0.16; If = 12 ($P < 0.00001$); $P = 80\%$ Test for overall effect $Z = 2.06 (P = 0.04)$ 1.1.3 Anticular acupressure therapy VS other therapy Cai ZL 2010 62 91 33 90 4.0% 3.66 [2.00, 6.83] Chen VW 2002 54 76 35 50 3.7% 1.06 [1.04, 2.20] Deng X 2015 8 30 15 30 4.0% 3.66 [2.00, 6.83] Chen VW 2002 54 76 35 50 3.2% 0.32 [0.26, 0.05, 1.26] Li He 2014 1 15 1 50 2.2% 0.32 [0.26, 3.26] Li He 2013 4 50 1.7% 4.28 [1.04, 0.26] [2.25, 0.21] Li CX 2021 0 30 2 230 1.1% 0.02 [0.28, 3.26] UX 2021 0 30 2 30 1.1% 0.02 [0.28, 3.24] Wang SL 2016 8 40 10 40 3.3% 0.02 [0.28, 3.24] Wang SL 2016 8 40 10 40 3.3% 0.02 [0.23, 2.314] Wang SL 2016 9 40 10 40 3.3% 0.02 [0.23, 2.314] Wang SL 2016 9 40 10 40 3.3% 0.02 [0.23, 2.314] Wang SL 2016 9 40 10 40 3.3% 0.02 [0.23, 2.314] Wang SL 2016 9 40 10 40 3.3% 0.02 [0.23, 2.314] Wang SL 2016 9 4.01 0.40 3.3% 0.01 [0.32, 2.314] Wang SL 2016 9 4.00 0 0 Heterogeneity. Tau ² = 0.30; Ch ² = 0.020; P = 56% Test for overall effect Z = 2.37 (P = 0.020; P = 56% Test for overall effect Z = 2.37 (P = 0.020) Total events 35 20 Heterogeneity. Tau ² = 0.00; Ch ² = 0.020; P = 56% Test for overall effect Z = 2.17 (P = 0.0004) Total events 83 52 Heterogeneity. Tau ² = 0.00; Ch ² = 0.0004) Total events 83 52 Heterogeneity. Tau ² = 0.00; Ch ² = 0.0001; P = 75% Test for overall effect Z = 2.17 (P = 0.0004) Total events 83 520 Heterogeneity. Tau ² = 0.000; Heterogeneity. Tau ² = 0.0004) Total events 83 520 Heterogeneity. Tau ² = 0.00004) Total events	Gao GY 2014	30 48	24	48	3.7%	1.67 [0.74, 3.76]	
Li S 2013 9 9 50 1 50 1.2 M/S 10.76 (1.3, 88.47) Li V 72 016 5 25 4 25 27% 1.31 (0.31, 5.60) Liu V 72 009 7 35 12 35 3.2% 0.48 [0.16, 1.42] Li V 72 012 6 31 2 30 2.3% 3.26 [0.25, 18.19] Wang SL 2016 15 30 8 30 3.2% 2.75 [0.33, 8.10] Wang SL 2018 16 40 10 40 3.4% 2.00 [0.77, 5.20] Wang SV 2014 42 60 43 50 3.3% 4.57 [1.45, 1.39] Li V 2020 16 30 6 30 3.1% 4.57 [1.45, 1.39] Zhang L 2012 63 81 20 94 3.3% 12.95 [3.03, 26.60] Subtotal (95% Ct) 540 592 41.2% 1.98 [1.03, 3.76] Total events 207 199 Heterogeneity. Tau ² = 0.16; If = 12 ($P < 0.00001$); $P = 80\%$ Test for overall effect $Z = 2.06 (P = 0.04)$ 1.1.3 Anticular acupressure therapy VS other therapy Cai ZL 2010 62 91 33 90 4.0% 3.66 [2.00, 6.83] Chen VW 2002 54 76 35 50 3.7% 1.06 [1.04, 2.20] Deng X 2015 8 30 15 30 4.0% 3.66 [2.00, 6.83] Chen VW 2002 54 76 35 50 3.2% 0.32 [0.26, 0.05, 1.26] Li He 2014 1 15 1 50 2.2% 0.32 [0.26, 3.26] Li He 2013 4 50 1.7% 4.28 [1.04, 0.26] [2.25, 0.21] Li CX 2021 0 30 2 230 1.1% 0.02 [0.28, 3.26] UX 2021 0 30 2 30 1.1% 0.02 [0.28, 3.24] Wang SL 2016 8 40 10 40 3.3% 0.02 [0.28, 3.24] Wang SL 2016 8 40 10 40 3.3% 0.02 [0.23, 2.314] Wang SL 2016 9 40 10 40 3.3% 0.02 [0.23, 2.314] Wang SL 2016 9 40 10 40 3.3% 0.02 [0.23, 2.314] Wang SL 2016 9 40 10 40 3.3% 0.02 [0.23, 2.314] Wang SL 2016 9 40 10 40 3.3% 0.02 [0.23, 2.314] Wang SL 2016 9 4.01 0.40 3.3% 0.01 [0.32, 2.314] Wang SL 2016 9 4.00 0 0 Heterogeneity. Tau ² = 0.30; Ch ² = 0.020; P = 56% Test for overall effect Z = 2.37 (P = 0.020; P = 56% Test for overall effect Z = 2.37 (P = 0.020) Total events 35 20 Heterogeneity. Tau ² = 0.00; Ch ² = 0.020; P = 56% Test for overall effect Z = 2.17 (P = 0.0004) Total events 83 52 Heterogeneity. Tau ² = 0.00; Ch ² = 0.0004) Total events 83 52 Heterogeneity. Tau ² = 0.00; Ch ² = 0.0001; P = 75% Test for overall effect Z = 2.17 (P = 0.0004) Total events 83 520 Heterogeneity. Tau ² = 0.000; Heterogeneity. Tau ² = 0.0004) Total events 83 520 Heterogeneity. Tau ² = 0.00004) Total events	Kong AJ 2016	29 50	43	100	3.9%	1.83 [0.92, 3.64]	
Lu YY 2009 7 35 12 35 32% 0.46 [0.16, 1.42] Wang SL 2016 15 30 8 30 32% 2.75 [0.33, 81.0] Wang SL 2016 15 40 10 40 3.4% 2.00 [0.7, 5.20] Wang SL 2016 15 40 10 40 3.4% 0.20 [0.7, 5.20] Wang SL 2012 16 3 81 20 94 3.3% 12.95 [6.30, 26.0] Subtoral (5% CI) 540 552 41.2% 1.98 [1.03, 3.78] Total events 2.76 199 Heterogenely. Turi = 108, Ch ² = 0.61, df = 12 (P < 0.00001); P = 80% Test for overall effect Z = 2.06 (P = 0.04) 1.1.3 Auricular acupressure therapy VS other therapy Cal ZL 2010 6 9 30 15 30 2.2% 1.08 [0.46, 39.64] Li He 2014 1 7 33 7 31 3.7% 0.92 [0.26, 39.24] Li S 2013 4 50 15 30 2.2% 0.38 [0.12, 1.07] Deng X 2016 8 30 8 30 3.1% 1.00 [0.06, 17.62] Li He 2014 1 7 33 7 31 3.7% 0.92 [0.2, 39.24] Li S 2013 4 45 10 0 1.7% 4.26 [0.46, 39.54] Wang SL 2016 8 30 8 30 3.1% 1.00 [0.02, 3.14] Wang SL 2018 8 40 10 3.3% 0.47 [0.10, 2.44] Subtotal (5% CI) 465 146 2.2.3% 1.16 [0.64, 39.54] Wang SL 2018 9 445 10 40 3.3% 0.87 [0.31, 2.44] Subtotal (5% CI) 173 4 45 19 46 3.08 (N 10 [0.2, 3.14] Wang SL 2018 9 44 19 (P = 0.02); P = 56% Test for overall effect Z = -3.03, Ch ² = 0.03; df = 9 (P = 0.02); P = 56% Test for overall effect Z = -2.72 (P = 0.007) Total events 0 0 0 Heterogenely; Tau ² = 0.03; Ch ² = 0.12, df = 1 (P = 0.72); P = 0% Test for overall effect Z = -3.17, df = 3.2 (P < 0.00001); P = 75% Test for overall effect Z = -3.17, df = 3.2 (P < 0.00001); P = 75% Test for overall effect Z = -3.17, df = 3.2 (P < 0.00001); P = 75% Test for overall effect Z = -3.17, df = -3.2 (P < 0.00001); P = 75% Test for overall effect Z = -3.17, df = -3.2 (P < 0.00001); P = 75% Test for overall effect Z = -3.17, df = -3.2 (P < 0.00001); P = 75% Test for overall effect Z = -3.01; Ch ² = -1.32, df = -3.0001); P = 75% Test for overall effect Z = -3.01; Ch ² = -1.32, df = -3.0001); P = 75% Test for overall effect Z = -3.01; Ch ² = -1.32, df = -3.0001); P = 75% Test for overall effect Z = -3.01; Ch ² = -1.32, df = -3.0001); P = 75% Test for overall effect Z = -3.01; Ch ² = -1.32, df = -3.0001);							
Lu YY 2009 7 35 12 35 32% 0.46 [0.16, 1.42] Wang SL 2016 15 30 8 30 32% 2.75 [0.33, 81.0] Wang SL 2016 15 40 10 40 3.4% 2.00 [0.7, 5.20] Wang SL 2016 15 40 10 40 3.4% 0.20 [0.7, 5.20] Wang SL 2012 16 3 81 20 94 3.3% 12.95 [6.30, 26.0] Subtoral (5% CI) 540 552 41.2% 1.98 [1.03, 3.78] Total events 2.76 199 Heterogenely. Turi = 108, Ch ² = 0.61, df = 12 (P < 0.00001); P = 80% Test for overall effect Z = 2.06 (P = 0.04) 1.1.3 Auricular acupressure therapy VS other therapy Cal ZL 2010 6 9 30 15 30 2.2% 1.08 [0.46, 39.64] Li He 2014 1 7 33 7 31 3.7% 0.92 [0.26, 39.24] Li S 2013 4 50 15 30 2.2% 0.38 [0.12, 1.07] Deng X 2016 8 30 8 30 3.1% 1.00 [0.06, 17.62] Li He 2014 1 7 33 7 31 3.7% 0.92 [0.2, 39.24] Li S 2013 4 45 10 0 1.7% 4.26 [0.46, 39.54] Wang SL 2016 8 30 8 30 3.1% 1.00 [0.02, 3.14] Wang SL 2018 8 40 10 3.3% 0.47 [0.10, 2.44] Subtotal (5% CI) 465 146 2.2.3% 1.16 [0.64, 39.54] Wang SL 2018 9 445 10 40 3.3% 0.87 [0.31, 2.44] Subtotal (5% CI) 173 4 45 19 46 3.08 (N 10 [0.2, 3.14] Wang SL 2018 9 44 19 (P = 0.02); P = 56% Test for overall effect Z = -3.03, Ch ² = 0.03; df = 9 (P = 0.02); P = 56% Test for overall effect Z = -2.72 (P = 0.007) Total events 0 0 0 Heterogenely; Tau ² = 0.03; Ch ² = 0.12, df = 1 (P = 0.72); P = 0% Test for overall effect Z = -3.17, df = 3.2 (P < 0.00001); P = 75% Test for overall effect Z = -3.17, df = 3.2 (P < 0.00001); P = 75% Test for overall effect Z = -3.17, df = 3.2 (P < 0.00001); P = 75% Test for overall effect Z = -3.17, df = -3.2 (P < 0.00001); P = 75% Test for overall effect Z = -3.17, df = -3.2 (P < 0.00001); P = 75% Test for overall effect Z = -3.17, df = -3.2 (P < 0.00001); P = 75% Test for overall effect Z = -3.01; Ch ² = -1.32, df = -3.0001); P = 75% Test for overall effect Z = -3.01; Ch ² = -1.32, df = -3.0001); P = 75% Test for overall effect Z = -3.01; Ch ² = -1.32, df = -3.0001); P = 75% Test for overall effect Z = -3.01; Ch ² = -1.32, df = -3.0001); P = 75% Test for overall effect Z = -3.01; Ch ² = -1.32, df = -3.0001);		5 25	4				
Lu YY 2012 6 31 2 30 2.2% 3.26 [0.62, 18.19] Wang SL 2018 15 40 10 40 3.4% 2.07 [0.07, 5.20] Wang SL 2018 15 40 10 40 3.4% 2.00 [0.7, 5.20] Wang SL 2018 15 30 6 30 3.1% 4.57 [1.45, 14.39] Zhang L.2012 63 81 20 94 3.3% 1.256 [5.30, 26.60] Subtoal (95% C) 540 592 41.2% 1.26 [5.30, 26.60] Total events 267 199 Heterogenely: Tau ² = 1.06; Ch ² = 60.61, df = 12 (P < 0.00001); P = 60% Test for overall effect Z = 2.06 (P = 0.04) 1.1.3 Auricular acupressure therapy VS other therapy Cai ZL 2010 62 91 33 90 4.0% 3.69 [2.00, 6.83] Chen WY 2002 54 76 35 60 3.2% 1.08 [1.04, 2.30] Deng X 2015 8 30 15 0 3.2% 0.38 [0.12, 1.07] Dong TT 2014 1 15 1 15 1.2% 1.00 [0.06, 17.62] Li HS 2014 77 33 7 31 3.1% 0.92 [0.28, 30.2] Lu CX 2021 0 30 2 30 1.1% 0.91 [0.01, 4.06] Wang SL 2018 9 40 10 40 3.3% 0.87 [0.31, 2.44] Subtoal (95% C) 465 416 28.3% 0.87 [0.31, 2.44] Subtoal (95% C) 30 0 30 Not estimable Total events 197 140 Heterogenely: Tau ² = 0.38; Ch ² = 0.59) 1.1.4 Auricular acupressure therapy VS Non-intervention Li S 2013 4 50 1 50 1.7% 4.26 [0.46, 39.54] Lu CX 2021 0 30 0 30 Not estimable Total events 197 140 Heterogenely: Tau ² = 0.38; Ch ² = 0.59) 1.1.4 Auricular acupressure therapy VS Non-intervention Li S 2013 4 50 1 50 1.7% 4.26 [0.46, 39.54] Verial events 0 0 0 Heterogenely: Tau ² = 0.31; Ch ² = 1.02, df = 1.0 (P = 0.02); P = 56% Test for overall effect Z = 0.12, df = 1 (P = 0.72); P = 0% Test for overall effect Z = 2.12, df = 1.00; Li = 0.12, df = 1.0 (P = 0.00); D = 0.00; Li = 5.03; Li = 5.03; Heterogenely: Tau ² = 0.31; Ch ² = 1.05; (f = 0.000; D = 0.00; Li = 0.50; Li = 0.	Liu YY 2009	7 35	12	35	3.2%	0.48 [0.16, 1.42]	
Wang SL 2016 15 30 8 30 3.2% 2.7% [0.93, 8.10] Wang SV 2014 42 60 43 50 3.4% 0.3% [0.14, 1.00] Xie HY 2020 16 30 6 30 3.1% 4.57 [1.45, 1.39] Zhang L 2012 63 81 20 94 3.6% 12.05 [6.30, 26.60] Subtoal [9% CI) 540 552 41.2% 1.39 [1.03, 3.76] Total events 267 199 Heterogeneity, Tau ⁺ = 1.08, Ch ⁺ = 50.61, df = 12 ($P = 0.0000$); $P = 80\%$ Test for overall effect Z = 2.0 fe = 0.04) Li Z 2010 62 91 33 90 4.0% 3.69 [2.00, 6.83] Chen WY 2002 54 76 35 50 3.7% 1.05 [0.48, 2.30] Deng X 2015 8 30 15 30 3.2% 0.38 [0.12, 1.07] Dong TI 2014 1 15 11 15 1.12% 1.00 [0.06, 17.62] Li H8 2013 4 50 1 15 40.13% 0.027 [0.28, 30.64] U X 2004 44 77 28 50 3.3% 1.33 [0.63, 2.79] Lu CX 2021 0 30 2 20 1.1% 0.19 [0.01, 3.6, 5.4] U AY 3004 44 77 28 50 3.3% 0.87 [0.31, 2.44] Subtoal [9% CI) 465 10 40 3.3% 0.87 [0.31, 2.44] Subtoal [9% CI) 465 10 40 3.3% 0.87 [0.31, 2.44] Subtoal [9% CI) 465 10 40 3.3% 0.87 [0.31, 2.44] Subtoal [9% CI) 465 10 40 3.3% 0.87 [0.31, 2.44] Subtoal [9% CI) 30 0 0 0 Heterogeneity, Tau ⁺ = 0.33, (fh ⁺ = 20.33), (fh ⁺ = 20.33), (fh ⁺ = 20.53); (hh ⁺ = 20.33), (fh ⁺ = 20.53); (hh ⁺ = 20.53)	Lu YY 2012					3.36 [0.62, 18.19]	
Wang XX 2014 42 80 43 50 3.4% 0.38 (0.14, 10.0) Wang XX 2016 83 81 20 94 3.8% 12.95 (6.30, 26.60) Subtotal (95% C1) 540 552 41.2% 1.98 [1.03, 3.78] Total events 267 199 Heterogeneity. Tau ⁺ = 1.08; Ch ⁺ = 80.61, df = 12 (P < 0.0001); P = 80% Test for overal fielder. $Z = 2.06 (P = 0.04)$ 1.1.3 Auricular acupressure therapy VS other therapy Cal Z. 2010 62 91 33 90 4.0% 3.69 [2.00, 6.83] Chen WY 2002 54 76 35 50 3.7% 1.05 [0.48, 2.30] Deng X 2015 8 30 15 30 3.2% 0.30 (0.17, 10.0) Dong TZ 2014 1 15 11 51 2.1.2% 1.00 [0.06, 17.62] Li H2 2014 7 33 7 31 3.1% 0.92 (0.28, 302] Li S 2013 4 50 1 50 1.7% 4.26 [0.46, 30.54] Li X 2004 44 70 28 50 3.3% 1.33 [0.63, 27.9] Li X 2016 8 30 8 30 3.3% 1.00 [3.2, 3.4] Wang SL 2016 8 30 8 30 3.3% 1.010 [0.32, 3.14] Wang SL 2016 8 30 8 30 3.3% 1.16 [0.68, 1.98] Total events 197 140 Heterogeneity. Tau ² = 0.36, (Ch ⁺ = 20.33, df = 9 (P = 0.02); P = 56% Test for overal effect. Z = 0.53 (P = 1.59) 1.1.4 Auricular acupressure therapy VS Non-intervention Li S 2013 4 50 1 50 1.7% 4.26 [0.46, 39.54] Wel B 2017 31 46 19 (P = 0.02); P = 56% Test for overal effect. Z = 0.53 (P = 1.59) 1.1.4 Auricular acupressure therapy VS Non-intervention Li S 2013 4 50 1 50 1.7% 4.28 [0.46, 39.54] Wel B 2017 31 48 19 48 3.7% 2.78 [1.2, 2.3, 37] Total events 3 5 20 Heterogeneity. Tau ² = 0.00; Ch ⁺ = -0.12, ff = 0.72); P = 0% Test for overal effect. Z = 2.72 (P = 0.007) Total [95% C1] 1625 1567 100.0% 1.95 [1.34, 2.83] Total events 83 52 Total events 35 20 Heterogeneity. Tau ² = 0.01; Ch ⁺ = 10.275, ff = 32 (P < 0.0001); P = 75% Total events 83 527 Heterogeneity. Tau ² = 0.31; Ch ⁺ = 130.57, df = 32 (P < 0.0001); P = 75% Total events 83 527 Heterogeneity. Tau ² = 0.31; Ch ⁺ = 1.00.75, df = 32 (P < 0.0001); P = 75% Total events 831 527 Heterogeneity. Tau ² = 0.31; Ch ⁺ = 1.00.75, df = 32 (P < 0.0001); P = 75% Total events 831 527 Heterogeneity. Tau ² = 0.31; Ch ⁺ = 1.00.75, df = 32 (P < 0.0001); P = 75% Total events 831 527 Heterogeneity. Tau ² = 0.31	Wang SL 2016	15 30	8	30	3.2%	2.75 [0.93, 8.10]	
Wang XX 2014 42 80 43 50 3.4% 0.38 (0.14, 10.0) Wang XX 2016 83 81 20 94 3.8% 12.95 (6.30, 26.60) Subtotal (95% C1) 540 552 41.2% 1.98 [1.03, 3.78] Total events 267 199 Heterogeneity. Tau ⁺ = 1.08; Ch ⁺ = 80.61, df = 12 (P < 0.0001); P = 80% Test for overal fielder. $Z = 2.06 (P = 0.04)$ 1.1.3 Auricular acupressure therapy VS other therapy Cal Z. 2010 62 91 33 90 4.0% 3.69 [2.00, 6.83] Chen WY 2002 54 76 35 50 3.7% 1.05 [0.48, 2.30] Deng X 2015 8 30 15 30 3.2% 0.30 (0.17, 10.0) Dong TZ 2014 1 15 11 51 2.1.2% 1.00 [0.06, 17.62] Li H2 2014 7 33 7 31 3.1% 0.92 (0.28, 302] Li S 2013 4 50 1 50 1.7% 4.26 [0.46, 30.54] Li X 2004 44 70 28 50 3.3% 1.33 [0.63, 27.9] Li X 2016 8 30 8 30 3.3% 1.00 [3.2, 3.4] Wang SL 2016 8 30 8 30 3.3% 1.010 [0.32, 3.14] Wang SL 2016 8 30 8 30 3.3% 1.16 [0.68, 1.98] Total events 197 140 Heterogeneity. Tau ² = 0.36, (Ch ⁺ = 20.33, df = 9 (P = 0.02); P = 56% Test for overal effect. Z = 0.53 (P = 1.59) 1.1.4 Auricular acupressure therapy VS Non-intervention Li S 2013 4 50 1 50 1.7% 4.26 [0.46, 39.54] Wel B 2017 31 46 19 (P = 0.02); P = 56% Test for overal effect. Z = 0.53 (P = 1.59) 1.1.4 Auricular acupressure therapy VS Non-intervention Li S 2013 4 50 1 50 1.7% 4.28 [0.46, 39.54] Wel B 2017 31 48 19 48 3.7% 2.78 [1.2, 2.3, 37] Total events 3 5 20 Heterogeneity. Tau ² = 0.00; Ch ⁺ = -0.12, ff = 0.72); P = 0% Test for overal effect. Z = 2.72 (P = 0.007) Total [95% C1] 1625 1567 100.0% 1.95 [1.34, 2.83] Total events 83 52 Total events 35 20 Heterogeneity. Tau ² = 0.01; Ch ⁺ = 10.275, ff = 32 (P < 0.0001); P = 75% Total events 83 527 Heterogeneity. Tau ² = 0.31; Ch ⁺ = 130.57, df = 32 (P < 0.0001); P = 75% Total events 83 527 Heterogeneity. Tau ² = 0.31; Ch ⁺ = 1.00.75, df = 32 (P < 0.0001); P = 75% Total events 831 527 Heterogeneity. Tau ² = 0.31; Ch ⁺ = 1.00.75, df = 32 (P < 0.0001); P = 75% Total events 831 527 Heterogeneity. Tau ² = 0.31; Ch ⁺ = 1.00.75, df = 32 (P < 0.0001); P = 75% Total events 831 527 Heterogeneity. Tau ² = 0.31		16 40	10	40	3.4%	2.00 [0.77, 5.20]	+
$ \frac{2}{142} \frac{1}{142} 1$	Wang XX 2014	42 60	43	50	3.4%	0.38 [0.14, 1.00]	
Subtrate (95% CI) 540 592 41.2% $1.96 [1.03, 3.78]$ Total events 27 199 Heterogeneity: Tau ² = 1.08; Chi ² = 60.61, df = 12 (P < 0.0001); P = 80% Test for overall effect Z = 2.07 (P = 0.04) 1.1.3 Auricular acupressure therapy VS other therapy Cal ZL 2010 62 91 33 90 4.0% 3.69 [2.00, 6.83] Chen WY 2002 54 76 35 50 3.7% 1.05 [0.48, 2.30] Deng X 2015 8 30 15 30 3.2% 0.38 [0.12, 1.07] Dong T 2014 1 15 1 15 1.2% 1.00 [0.06, 17.63] Li H2 2014 7 33 7 31 31.31% 0.92 [0.28, 3.02] Li H2 2014 7 33 7 31 31.31% 0.92 [0.28, 3.02] Li X 2004 44 70 28 50 3.8% 1.33 [0.83, 2.79] Lu CX 2021 0 30 2 30 1.1% 0.19 [0.01, 4.06] Wang 8L 2018 8 30 8 30 3.1% 1.00 [0.32, 3.14] Wang 8L 2018 8 40 10 40 3.33; M 0.87 [0.81, 2.44] Subtotal (95% CI) 465 416 28.3% 1.16 [0.88, 1.98] Total events 197 140 Heterogeneity: Tau ² = 0.38; Chi ² = 2.03; df = 9 (P = 0.02); P = 56% Test for overall effect Z = 0.53 (P = 0.59) 1.1.4 Auricular acupressure therapy VS Non-intervention Li S 2013 4 50 1 50 1.7% 4.26 [0.46, 39.54] Wei 8 2017 31 48 19 48 3.7% 2.78 [1.32, 6.37] Total events 0 0 0 Heterogeneity: Not applicable Test for overall effect Z = 0.00; Chi ² = 0.12; df = 1 (P = 0.72); P = 0% Test for overall effect Z = 2.72 (P = 0.0007); P = 75% Total events 631 527 Heterogeneity: Tau ² = 0.81; Chi ² = 1.057, df = 32 (P = 0.0007); P = 75% Total events 631 527 Heterogeneity: Tau ² = 0.81; Chi ² = 1.057, df = 2.02 P 0.00007); P = 75% Total events 16fect X = 0.81; Chi ² = 1.057, df = 2.02 P 0.00007); P = 75% Total events 16fect X = 0.81; Chi ² = 1.0007 Total events 16fect X = 0.81; Chi ² = 1.057, df = 2.02 P 0.00007); P = 75% Test for overall effect Z = 0.81; Chi ² = 0.0007 Heterogeneity: Tau ² = 0.81; Chi ² = 1.057, df = 2.02 P 0.00007); P = 75% Test for overall effect Z = 0.81; Chi ² = 0.0007 Heterogeneity: Tau ² = 0.81; Chi ² = 1.057; df = 2.00007); P = 75%	Xie HY 2020	16 30	6	30	3.1%	4.57 [1.45, 14.39]	
Total events 267 199 Heterogeneity: Tau ² = 1.08; Ch ² = 0.040010; P = 80% Test for overall effect. Z = 2.06 (P = 0.04) 1.1.3 Auricular acupressure therapy VS other therapy Cal Z. 2010 62 91 33 90 4.0% 3.69 [2.00, 6.83] Chen WY 2002 54 76 35 50 3.7% 1.05 [0.48, 2.30] Deng X.2015 8 30 15 30 3.2% 0.36 [0.12, 1.07] Dong TT 2014 1 15 115 1.25% 1.100 [0.06, 17.82] Li He 2014 7 33 7 31 3.3% 0.92 [0.28, 302] Li S 2013 4 50 1 50 1.7% 4.26 [0.46, 39.54] Li X.2021 0 30 2 30 1.1% 0.19 [0.01, 4.06] Wang SL 2016 8 30 8 30 3.1% 1.00 1.32, 3.14] Wang SL 2016 8 30 8 30 3.3% 0.87 [0.31, 2.44] Subtotal (95% C) 445 416 28.3% 1.16 [0.68, 1.98] Total events 0 0 Heterogeneity: Tau ² = 0.33; df = 9 (P = 0.22); P = 56% Test for overall effect. Z = 0.53 (P = 0.59) Total events 0 0 Heterogeneity: Tau ² = 0.03; df = 9 (P = 0.72); P = 0% Test for overall effect. Z = 0.57 (P = 0.020); P = 75% Total events 63 5 20 Heterogeneity: Tau ² = 0.03; Ch ² = 1.02, ff = 1.67 (1.34, 2.83] Total events 631 527 Heterogeneity: Tau ² = 0.81; Ch ² = 1.03.7, df = 22 (P = 0.0001); P = 75% Total (95% CI) 1625 1587 100.0% 1.95 [1.34, 2.83] Total events 631 527 Heterogeneity: Tau ² = 0.81; Ch ² = 1.03.7, df = 22 (P = 0.0001); P = 75% Total (95% CI) 1625 1587 100.0% 1.95 [1.34, 2.83] Total events 631 527 Heterogeneity: Tau ² = 0.81; Ch ² = 1.03.7, df = 22 (P = 0.0001); P = 75% Total events 16fect Z = 0.72; P = 0.0001						12.95 [6.30, 26.60]	
Heterogeneity: Tay"= 1.08; Chi"= 6.061; df = 12 ($P < 0.0001$); P = 80% Test for overall effect Z = 2.06 ($P = 0.04$) 1.1.3 Auricular acupressure therapy VS other therapy Cal Z, 2010 6.2 91 33 90 4.0% 3.69 [2.0, 6.83] Chen WY 2002 54 76 35 50 3.7% 1.05 [0.48, 2.30] Deng X 2015 8 30 15 30 3.2% 0.38 (0.12, 1.07] Dong TT 2014 1 15 1 15 1.2% 1.00 [0.06, 17.80] Li H8 2014 7 33 7 31 3.1% 0.92 [0.28, 3.02] Li H8 2014 7 0 32 6 50 3.8% 1.33 [0.63, 2.79] Li ZY 2004 44 70 28 50 3.8% 1.33 [0.63, 2.79] Li ZY 2014 0 30 2 30 1.1% 0.19 [0.01, 4.06] Wang SL 2016 8 30 8 30 3.1% 1.00 [0.32, 3.14] Wang SL 2018 8 40 10 40 3.3% 0.87 [0.31, 2.44] Subtotal (95% CI) 445 416 28.3% 1.16 [0.68, 1.98] Total events 197 140 Heterogeneity: Tay"= 0.38; Chi"= 2.03, 3; df = 9 (P = 0.02); P = 56% Test for overall effect Z = 0.53 (P = 0.63) Total events 0 0 0 Heterogeneity: Not applicable Total events 35 20 Heterogeneity: Tay"= 0.00; Chi"= 0.12, df = 1 ($P = 0.72$); P = 0% Test for overall effect Z = 2.72 (P = 0.0007); P = 75% Test for overall effect Z = 0.51 (5P" = 0.12, ff = 2 (P = 0.0007); P = 75% Total events 631 527 Heterogeneity: Tay"= 0.81; Chi"= 1.03.57, df = 32 (P = 0.0007); P = 75% Test for overall effect Z = 0.57 (P = 0.0007); P = 75% Total events 631 527 Heterogeneity: Tay"= 0.81; Chi"= 1.03.57, df = 32 (P = 0.0007); P = 75% Test for overall effect Z = 0.57 (P = 0.0007); P = 75% Total events 631 527 Heterogeneity: Tay"= 0.81; Chi"= 1.03.57, df = 32 (P = 0.0007); P = 75% Test for overall effect Z = 0.57 (P = 0.0007); P = 75% Test for overall effect Z = 0.57 (P = 0.0007); P = 75% Total events 631 527 Heterogeneity: Tay"= 0.81; Chi"= 1.03.57, df = 2.02 (P = 0.0007); P = 75% Total events 631 527 Heterogeneity: Tay"= 0.81; Chi"= 1.03.57, df = 2.02 (P = 0.0007); P = 75% Test for overall effect Z = 0.57 (P = 0.0007); P = 75%	Subtotal (95% CI)	540		592	41.2%	1.98 [1.03, 3.78]	◆
Test for overall effect: $Z = 2.06$ ($P = 0.04$) 1.1.3 Auricular acupressure therapy VS ofter therapy Cai ZL 2010 62 91 33 90 4.0% 3.68 [2.00, 6.83] Chen WY 2002 54 76 35 50 3.7% 1.05 [0.48, 2.30] Deng X2015 8 30 15 30 3.2% 0.36 [0.12, 1.07] Dong TZ 2014 1 15 11 51.1.2% 1.00 [0.06, 17.62] Li H 2014 7 33 7 31 3.1% 0.92 [0.28, 3.02] Li B 2013 4 50 1 50 1.7% 4.26 [0.46, 39.54] Li ZY 2004 444 70 28 50 3.8% 1.33 [0.63, 2.79] Li CX 2021 0 30 2 30 1.1% 0.19 [0.01, 4.06] Wang SL 2016 8 30 8 30 3.1% 1.00 [0.32, 3.14] Wang SL 2018 9 40 10 40 3.3% 0.87 (0.01, 4.06] Wang SL 2018 9 40 10 40 3.3% 0.87 (0.01, 4.06] Total events 197 140 Heterogeneity: Tau ² = 0.36; Ch ² = 20.33; df = 9 (P = 0.02); P = 56% Test for overall effect: Z = 0.53 (P = 0.59) 1.1.4 Auricular acupressure therapy VS Non-intervention Li S 2013 4 50 1 50 1.7% 4.26 [0.46, 39.54] U CX 2021 0 30 30 Not estimable Total events 0 0 Heterogeneity: Not applicable Test for overall effect: Z = 0.00; Ch ² = 0.32; J = 0.72; P = 0% Test for overall effect: Z = 0.00; Ch ² = 0.12; df = 1 (P = 0.72); P = 0% Test for overall effect: Z = 0.21; df = 1 (P = 0.72); P = 0% Test for overall effect: Z = 0.30; Ch ² = 0.007) Total events 831 527 Heterogeneity: Tau ² = 0.00; Ch ² = 0.1257, df = 32 (P < 0.00001); P = 75% Total events 16ffect: Z = 0.51; Ch ² = 1.0357, df = 32 (P < 0.00001); P = 75% Total events 16ffect: Z = 0.51; Ch ² = 1.007) Total events 16ffect: Z = 0.51; Ch ² = 0.00001							
Cai Z. 2010 62 91 33 90 4.0% $3.69 [2.00, 6.8]$ Chen WY 2002 54 76 35 50 3.7% $1.05 [0.48, 2.30]$ Deng X 2015 8 30 15 30 3.2% $0.36 [0.12, 1.07]$ Dong T7 2014 1 15 1 15 1.2% $1.00 [0.06, 17.8]$ Li H2 2014 7 33 7 31 3.1% $0.92 [0.28, 3.02]$ Li H2 2014 7 33 7 31 3.1% $0.92 [0.28, 3.02]$ Li ZY 2004 44 70 28 50 3.8% $1.33 [0.63, 2.79]$ Lu CX 2021 0 30 2 30 1.1% $0.19 [0.01, 4.06]$ Wang SL 2016 8 30 8 30 3.1% $1.00 [0.32, 3.14]$ Wang SL 2016 8 40 10 40 3.3% $0.87 [0.31, 2.44]$ Subtotal (95% C) 465 416 28.3% $1.16 [0.68, 1.98]$ Total events 197 140 Heterogeneity: Tau ² = 0.36, Chi ² = 20.33, df = 9 (P = 0.02), P = 56% Test for overall effect Z = 0.55 (P = 0.59) 1.1.4 Auricular acupressure therapy VS Placebo Lu CX 2021 0 30 0 30 Not estimable Subtotal (95% C) 30 30 Not estimable Total events 0 0 0 Heterogeneity: Tau ² = 0.00; Chi ² = 0.12, df = 1 (P = 0.72); P = 0% Test for overall effect Z = 0.57 (D = 0.59) Total events 35 20 Heterogeneity: Tau ² = 0.00; Chi ² = 0.12, df = 1 (P = 0.72); P = 0% Test for overall effect Z = 0.57 (D = 0.59) Total events 631 527 Heterogeneity: Tau ² = 0.81; Chi ² = 1.57 (10.0% 1.95 [1.34, 2.83] Total events 631 527 Heterogeneity: Tau ² = 0.81; Chi ² = 1.57 (10.0% 1.95 [1.34, 2.83] Total events 631 527 Heterogeneity: Tau ² = 0.81; Chi ² = 1.007) Total events 16fet Z = 0.157, df = 2.004 Heterogeneity: Tau ² = 0.81; Chi ² = 1.007) Total events 631 527 Heterogeneity: Tau ² = 0.81; Chi ² = 1.007) Total events 16fet Z = 0.157, df = 2.0010 Heterogeneity: Tau ² = 0.81; Chi ² = 1.057, df = 2.02 + 0.00001); P = 75% Test for overall effect Z = 0.81; Chi ² = 1.057, df = 2.02 + 0.00001; P = 75% Test for overall effect Z = 0.61; Chi ² = 1.0000	Heterogeneity: Tau ² = Test for overall effect: 2	1.08; Chi ² = 60.6 Z = 2.06 (P = 0.0	1, df = 12 4)	(P < 0.0	0001); I² =	= 80%	
Chen WY 2002 54 76 35 50 3.7% 10.5 [0.48, 2.30] Deng X 2015 8 30 15 30 3.2% 0.38 [0.12, 1.07] Dong TT 2014 1 15 1 15 1.2% 1.00 [0.06, 17.80] Li B 2013 4 50 1 50 1.7% 4.28 [0.46, 39.54] Li Y 2004 44 70 28 50 3.8% 1.33 [0.63, 2.7] Li C X 2021 0 30 2 0 30 1.7% 1.30 [0.1, 4.66] Wang SL 2016 8 30 8 30 3.1% 1.00 [0.32, 3.14] Wang SL 2018 9 40 10 40 3.3% 0.37 (0.31, 2.44] Subtoal (95% CI) 445 416 28.3% 1.16 [0.68, 1.98] Total events 197 140 Heterogeneity: Tau ² = 0.38; Ch ² = 20.3; df = 9 (P = 0.02); P = 56% Test for overall effect Z = 0.53 (P = 0.59) 1.1.5 Auricular acupressure therapy VS Non-intervention Li S 2013 4 50 1 50 1.7% 4.26 [0.46, 39.54] Wei B 2017 31 4 19 48 3.7% 2.78 [1.32, 6.37] Total events 197 Total events 3 5 20 Heterogeneity: Tau ² = 0.00; Ch ² = 0.12; P = 0% Test for overall effect Z = 0.72 (P = 0.0001); P = 75% Total events 6 31 527 Heterogeneity: Tau ² = 0.81; Ch ² = 1.027; P = 0% Test for overall effect Z = 0.72 (P = 0.0001); P = 75% Total events 6 31 527 Heterogeneity: Tau ² = 0.81; Ch ² = 1.027; P = 0% Test for overall effect Z = 0.71 (P = 0.0001); P = 75% Total events 6 51 527 Heterogeneity: Tau ² = 0.81; Ch ² = 1.027; P = 0.00001); P = 75% Total events 6 51 527 Heterogeneity: Tau ² = 0.81; Ch ² = 1.0007 Total events 6 51 527 Heterogeneity: Tau ² = 0.81; Ch ² = 1.027; P = 0.000011; P = 75% Test for overall effect Z = 0.57 (P = 0.00001); P = 75% Total events 6 51 527 Heterogeneity: Tau ² = 0.81; Ch ² = 1.0007 Total events 6 51 527 Heterogeneity: Tau ² = 0.81; Ch ² = 0.00001 Heterogeneity: Tau ² = 0.81; Ch ² = 0.00001 Hete	1.1.3 Auricular acupre	essure therapy	VS other	therapy			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Cai ZL 2010	62 91	33	90	4.0%	3.69 [2.00, 6.83]	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Chen WY 2002	54 76	35	50			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Deng × 2015	8 30	15	30	3.2%	0.36 [0.12, 1.07]	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		1 15	1	15			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
Lu CX 2021 0 30 2 30 1.1% 0.19 $[0.01, 4.00]$ Wang SL 2016 8 30 8 30 3.3% 0.87 $[0.31, 2.44]$ Subtotal (55% CI) 465 416 28.3% 1.16 $[0.68, 1.98]$ Total events 197 140 Heterogeneity, Tau ⁺ 0.38, Ch ⁺ = 20.33, df = 9 (P = 0.02), P = 56% Test for overall effect Z = 0.55 (P = 0.59) 1.1.4 Auricular acupressure therapy VS Placebo Lu CX 2021 0 30 0 30 Not estimable Subtotal (95% CI) 30 30 Not estimable Total events 0 0 Heterogeneity. Not applicable 1.1.5 Auricular acupressure therapy VS Non-intervention Li S 2017 31 48 19 48 3.7% 2.78 [1.22, 6.37] Subtotal (95% CI) 98 98 5.4% 2.93 [1.35, 6.37] Total events 3 5 20 Heterogeneity. Tau ⁺ = 0.00; Ch ⁺ = 0.12, df = 1 (P = 0.72); P = 0% Test for overall effect Z = 0.57 (P = 0.0001); P = 75% Total events 631 527 Heterogeneity, Tau ⁺ = 0.81; Ch ⁺ = 13.057, df = 32 (P < 0.0001); P = 75% Total events 10 Heterogeneity. Tau ⁺ = 0.81; Ch ⁺ = 13.057, df = 32 (P < 0.0001); P = 75% Total events 10 = 0.12, df = 1 (P = 0.0001); P = 75% Total events 10 = 0.0104	Li S 2013	4 50	1	50	1.7%	4.26 [0.46, 39.54]	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							
Wang EL 2018 9 40 10 40 3.3% 0.87 [0.31, 2.44] Subtoal (95% C) 465 416 28.3% 1.16 [0.68, 1.98] Total events 197 140 Heterogeneity: Tau*= 0.36; Chi*= 20.33, df = 9 (P = 0.02); P = 56% Testfor overall effect Z = 0.55 (P = 0.59) 1.1.4 Auricular acupressure therapy VS Placebo Lu CX 2021 0 30 Not estimable Subtotal (95% C) 30 30 Not estimable Test for overall effect Z = 0.57 50 1.7% 4.26 [0.46, 39.54] Wei B 2017 31 4 50 1.7% 2.83 [1.35, 6.37] Total events 35 20 1.98 9.8 5.4% 2.93 [1.35, 6.37] Total events 35 20 Heterogeneiky: Tau*= 0.00; Chi*= 0.12, df = 1 (P = 0.72); P = 0% Test for overall effect Z = 2.72 (P = 0.0007) 1.95 [1.34, 2.83] 1.95 [1.34, 2.83] Total events 35 20 1.95 [1.34, 2.83] 0.02 0.1 10 50 Heterogeneiky; Tau*= 0.00; Chi*= 0.12, df = 1 (P = 0.72); P = 0% 1.95 [1.34, 2.83] 1.95 [1.34, 2.83] 0.02 0.1 0					1.1%	0.19 [0.01, 4.06]	• • • • • • • • • • • • • • • • • • • •
Subicital (05% CI) 465 416 28.3% 1.16 [0.68, 1.98] Total events 197 140 Heterogeneity: Tau" = 0.38; Chi" = 20.33; df = 9 (P = 0.02); P = 56% Test for overall effect. Z = 0.53 (P = 0.59) 1.1.4 Auricular acupressure therapy VS Placebo Lu CX 2021 0 30 0 30 Not estimable Subtotal (95% CI) 30 30 Not estimable Total events 0 0 Heterogeneity: Not applicable 1.1.5 Auricular acupressure therapy VS Non-intervention Li S 2013 4 50 1 50 1.7% 4.26 [0.46; 39.54] Wei 8 2017 31 48 19 48 3.7% 2.78 (1.22, 6.37] Subtotal (95% CI) 98 98 5.4% 2.93 [1.35, 6.37] Total events 35 20 Heterogeneity: Tau" = 0.00; Chi" = 0.12; df = 1 (P = 0.72); P = 0% Test for overall effect. Z = 2.72 (P = 0.0007) Total (95% CI) 1625 1587 100.0% 1.95 [1.34, 2.83] Total events 831 527 Heterogeneity: Tau" = 0.81; Chi" = 13.057, df = 32 (P = 0.00001); P = 75% Test for overall effect. Z = 0.61; Chi" = 13.057, df = 32 (P = 0.00001); P = 75% Test for overall effect. Z = 0.61; Chi" = 13.057, df = 32 (P = 0.00001); P = 75% Test for overall effect. Z = 0.61; Chi" = 13.057, df = 32 (P = 0.00001); P = 75%	Wang SL 2016	8 30	8	30	3.1%		
Total events 197 140 Heterogeneity: Tau ² = 0.36; Ch ² = 20.33; df = 9 (P = 0.02); P = 56% Test for overall effect Z = 0.53 (P = 0.59) 1.1.4 Auricular acupressure therapy VS Placebo Lu CX 2021 0 30 0 30 Not estimable Subtotal (95% C) 30 30 Not estimable Test for overall effect X = 0 0 Heterogeneity: Not applicable 1.1.5 Auricular acupressure therapy VS Non-intervention Li S 2013 4 50 1 50 1.7% 4.26 [0.46, 39.54] Wel S 2017 31 48 19 48 3.7% 2.78 [1.22, 6.37] Subtotal (95% C) 98 98 5.4% 2.93 [1.35, 6.37] Total events 35 20 Heterogeneity: Tau ² = 0.00; Ch ² = 0.12, df = 1 (P = 0.72); P = 0% Test for overall effect Z = 2.72 (P = 0.0007) Total events 35 20 Heterogeneity: Tau ² = 0.81; Ch ² = 130.57, df = 32 (P < 0.0001); P = 75% Total event leffect Z = 0.81; Ch ² = 130.57, df = 32 (P < 0.0001); P = 75% Test for overall effect Z = 0.81; Ch ² = 130.57, df = 32 (P < 0.0001); P = 75%				40			
Heterogeneity: Tau ² = 0.38; Ch ² = 20.33; df = 9 (P = 0.02); P = 56% Test for overall effect Z = 0.53 (P = 0.59) 1.1.4 Auricular acupressure therapy VS Placebo Lu CX 2021 0 3 0 30 Not estimable Total events 0 0 0 Heterogeneity: Not applicable Test for overall effect X = 0.50 1.7% 4.26 [0.46; 39.54] Wei 8 2017 31 4 50 1.7% 4.26 [0.46; 39.54] Wei 8 2017 31 4 50 1.7% 4.26 [0.46; 39.54] Wei 8 2017 31 4 9 48 3.7% 2.78 [1.22, 6.37] Total events 35 20 Heterogeneity: Tau ² = 0.00; Ch ² = 0.12; df = 1 (P = 0.72); P = 0% Test for overall effect X = 0.57 (P = 0.0007) Total (95% CI) 1625 1587 100.0% 1.95 [1.34, 2.83] Total events 35 20 Heterogeneity: Tau ² = 0.81; Ch ² = 13.057, df = 32 (P < 0.00017); P = 75% Total events [10 507] Total	Subtotal (95% CI)	465		416	28.3%	1.16 [0.68, 1.98]	+
Test for overall effect: $Z = 0.53$ (P = 0.59) 1.1.4 Auricular acupressure therapy VS Placebo Lu CX 2021 0 30 0 30 Not estimable Subtotal (65% CI) 30 30 Not estimable Total events 0 0 Heterogeneity: Not applicable 1.1.5 Auricular acupressure therapy VS Non-intervention Li S 2017 31 48 19 48 3.7% 2.78 [1.22, 6.37] Subtotal (65% CI) 98 98 5.4% 2.93 [1.35, 6.37] Total events 35 20 Heterogeneity: Tau ² = 0.00; Ch ² = 0.12, df = 1 (P = 0.72); P = 0% Test for overall effect: Z = 2.72 (P = 0.0007) Total events 83 527 Heterogeneity: Tau ² = 0.81; Ch ² = 130.57, df = 32 (P < 0.00001); P = 75% Test for overall effect: Z = 2.72 (P = 0.0001)	Total events	197	140				
Lu CX 2021 0 30 0 30 Not estimable Subtotal (95% C) 30 30 Not estimable Total events 0 0 Heterogeneity. Not applicable 1.1.5 Auricular acupressure therapy VS Non-intervention Li S 2013 4 50 1 50 1.7% 4.26 [0.46, 39.54] Wei B 2017 31 48 19 48 3.7% 2.78 [1.22, 6.37] Subtotal (95% C) 98 98 5.4% 2.93 [1.35, 6.37] Total events 35 20 Heterogeneity. Tau* = 0.00; Ch* = 0.12, df = 1 (P = 0.72); P = 0% Test for overall effect: Z = 2.72 (P = 0.0007) Total events 83 Total events 831 Total events 831 Total events (P = 0.81; Ch* = 130.57, df = 32 (P < 0.00001); P = 75% Test for overall effect: Z = 0.81; Ch* = 130.57, df = 32 (P < 0.00001); P = 75% Test for overall effect: Z = 0.81; Ch* = 130.57, df = 32 (P < 0.00001); P = 75%	Heterogeneity: Tau ² = Test for overall effect: 2	0.36; Chi² = 20.3 Z = 0.53 (P = 0.5)	3, df = 9 (9)	P = 0.02); I² = 56%	6	
Subtotal (95% CI) 30 30 Not estimable Total events 0 0 Heterogeneity: Not applicable 1.1.5 Auricular acupressure therapy VS Non-intervention 1.1.5 Auricular acupressure therapy VS Non-intervention Li S 2013 4 50 1 50 1.7% 4.26 [0.46, 39.54] Wei B 2017 31 48 19 48 3.7% 2.78 [1.22, 6.37] Subtotal (95% CI) 98 98 5.4% 2.93 [1.35, 6.37] 1.50 Total events 35 20 1 Heterogeneity: Tau* 0.00; Chi* 0.12, df = 1 (P = 0.72); I* 0 % 1.95 [1.34, 2.83] Total events 831 527 1.95 [1.34, 2.83] 1.05 [1.34, 2.83] Total events 831 527 1.90 [0.0001); I* 75% 0.02 [0.1] 10 [0.00 [0.000] Test for overall effect Z = 3.61 (P = 0.0004) 20 (P < 0.00001); I* 75%							
Total events 0 0 Heterogeneity: Not applicable Test for overall effect: Not applicable 1.1.5 Auricular acupressure therapy VS Non-intervention Li 3 2013 4 50 1.7% 4.26 [0.46, 39.54] Wel B 2017 31 48 94 3.7% 2.78 [1.32, 6.37] Subtoal (95% CI) 98 98 5.4% 2.93 [1.35, 6.37] Total events 35 20 Heterogeneity: Tau* = 0.00; Chi*= 0.12, df = 1 (P = 0.72); P = 0% Test for overall effect Z = 2.72 (P = 0.0007) Total events 831 527 Total events 631 527 Heterogeneity: Tau* = 0.81; Chi*= 130.57, df = 32 (P < 0.00001); P = 75%							
Heterogeneity: Not applicable Test for overall effect: Not applicable 1.1.5 Auricular acupressure therapy VS Non-intervention Li S 2013 4 50 1 50 1.7% 4.26 [0.46, 39.54] Wei B 2017 31 48 19 48 3.7% 2.78 [1.22, 6.37] Subtotal (95% CI) 98 98 5.4% 2.93 [1.35, 6.37] Total events 35 20 Heterogeneity: Tau [*] = 0.00; Ch [#] = 0.12; J [#] = 0% Test for overall effect: Z = 2.72 ($P = 0.007$) Total events 831 527 Heterogeneity: Tau [*] = 0.81; Ch [#] = 130.57, df = 32 ($P < 0.00001$); $P = 75\%$ Test for overall effect Z = 1.67 ($P = 0.0004$) Test for overall effect Z = 1.67 ($P = 0.0004$)				30		Not estimable	
Test for overall effect: Not applicable 1.1.5 Auricular acupressure therapy VS Non-intervention Li S 2013 4 50 1 7% 4.26 [0.46, 39.54] Wel B 2017 31 48 9 8 3.7% 2.78 [1.22, 6.37] Subtotal (95% CI) 98 98 5.4% 2.93 [1.35, 6.37] Total events 35 20 Heterogeneiky: Tau*a 0.00; Ch*a 0.12, df = 1 (P = 0.72); P = 0% 78 Test for overall effect: Z = 2.72 (P = 0.007) 1.95 [1.34, 2.83] Total events 831 527 1.87 100.0% Test for overall effect: Z = 0.81; Ch*a = 130.57, df = 32 (P < 0.00001); P = 75%			0				
Li S 2013 4 50 1 7% 4 26 [0.46; 39.54] Wei B 2017 31 48 19 48 3.7% 2.78 [1.22, 6.37] Subtotal (95% C) 98 98 5.4% 2.93 [1.35, 6.37] Total events 35 20 Heterogeneity: Tau ² = 0.00; Chi ² = 0.12; df = 1 (P = 0.72); P = 0% Test for verail effect Z = 2.72 (P = 0.007) Total (95% CI) 1625 1587 100.0% 1.95 [1.34, 2.83] Total events 35 20 Heterogeneity: Tau ² = 0.81; Chi ² = 130, 57, df = 32 (P < 0.00001); P = 75% Test for verail effect Z = 3.16 (P = 0.0004)							
Weie 12:017 31 48 19 48 2.78 12.76 12.6.37 Subtotal (95% CI) 98 98 5.4% 2.93 [1.35, 6.37] Total events 35 20 Heterogeneity: Tau* = 0.00; Ch* = 0.12; df = 1 (P = 0.72); P = 0% Test for overall effect: Z = 2.72 (P = 0.007) Total events 831 527 Heterogeneity: Tau* = 0.81; Ch* = 130.57, df = 32 (P < 0.00001); P = 75%							
Subtotal (95% CI) 98 98 5.4% 2.93 [1.35, 6.37] Total events 35 20 Heterogeneity: Tau* = 0.00; Ch* = 0.12, df = 1 (P = 0.72); P = 0% Test for overall effect: Z = 2.72 (P = 0.007) Total (95% CI) 1625 1587 100.0% 1.95 [1.34, 2.83] Total events 831 527 Heterogeneity: Tau* = 0.81; Ch* = 130.57, df = 32 (P < 0.00001); P = 75% Test for overall effect: Z = 3.61 (P = 0.0004) Test for overall effect: Z = 3.61 (P = 0.0004)							
Total events 35 20 Heterogeneity: Tau* = 0.00; Chi* = 0.12; df = 1 (P = 0.72); P = 0% Test for overall effect Z = 2.72 (P = 0.007) Total (95% Cl) 1625 1587 100.0% 1.95 [1.34, 2.83] Total events 831 527 Heterogeneity: Tau* = 0.81; Chi* = 130.57; df = 32 (P < 0.00001); P = 75%							
Heterogeneiky: Tau*e 0.00; Chi*= 0.12, df = 1 (P = 0.72); P = 0% Test for overall effect: Z = 2.72 (P = 0.007) Total (95% CI) 1625 1587 100.0% 1.95 (1.34, 2.83) Total events 831 527 Heterogeneiky: Tau*e 0.81; Chi*= 130.57, df = 32 (P < 0.00001); P = 75% Test for overall effect Z = 3.51 (P = 0.0004) Test for overall effect Z = 3.61 (P = 0.0004)				98	5.4%	2.93 [1.35, 6.37]	-
Test for overall effect: Z = 2.72 (P = 0.007) Total (95% CI) 1625 1587 100.0% 1.95 [1.34, 2.83] Total (95% CI) 1625 1587 100.0% 1.95 [1.34, 2.83] Total events 631 527 Heterogeneity: Tau ^a = 0.81; Chi ^a = 130.57, df = 32 (P < 0.00001); I ^a = 75% 0.02 0.1 10 50 Test for overall effect Z = 3.51 (P = 0.0004) Execure for control Execute							
Total (95% CI) 1625 1587 100.0% 1.95 [1.34, 2.83] Total events 831 527 527 527 100.0% 1000000000000000000000000000000000000				= 0.72)	I ^z = 0%		
Total events 831 527 Heterogeneity: Tau*= 0.81; Chi*= 130.57; df = 32 (P < 0.00001); I*= 75%				1587	100.0%	1.95 [1.34, 2.83]	•
Heterogeneity: Tau ² = 0.81; Chi ² = 130.57, df = 32 (P < 0.00001); I ² = 75% 0.02 0.1 1 10 50 Test for overall effect: Z = 3.51 (P = 0.0004) Execute (control) Execute (control) Execute (control)							
Test for overall effect: Z = 3.51 (P = 0.0004)				2 (P < 0	00001): P	² = 75%	
				8 (P = 0.	11). I ² = 49	3.9%	Favours [control] Favours [experimental]

difference in total effective rate was observed when AA used alone compared to other therapies (OR = 1.21, 95%CI: [0.81, 1.82], P=0.35, $I^2 = 10\%$) (Figure 4). Only one study described a close total effective rate by comparing AA and placebo (P=0.16), while meta-analysis could not be performed. Additionally, it was found in subgroup analysis that AA alone was not superior to Chinese herbs (OR = 2.17, 95%CI: [0.71, 6.67], P=0.18, $I^2 = 43\%$), acupuncture (OR = 0.48, 95% CI: [0.04, 5.63], P=0.56, I^2 = Not appliable), external application of Chineseherbal medicine (OR = 1.16, 95%CI: [0.54, 2.48], P=0.70, I^2 = 0%), moxibustion (OR = 1.00, 95%CI: [0.30, 3.35], P=1.00, I^2 = Not appliable), auricular needle (OR = 0.29, 95%CI: [0.05, 1.55], P=0.15, I^2 = Not appliable), or health education (OR = 1.11, 95%CI: [0.45, 2.75], P=0.82, I^2 = Not appliable) (Supplementary eFigure 3).

3.4.1.3 Visual analogue scale

Ten of the studies reported the effects of AA on VAS. Pooled results indicated that, overall, a significantly lower VAS score was observed in the experimental group than that in the control group (MD = -1.45, 95%CI: [-1.73, -1.17], P<0.00001, I² = 67%). Furthermore, there was a significant reduction in VAS score in the experimental group when compared to analgesics (MD = -1.55, 95%CI: [-2.14, -0.96], P<0.00001, I² = 70%), placebo (MD = -1.38, 95%CI: [-1.77, -0.99], P<0.00001, I² = 0%), and non-intervention (MD = -1.50, 95%CI: [-2.10, -0.90], P=0.01, I² = not appliable). And AA, as an adjunctive therapy to other therapy, also showed a lower VAS score than other therapy used alone (MD = -1.46, 95%CI: [-1.75, -1.18], P<0.00001, I² = 0%).

1.1.1.Auricular acupressure therapy VS analysis: Chew W/2010 <	Study or Subgroup	Experime Events	Total I	Control	otal V	Veight	Odds Ratio M-H, Fixed, 95% Cl	Odds Ratio M-H, Fixed, 95% Cl
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1.2.1 Auricular acup Chen WY 2002	ressure the	Prapy VS	Analgesi	A2	21%	2 65 11 22 10 001	
Lu 22 000 158 100 124 100 15% 122 44 24 21 15, 15, 07 Ma XY 2017 47 05 33 00 22% 42 24 21 15, 15, 07 We 2017 44 48 144 24 42 12, 15, 15, 07 We 2017 44 48 144 24 27% 45, 15, 12, 15, 01 We 2017 44 05 10 03 36 00 12% 455 21, 27, 150 01 We 2017 44 05 12 10 03 36 00 12% 455 21, 27, 150 01 We 2017 44 05 12 10 03 36 00 12% 455 21, 27, 152 00 Pang XY 2017 69 65 26 12.55 56 21, 25, 56 03 12% 12% 12% 12% 12% 12% 12% 12% 12% 12%								
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			50					
Obio L 2017 18 20 14 20 1.3% 3.86 [bs 7, 22.11] Wei B 2017 44 44 3.44 2.7% 4.53 [1.2, 7, 150 [1.3] Yang X-196 100 100 35 56 1.6% 5.73 [1.2, 0, 12.7] Tradit origination of the set of the rapy 100 35 56 1.6% 5.73 [1.2, 0, 12.7] Tradit origination of the set of the rapy 100 35 30 0.5% 1.5% 5.86 [1.6%, 5.73 [1.2, 0, 12.1] Tradit origination of the rapy 1.45 [1.6, 12.7, 12.2.40] 1.45 [1.6, 12.7, 12.2.40] 1.45 [1.6, 12.7, 12.2.40] Chen JJ 2017 23 30 2.0 30 1.45 [1.6, 12.7, 12.2.40] Chen JJ 2017 23 30 2.2 30 1.45 [1.6, 12.7, 12.2.40] Chen JJ 2017 2.3 30 2.25 [1.1, 12.7, 12.2.40] 1.45 [1.6, 12.7, 12.2.40] Chen JJ 2017 1.25 [1.2, 12.6, 12.7, 12.2.40] 1.45 [1.2, 12.6, 12.7, 10.7, 12.7, 12.2.40] 1.45 [1.2, 12.6, 12.7, 12.2.40] Un Y 2001 2.25 [1.2, 12.2, 12.7, 10.7, 12.7, 10.7, 12.2.40] 1.45 [1.2, 12.6, 12.7, 10.7, 12.7, 12.2.40] 1.45 [1.2, 12.6, 12.7, 10.7, 12.7, 12.2.40] U								
We B 2017 44 48 34 48 27 % 4.53 (1.37, 15.01) Yang 2V1 986 100 100 39 50 0.2% 56 52 (1.37, 1016.89] Zhang 2V1 986 60 42 43 55 3.14 (1.0.5.61) Yang 2V1 986 60 42 43 55 3.14 (1.0.5.61) Yang 2V1 986 60 42 43 56 21.55 5.94 (1.0.9.8) Test for overall effect 2 = 8.6 0 ² + 0.30(1 ⁻) ⁻ TS Test for overall effect 2 = 8.6 0 ² + 0.30(1 ⁻) ⁻ TS Test for overall effect 2 = 8.6 0 ² + 0.00(1 ⁻) ⁻ TS Test for overall effect 2 = 8.6 0 ² + 0.00(1 ⁻) ⁻ TS Test for overall effect 2 = 8.6 0 ² + 0.00(1 ⁻) ⁻ TS Test for overall effect 2 = 8.6 0 ² + 0.00(1 ⁻) ⁻ TS Test for overall effect 2 = 9.6 0 ² + 0.00(1 ⁻) ⁻ TS Test for overall effect 2 = 9.6 0 ² + 0.00(1 ⁻) ⁻ TS Test for overall effect 2 = 9.6 0 ² + 0.00(1 ⁻) ⁻ TS Test for overall effect 2 = 9.6 0 ² + 0.00(1 ⁻) ⁻ TS Test for overall effect 2 = 9.6 0 ⁻ + 0.00(1 ⁻) ⁻ TS Test for overall effect 2 = 9.6 0 ⁻ + 0.00(1 ⁻) ⁻ TS Test for overall effect 2 = 9.6 0 ⁻ + 0.00(1 ⁻) ⁻ TS Test for overall effect 2 = 9.6 0 ⁻ + 0.00(1 ⁻) ⁻ TS Test for overall effect 2 = 9.6 0 ⁻ + 0.00(1 ⁻) ⁻ TS Test for overall effect 2 = 9.6 0 ⁻ + 0.00(1 ⁻) ⁻ TS Test for overall effect 2 = 9.6 0 ⁻ TS Test for overall effect 2 = 0.00(1 ⁻) ⁻ TS Test for overall effect 2 = 0.00(1 ⁻) ⁻ TS Test for overall effect 2 = 0.00(1 ⁻) ⁻ TS Test for overall effect 2 = 0.00(1 ⁻) ⁻ TS Test for overall effect 2 = 0.00(1 ⁻) ⁻ TS Test for overall effect 2 = 0.00(1 ⁻) ⁻ TS Test for overall effect 2 = 0.00(1 ⁻) ⁻ TS Test for overall effect 2 = 0.00(1 ⁻) ⁻ TS Test for overall effect 2 = 0.00(1 ⁻) ⁻ TS Test for overall effect 2 = 0.00(1 ⁻) ⁻ TS Test for overall effect 2 = 0.00(1 ⁻) ⁻ TS Test for overall effect 2 = 0.00(1 ⁻) ⁻ TS Test for overall effect 2 = 0.00(1 ⁻) ⁻ TS Test for overall effect 2 = 0.00(1 ⁻) ⁻ TS Test for overall effect 2 = 0.00(1 ⁻) ⁻ TS Test for overall effect 2 = 0.00(1 ⁻) ⁻ TS Test for overall effect 2 = 0.00(1 ⁻) ⁻ TS Test for overall effect 2 = 0.00(1 ⁻) ⁻ TS Test for overall effect 2 = 0.							4.42 [1.15, 16.97]	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $								
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				34				10 Jan 10
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $								+
Subtion (195% C) 657 566 21.5% 5.96 [3.99, 9.97] Total events 62.4 423 Heterogenety, Ch ⁺ 9.09, df = 9(r = 0.39), r = 7% Testor overall effect 2.2 = 86(r = 0.00001) 1.2.2 Auricular accupressure therapy * other therapy VS Other therapy Chem JU 2016 1 29 30 29 30 0.6% 14.00 [17, 17, 12, 20] Chem JU 2016 1 29 30 22 30 1.4% 5.09 [0.8, 26.3] Han DW 2016 1 29 51 00 21% 447 [10, 10, 21, 12, 20] Chem JU 2016 1 29 30 122 30 1.4% 5.09 [0.8, 26.3] Han DW 2016 1 22 52 21 25 2.4% 1.40 [0.28, 7.00] Lu VY 2016 22 35 21 25 2.4% 1.40 [0.28, 7.00] Lu VY 2016 22 35 21 39 0.5% 0.50 [18, 1.43] Lu VY 2016 22 30 1.2% 500 [19, 1.43] Lu VY 2016 22 30 1.2% 500 [19, 1.43] Lu VY 2017 2 30 1.2% 500 [19, 1.44] Subtol (195% C) 750 622 33.7% 2.92 [201, 4.24] Yang BL 2017 7 161 80 9, 41 3.5% 33.7% 2.92 [201, 4.24] Total events 1 62.5 653 01 1.5% 2.93 [1.14] (1.12) [20.25 1.1] Yang BL 2016 21 97 00 622 33.7% 2.92 [201, 4.24] Total events 1 64.2 7.5 80 0.5% 1.11 [10, 45, 278] Heterogenety, Ch ⁺ 1 88, df = 13 (r = 0.13), r = 036 Heterogenety, Che ⁺ 1 88, df = 13 (r = 0.13), r = 036 Heterogenety, Che ⁺ 1 88, df = 13 (r = 0.13), r = 036 Heterogenety, Che ⁺ 1 88, df = 13 (r = 0.13), r = 036 Heterogenety, Che ⁺ 1 88, df = 13 (r = 0.13), r = 036 Heterogenety, Che ⁺ 1 88, df = 13 (r = 0.13), r = 036 Heterogenety, Che ⁺ 1 88, df = 13 (r = 0.13), r = 036 Lu CX 2017 24 30 22 30 1.5% 0.228 [0.53, 16.68] Lu HZ 2016 33 30 22 30 3.5% 2.32 [0.72, 7.41] Total events 24 10 Heterogenety, Che ⁺ 233, r = 0.30, r = 0.000 Heterogenety, Che ⁺ 231, df = 10 (r = 0.30); r = 0.000 Heterogenety, Che ⁺ 231, df = 17 (r = 0.15); r = 53% Testor overall effect 2 = 1.42 (r = 0.000); r = 57% Testor overall effect 2 = 1.42 (r = 0.0000); r = 57% Testor overall effect 2 = 1.02 (r = 0.00000); r = 57% Testor overall effect 2 = 1.02 (r = 0.00000); r = 57% Testor overall effect 2 = 0.000000); r = 57%								
Total events $0.24 + 429$ Heterogenetic, Ch ² = 0.80, df = 0 (P = 0.30), iP = 7% Test for overall effect Z = 0.80 (P = 0.300); 12.2 Amountal experts the mary v SO that therapy C Chen J. 2017 2 the effect of v = 0.300, iP = 7% Case Of V = 0.300, iP = 0.300, iP = 0.500, iP =			657		566	21.5%		•
Test for overall effect $Z = 6.6 (P < 0.0001)$ 1.22 Arricular accupressure therapy v other therapy VS 0ther therapy Chen JJ 2017 2.9 30 20 30 0.6% 14.50 (1.7.2, 122.40) Deng X 2015 30 30 22 30 1.4% 5.59 (10.12, 7.2.32) Ga 6V 2014 46 44 44 14 0.8% 5.59 (10.2, 7.2.32) US 2013 45 50 437 51 23 33 20 27.1 8.5 (10.2, 7.2.33) US 2013 45 50 437 51 25 2.2.5 (1.2.5, 2.4.5% 14.61 (12.0, 5.6.61) UL VY 2015 22 25 52 71 25 2.4.5% 14.61 (12.0, 5.6.61) UL VY 2012 29 31 22 30 1.4.% 5.77 (10.2, 7.7.33) Wang SL 2016 28 30 0.22 30 1.4.% 5.77 (10.2, 7.7.33) Wang SL 2018 37 40 29 40 2.1.% 4.66 (1.1.9, 1.6.56) Zhang L2016 29 50 75 50 3.3.7% 2.8.2 (2.0.4, 4.2.4) Year SL 2018 52 30 1.2.% 5.00 (10.8, 5.3.61) Vemg SL 2018 53 50 503 2.2.% 1.2.10.2, 8.4.31 Vang SL 2018 53 50 503 2.2.% 1.2.10.2, 8.4.31 Vang SL 2018 53 50 503 2.3.7% 2.8.2 (2.0.4, 4.2.4) Year SL 2018 53 50 503 2.3.7% 2.8.2 (2.0.4, 4.2.4) Year SL 2010 8 89 17 76 50 4.2.% 0.7% (1.8.3.13) Deng X 2015 24 30 0.2.7 30 1.4.% 5.0.7 (10.8, 3.13) Deng X 2015 24 30 0.2.7 30 0.4.4.% 1.2.1 (10.8, 1.4.2.4) Year SL 2010 8 90 17 20 90 2.4.% 4.51 (1.1.2.1, 6.5.6) Cher WY 2002 78 76 76 47 50 4.2.% 0.74 (1.8, 3.13) Deng X 2015 24 30 0.2.7 30 1.4.% 500 (1.0.3, 5.5.6) Heter openeity Che ¹ = 1.6.9 (1.1.9 = -0.13); h ¹ = 30% Test for overall effect 2.2 = 0.3.3; h ² = 1.0.% Test for overall effect 2.2 = 0.3.3; h ² = 1.0.% Test for overall effect 2.2 = 0.3.3; h ² = 1.0.% Test for overall effect 2.2 = 0.3.3; h ² = 1.0.% Test for overall effect 2.2 = 1.4.7 (P = 0.16) 1.2.5 Antricular accupressure therapy VS Placebo Lu CX 2021 24 30 19 30 3.6.% 2.2.3 (10.7, 7.41) Subtoal (effect C) 4 90 7.55 Heter openeity Che ¹ = 0.1.6.7; h ² = 0.55 Heter openeity Che ¹ = 0.1.6.1.6; h ² = 0.75 Test for overall effect 2.2 = 0.3.0; h ² = 0.00000; h ² = 0.5% Test for overall effect 2.2 = 0.3.0; h ² = 0.00000; h ³ = 0.5.8 (2.3.0.04.4.5, 0.1.10.5, 18.6.1] Weng SL 2016 30 0.0 92 0.0 0.0.5.8 (2.2.9.2.0.01; h ² = 0.000000; h ² = 0.000000; h ² = 0.00000; h ² = 0.00000; h ²	Total events							
1.2.2 Auricular acupressure therapy + other therapy 0.0 ± 0.0					6			
Chen JJ 2017 29 30 20 30 0.6% 14 50 17,2 122.40 Deng X 2015 30 22 30 0.4% 330 0217, 19.88 Han DM 2016 28 30 22 30 1.4% 530 09 0.8, 63.83 Kong AJ 2016 48 50 84 100 2.1% 4.57 (101, 0.74 Li S 2013 45 50 37 50 3.5% 18 (103, 0.88) Li V 2016 22 25 21 25 2.4% 1.40 10.28, 7.00 Li V Y 2016 22 35 27 35 5.5% 0.50 (103, 103, 104) Li V Y 2016 22 35 27 35 5.5% 0.50 (103, 103, 104) Li V Y 2017 24 30 12 23 30 0.7% 8.83 10, 17, 566 Zhang Li S 2018 37 40 22 30 0.2% 4.56 11 10, 10, 566 Zhang Li S 2018 37 40 22 30 0.2% 4.56 11 10, 10, 566 Zhang Li S 2018 37 40 22 30 0.2% 4.56 11 10, 10, 566 Zhang Li S 2018 37 40 22 30 0.2% 4.56 11 10, 10, 566 Zhang Li S 2018 37 40 22 30 0.2% 4.56 11 10, 10, 566 Zhang Li S 2018 37 40 22 30 0.2% 4.56 11 10, 10, 566 Zhang Li S 2018 37 40 22 30 0.2% 4.57 11 12, 16, 566 Zhang Li S 2018 37 6 47 50 4.4% 0.74 (103, 2.13) Deng T 2014 55 50 503 Test for overall effect Z = 6.53 (P < 0.00001) 1.2.3 Auricular acupressure therapy V Cai 22, 2010 88 91 77 50 82 45% 1.11 [0, 10, 508 Deng T 2014 33 20 5 35 1 15% 2.089 0.3, 16, 669 Li S 2013 38 50 37 50 8.4% 1.11 [0, 10, 33, 350 Li S 2013 38 50 37 50 8.4% 1.11 [0, 10, 33, 350 Li S 2013 38 50 37 50 8.4% 1.11 [0, 10, 33, 350 Li S 2013 38 50 37 50 8.4% 1.11 [0, 10, 33, 350 Li S 2013 38 50 37 50 8.4% 1.11 [0, 10, 33, 350 Li C 2012 24 30 48 53 0.456 0.29 [0, 03, 15, 667 Heterogeneity Chi = 8.07 (1 = 6.07 - 6.3) Total events 1 = 0.17, 37 = 0.03, 87 = 10% Test for overall effect Z = 1.42 (P = 0.15) 1.2.5 Auricular acupressure therapy V S Non-intervention Li S 2017 44 88 20 7 30 20 2.5% 2.22 [0, 72, 7.41] Total events 1 = 0.13, 71 = 0.05 T Total events 1 = 0.14 75, 07 = 0.07% 4.06 (13, 05, 18.61] Ve B 2017 44 88 2 9 0.05, 87.84 (30, 63, 251.55] Total events 1 = 0.14, 75, 07 = 0.05 T Total events 1 = 0.14, 75, 07 = 0.05 T Total events 1 = 0.14, 75, 07 = 0.05 T Total events 1 = 0.14, 75, 07 = 0.05 T Total events 1 = 0.14, 75, 07 = 0.05 T Total events 1 = 0.14, 75, 07 = 0.05 Y Heterogeneity Chi = 10.175, 07 = 0.05 T Total events 1 =	Test for overall effect	Z = 8.66 (P	< 0.000	D1)				
Chen JJ 2017 29 30 20 30 0.6% 14 50 17,2 122.40 Deng X 2015 30 22 30 0.4% 330 0217, 19.88 Han DM 2016 28 30 22 30 1.4% 530 09 0.8, 63.83 Kong AJ 2016 48 50 84 100 2.1% 4.57 (101, 0.74 Li S 2013 45 50 37 50 3.5% 18 (103, 0.88) Li V 2016 22 25 21 25 2.4% 1.40 10.28, 7.00 Li V Y 2016 22 35 27 35 5.5% 0.50 (103, 103, 104) Li V Y 2016 22 35 27 35 5.5% 0.50 (103, 103, 104) Li V Y 2017 24 30 12 23 30 0.7% 8.83 10, 17, 566 Zhang Li S 2018 37 40 22 30 0.2% 4.56 11 10, 10, 566 Zhang Li S 2018 37 40 22 30 0.2% 4.56 11 10, 10, 566 Zhang Li S 2018 37 40 22 30 0.2% 4.56 11 10, 10, 566 Zhang Li S 2018 37 40 22 30 0.2% 4.56 11 10, 10, 566 Zhang Li S 2018 37 40 22 30 0.2% 4.56 11 10, 10, 566 Zhang Li S 2018 37 40 22 30 0.2% 4.56 11 10, 10, 566 Zhang Li S 2018 37 40 22 30 0.2% 4.57 11 12, 16, 566 Zhang Li S 2018 37 6 47 50 4.4% 0.74 (103, 2.13) Deng T 2014 55 50 503 Test for overall effect Z = 6.53 (P < 0.00001) 1.2.3 Auricular acupressure therapy V Cai 22, 2010 88 91 77 50 82 45% 1.11 [0, 10, 508 Deng T 2014 33 20 5 35 1 15% 2.089 0.3, 16, 669 Li S 2013 38 50 37 50 8.4% 1.11 [0, 10, 33, 350 Li S 2013 38 50 37 50 8.4% 1.11 [0, 10, 33, 350 Li S 2013 38 50 37 50 8.4% 1.11 [0, 10, 33, 350 Li S 2013 38 50 37 50 8.4% 1.11 [0, 10, 33, 350 Li S 2013 38 50 37 50 8.4% 1.11 [0, 10, 33, 350 Li C 2012 24 30 48 53 0.456 0.29 [0, 03, 15, 667 Heterogeneity Chi = 8.07 (1 = 6.07 - 6.3) Total events 1 = 0.17, 37 = 0.03, 87 = 10% Test for overall effect Z = 1.42 (P = 0.15) 1.2.5 Auricular acupressure therapy V S Non-intervention Li S 2017 44 88 20 7 30 20 2.5% 2.22 [0, 72, 7.41] Total events 1 = 0.13, 71 = 0.05 T Total events 1 = 0.14 75, 07 = 0.07% 4.06 (13, 05, 18.61] Ve B 2017 44 88 2 9 0.05, 87.84 (30, 63, 251.55] Total events 1 = 0.14, 75, 07 = 0.05 T Total events 1 = 0.14, 75, 07 = 0.05 T Total events 1 = 0.14, 75, 07 = 0.05 T Total events 1 = 0.14, 75, 07 = 0.05 T Total events 1 = 0.14, 75, 07 = 0.05 T Total events 1 = 0.14, 75, 07 = 0.05 Y Heterogeneity Chi = 10.175, 07 = 0.05 T Total events 1 =	1.2.2 Auricular acup	ressure the	erapy + o	ther ther	apy VS	Other t	herapy	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $								———→
Han DM 2016 28 30 22 30 1.4% 5.09 [0.8, 26.43] Lis 2013 45 50 37 50 3.5% 3.16 [1.0, 20.74] Lis 2013 45 50 37 50 3.5% 3.16 [1.0, 2.074] Liu YY 2009 22 35 27 35 5.5% 0.50 [0.8, 1.43] Liu YY 2012 29 31 22 30 1.4% 5.07 [0.8, 7.43] Wang SL 2016 28 30 22 30 1.4% 5.07 [1.0, 2.733] Wang SL 2018 37 40 29 40 2.1% 4.68 [1.19, 18.34] Wang SL 2018 37 40 29 40 2.1% 4.68 [1.19, 18.34] Wang SL 2018 37 40 29 30 22 30 1.4% 5.07 [1.0, 2.733] Wang SL 2018 37 40 29 30 22 30 1.4% 5.09 [0.8, 2.6.43] Wang SL 2018 67 40 57 0 622 33.7% 2.92 [2.01, 4.24] Total events 526 503 Heterogenetic, Chr E 168 6, 61 13 0 - 0.19, F = 30% Test for overall effect Z = 5.33 (P = 0.00001) 1.2.3 Autricular acupressure therapy VS other therapy Ca ZL 2010 89 91 76 47 50 4.4% 4.51 [1.23, 16.56] Chen WY 2002 70 76 74 750 4.2% 0.74 [0.18, 3.13] Deng X.2016 28 30 29 30 1.8% 0.48 [0.4, 6.63] Dong TT 2014 15 15 15 15 15 Not estimable Ding TT 2014 15 15 15 15 15 Not estimable Li H2 2013 38 50 37 60 8.4% 1.11 10.45, 2.75] UL XY 2004 63 70 445 50 5.0.5% 1.20 [0.3, 3.36 [6.66] Li H2 2013 30 40 29 40 6.8% 1.14 [0.4, 3.13] Deng X.2016 23 30 2.93 0.3.5% 2.22 [0.72, 7.41] Subtotal (5% C) 30 40 29 40 6.8% 1.14 [0.4, 3.13] Total events 16 9P = 0.33). F = 10% Test for overall effect Z = 0.33 (F = 10%) Test for overall effect Z = 0.33 (F = 10%) Test for overall effect Z = 0.33 (F = 10%) Total events 18 92 (F = 0.16) 1.2.5 Autricular acupressure therapy VS Noi.intervention Li S 2013 38 50 37 60 3.8% 2.32 [0.72, 7.41] Subtotal (6% C) 18 120 17 44 68 2 48 0.2% 253.00 [4.10, 150, 18.61] We B 2017 44 61 9 (P = 0.33). F = 10% Test for overall effect Z = 0.34 (P = 0.35). 1.2.4 (D) 1 16 10 P = 10.57, F = 53% Test for overall effect Z = 0.34 (P = 0.35). 1.2.4 (D) 1 16 20 17 24 9 0.00001) Total events 16 90 7 11 10 17 = F = 55% Test for overall effect Z = 0.33 (P = 0.00001). Total events 16 90 7 11 10 10 10 10 10 10 10 10 10 10 10 10							3.10 [0.12, 79.23]	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		46						20 Ta 10
L S 2013 45 5 00 37 50 3.5% 3.16 [1.03, 8.69] L VY 2009 22 35 27 35 9.5% 0.50 [0.18, 1.43] U YY 2012 29 31 22 30 1.4% 5.57 [1.02, 2.73] Wang SL 2016 28 30 22 30 1.4% 5.57 [1.02, 2.73] Wang SL 2016 29 30 22 30 1.4% 5.57 [1.02, 2.73] Wang SL 2016 29 30 22 30 1.4% 5.57 [1.02, 2.73] Wang SL 2016 29 30 22 30 1.4% 5.57 [1.02, 2.73] Wang SL 2016 29 30 22 30 1.4% 5.57 [1.04, 1.76, 96] Zhang L 2012 77 81 80 94 3.5% 8.33 [1.06, 10.69] Zhang L 2012 77 81 80 94 3.5% 3.37 [1.06, 10.69] Zhang L 2012 77 81 80 94 3.5% 3.37 [1.06, 10.69] Zhang L 2012 77 81 80 94 3.5% 3.37 [1.06, 10.69] Zhang L 2012 77 76 47 50 4.2% 0.74 [0.18, 3.13] Deng X 2015 28 30 29 30 1.8% 0.48 [0.04, 5.63] Dong TT 2014 15 15 15 15 Not estimable Li He 2014 31 33 26 31 1.5% 2.98 [0.40, 5.63] Dong TT 2014 15 15 15 15 Not estimable Li He 2014 31 33 26 31 1.5% 2.98 [0.30, 3.66] Li S 2013 38 50 37 50 8.4% 1.11 [0.45, 2.76] Li X 2016 28 30 2.23 30 4.4% 1.21 (0.23, 3.56] Li X 2013 38 50 37 50 8.4% 1.14 [0.42, 3.08] Wang SL 2016 23 30 2.30 3.6% 2.32 [0.72, 741] Li X 2014 (5% C) 465 70 4.60 4.6% 1.24 [0.03, 3.56] Li X 2013 38 50 37 50 8.4% 1.14 [0.42, 3.08] Wang SL 2016 30 4.0 29 40 6.8% 1.14 [0.42, 3.08] Wang SL 2016 23 30 2.03 (5.76) Li X 2014 (5% C) 460 3.56 Li X 2021 424 30 19 30 3.6% 2.32 [0.72, 741] Subtoal (5% C) 460 9.35 Total events 140 2 9.30, 17 = 10%. Test for overall effect Z = 0.35, 17 = 10%. Test for overall effect Z = 0.35, 17 = 10%. Test for overall effect Z = 0.35, 17 = 10%. Test for overall effect Z = 0.35, 17 = 10%. Test for overall effect Z = 0.35, 17 = 10%. Test for overall effect Z = 0.35, 17 = 10%. Test for overall effect Z = 0.35, 17 = 10%. Test for overall effect Z = 0.35, 17 = 10%. Test for overall effect Z = 0.35, 17 = 10%. Test for overall effect Z = 0.35, 17 = 10%. Test for overall effect Z = 0.25, 000001) Total events 166 1127 Heterogeneity. Ch ² = 104, 75, df = 350 67 < 0.00001) Total events 166 55 C) 180 0000 (57 00000) Total events 166 55 C) 180 0000 (57 000000) Total events 166 55 C)								
L UV 2016 22 25 21 25 24% 140 [0.28, 7.00] L UV 2016 22 35 27 35 95% 0.59 [0.18, 1.43] LU Y 2012 29 31 22 30 14% 5.99 [0.8, 26.43] Wang SL 2018 37 40 29 40 21% 4.68 [1.19, 18.34] Wang SC 2014 56 60 45 50 32% 1.22 (0.2, 51.4] Xie HV 2020 29 30 23 30 0.7% 8.83 [1.01, 76.96] Zhang L.2012 77 81 80 94 3.5% 3.37 [1.6, 16.69] Subtotal (95% C) 570 622 33.7% 2.92 [2.01, 4.24] Total events 526 503 Heterogeneity. Chr = 18.83, df = 12 ($P = 0.13$); $P = 30\%$ Test for overall effect Z = 5.63 ($P < 0.00001$) 1.2.3 Auricular acupressure therapy VS to ther therapy Cai ZL 2010 88 91 78 90 2.4% 4.51 [1.23, 16.58] Deng X.2015 28 30 29 30 1.8% 0.48 [0.04, 5.81] Deng X.2015 28 30 29 30 1.8% 0.48 [0.04, 5.81] Deng X.2015 28 30 29 30 1.8% 0.48 [0.04, 5.81] Deng X.2015 28 30 29 30 1.8% 0.48 [0.04, 5.81] Deng X.2015 28 30 29 30 1.8% 0.48 [0.04, 5.81] Deng X.2015 28 30 29 30 1.8% 0.48 [0.04, 5.81] Deng X.2015 28 30 29 30 1.8% 0.48 [0.04, 5.82] Lu CX 2021 24 30 29 40 6.8% 1.14 [0.45, 2.76] Li Z 2014 63 70 45 50 5.0% 1.00 [0.30, 3.35] Heterogeneity. Chr = 8.81, df = 6 ($P = 0.35$); $P = 10\%$ Test for overall effect Z = 0.36 ($P = 0.35$); $P = 10\%$ Test for overall effect Z = 0.36 ($P = 0.35$); $P = 10\%$ Test for overall effect Z = 0.44 ($P = 0.35$); $P = 10\%$ Test for overall effect Z = 0.44 ($P = 0.35$); $P = 10\%$ Test for overall effect Z = 0.44 ($P = 0.35$); $P = 10\%$ Test for overall effect Z = 0.44 ($P = 0.35$); $P = 10\%$ Test for overall effect Z = 0.44 ($P = 0.35$); $P = 10\%$ Test for overall effect Z = 0.54 ($P = 0.35$); $P = 10\%$ Test for overall effect Z = 0.54 ($P = 0.35$); $P = 10\%$ Test for overall effect Z = 0.54 ($P = 0.35$); $P = 10\%$ Test for overall effect Z = 0.54 ($P = 0.35$); $P = 10\%$ Test for overall effect Z = 0.54 ($P = 0.35$); $P = 10\%$ Total ($PS\%$ C) 166 1127 Heterogeneity. Chr = P = 1.42, 75 ($P = 50\%$ Counce 1) Total ($PS\%$ C) 198 98 0.85\% C 2.32 [0.72, 7.41] Total events 82 5 Test for overall effect Z = 0.50 ($P = 0.00001$); Total ($PS\%$ C) 198 99 0.80\% 2.32 [0.72,		48		84				
L UY 2009 22 35 27 35 9.5% 0.50 [0.19, 1.4] L UY 2012 29 31 22 30 14% 5.27 [10.2, 27.33] Wang \$1.2016 28 30 22 30 14% 5.27 [10.2, 27.33] Wang \$2.2016 28 30 22 30 14% 5.27 [10.2, 27.33] Wang \$2.2016 28 30 22 30 14% 5.27 [10.4, 27.33] Wang \$2.2016 29 40 2.1% 4.86 [1.9, 18.34] Wang \$2.2017 78 61 29 40 2.2% 4.48 [1.9, 18.34] Wang \$2.2017 77 61 80 94 3.5% 3.37 [1.0, 10.69] Subtotal [65% c] 570 622 33.7% 2.92 [2.01, 4.24] Total events 526 503 Heterogenetic Chr ⁺ 18.68 dr 13 (P = 0.13); P = 30% Test for overall effect Z = 5.63 (P < 0.00001) 1.2.3 Auricular acupressure therapy VS other therapy Cai 2.2010 28 91 75 90 2.4% 4.51 [1.23, 16.59] Chen W7 2002 70 76 47 50 2.4% 0.47 [0.18, 3.13] Deng X 2015 28 30 29 30 1.8% 0.49 [0.24, 5.65] Chen W7 2002 70 76 44 55 5.0% 0.49 [0.24, 5.65] Deng X 2016 28 30 2.9 30 1.8% 0.49 [0.24, 5.65] Deng X 2016 28 30 2.9 30 1.8% 0.49 [0.24, 5.65] L IZ 2013 38 50 37 56 8.4% 1.11 [0.47, 3.85] Wang \$2.2018 23 30 2.2 30 4.8% 1.14 [0.47, 3.86] Wang \$2.2018 24 30 2.9 30 5.3% 0.29 [0.50, 5.15] Wang \$2.2018 24 30 2.9 30 5.3% 0.29 [0.50, 5.15] Wang \$2.2018 24 40 0.2% 5.144 40.4% 1.21 [0.61, 1.82] Total events 24 10 356 Heterogenetic, Chr ⁺ = 8.91, dr = 8 (P = 0.35); r ⁺ = 10% Test for overall effect Z = 1.42 (P = 0.15) 1.2.4 Auricular acupressure therapy VS Non-intervention L IS 2013 38 50 30 3.6% 2.32 [0.72, 7.41] Wei B 2017 24 48 2 48 0.2% 25.20 [0.44, 10, 1451; 51] Total events 24 10 Heterogenetic, Chr ⁺ = 1.04, (T = P = 0.15); r ⁺ = 10% Test for overall effect Z = 1.42 (P = 0.16) 1.2.5 Auricular acupressure therapy VS Non-intervention L IS 2013 38 50 70 0.7% 49.61 [13.05, 188.61] Wei B 2017 44 48 2 48 0.2% 25.20 [0.44, 10, 1451; 51] Total events 62 5 Heterogenetic, Chr ⁺ = 1.04, 75, dr = 3.05 (P < 0.00001) Total (95% c] 1820 1722 10.00% 3.58 [2.92, 4.39] Total events 1666 1312 Heterogenetic, Chr ⁺ = 1.04, 75, dr = 5.05 (P < 0.00001) Total (95% c] 1820 07 172 10.00% 3.58 [2.92, 4.39] Total events 1666 1312 Heterogenetic, Chr ⁺ = 1.04, 75, d								
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $								
Wang 6L 2016 28 30 22 30 1.4% 5.09 [0.88, 26.43] Wang 5L 2018 37 40 29 40 21% 4.56 [1.9, 16.34] Wang 5X 2014 56 60 46 50 3.2% 1.22 [0.29, 51.4] Xie HY 2020 29 30 23 30 0.7% 8.83 [1.0], 75.96] Zhang L 2012 77 81 80 94 3.5% 3.37 [1.06, 10.59] Subtool (65% CI) 570 622 33.7% 2.92 [2.01, 4.24] Total events 526 503 Heterogenety, Chi = 18.69 (d = 13 (P = 0.13); P = 30% Test for overall effect $Z = 5.83$ (P < 0.0001) 1.2.3 Auricular acupressure therapy VS other therapy Cal ZL 2010 28 31 25 31 1.5% 2.06 [0.3], 15.66] Li S 2013 33 50 31 55 15 15 15 40 4.8% 1.11 [0.45, 2.75] Li Z 2014 63 70 45 50 5.0% 1.00 [0.30, 3.35] Li Z 2016 23 30 22 30 4.8% 1.11 [0.45, 2.75] Li Z 2016 23 30 22 30 4.8% 1.11 [0.45, 2.75] Li Z 2018 23 30 22 30 4.8% 1.11 [0.45, 2.75] Li Z 2018 23 30 22 30 4.8% 1.11 [0.45, 2.75] Li Z 2018 23 30 22 30 4.8% 1.11 [0.45, 2.75] Heterogenety, Chi = 18.41, df = 6 P = 0.35); P = 10% Test for overall effect $Z = 1.32$ (P = 0.05); P = 10% Test for overall effect $Z = 1.32$ (P = 0.05); P = 10% Test for overall effect $Z = 1.42$ (P = 0.16) 1.2.5 Auricular acupressure therapy VS Non-intervention Li Z 2013 38 50 3 50 0.7% 40.61 [13.05, 188.61] Wei B 2017 44 48 2 48 0.2% 253.00 [44.10, 1451.51] Subtool (65% CI) 98 98 0.0.8% 7.84 [3.06, 3.52 [2.92, 4.39] Total events 62 5 5 Total events 62 5 7 Total (65% CI) 1820 1732 100.0% 3.58 [2.92, 4.39] Total events 166 1312 Heterogenety, Chi = 21.42 (P = 0.0001) Total (65% CI) 1820 1732 100.0% 3.58 [2.92, 4.39] Total events 166 1312 Heterogenety, Chi = 21.42 (P = 0.00001) Total (65% CI) 1820 1732 100.0% 3.58 [2.92, 4.39] Total events 166 1312 Heterogenety, Chi = 10.475 (d = 3.50; C < 0.00001), P = 67% Total events 166 1312 Heterogenety, Chi = 10.475 (d = 3.50; C < 0.00001), P = 67%								
Wang SL 2018 37 40 29 40 2.1% 4.66 [1.19, 18.34] Wang SL 2018 37 40 29 40 2.1% 4.66 [1.19, 18.34] Xie HY 2020 29 30 23 30 0.7% 8.83 [1.01, 76.96] Subtotal (955 C1) 570 622 33.7% 2.92 [2.01, 4.24] Tatal events 526 503 Heterogeneity, Chi# 18.68, of r 13 (P = 0.13); P= 30% Test for overall effect Z = 5.63 (P < 0.0001) 1.2.3 Auricular acupressure therapy VS other therapy Cai ZL 2010 8 91 78 90 2.4% 4.51 [1.23, 16.56] Chen WY 2002 70 76 47 50 4.2% 0.74 [0.16, 3.13] Deng X.2015 28 30 29 30 1.5% 2.48 [0.04, 5.68] Dong TT 2014 15 15 15 15 Not estimable Li H8 2014 31 33 26 31 1.5% 2.98 [0.03, 16.66] Li S 2013 38 50 37 50 8.4% 1.11 [0.45, 275] Li ZY 204 63 70 445 50 50% 1.00 [0.37, 385] Wang SL 2016 23 30 22 30 4.8% 1.14 [0.42, 3.08] Wang SL 2016 30 40 29 40 6.8% 1.14 [0.37, 385] Wang SL 2016 13 30 40 29 40 6.8% 1.14 [0.37, 385] Wang SL 2016 13 30 4.02 9 40 6.8% 1.14 [0.47, 3.08] Wang SL 2016 13 30 3.6% 2.32 [0.72, 7.41] Total events 410 356 Heterogeneity, Chi = 28 (1.47 e.10, 50, 78 = 10% Test for overall effect Z = 1.42 (P = 0.16) 1.2.4 Auricular acupressure therapy VS Non-intervention Li S 2013 38 50 3 50 0.7% 49.61 [13.05, 188.61] Wei S 2017 44 48 2 48 0.2% 253.00 [4.41, 0.1451.51] Total events 41 19 Heterogeneity, Chi = 28 3.07 + 0.00001) Total (95% C1) 98 99 0.8% 87.84 [3.03, 25.21, 95] Total events 62 5 Test for overall effect Z = 1.42 (P = 0.16) 1.2.5 Auricular acupressure therapy VS Non-intervention Li S 2013 38 50 3 50 0.7% 49.61 [13.05, 188.61] Wei S 2017 44 48 2 48 0.2% 253.00 [4.41, 0.1451.51] Total events 62 5 Test for overall effect Z = 1.32 (P = 0.00001) Total (95% C1) 98 99 0.8% 87.84 [3.03, 25.21, 95] Total events 1666 1312 Heterogeneity, Chi = 21.22 (P < 0.00001), P = 67% Test for overall effect Z = 2.5 (0.00001), P = 67% Test for overall effect Z = 2.5 (0.00001), P = 67%								
Wang 9×2014 56 60 46 50 3.2% 1.22 (0.2, 5, 14) Zhang L2012 77 81 60 94 3.5% 3.37 (10, 5, 106) Subtoal (95% C) 570 622 33.7% 2.92 (2.01, 4.24) Total events 526 503 Heterogeneity. Ch ² = 18.86, df = 13 (P = 0.13), P = 30% Test for overall effect $Z = 5.63$ (P < 0.0001) 1.2.3 Auricular acupressure therapy VS other therapy Cai ZL 2010 88 91 78 90 2.4% 4.51 (1.23, 16.58) Chen WY 2002 70 76 47 50 4.2% 0.74 (0.18, 3.13) Deng X 2015 28 30 29 30 1.8% 0.48 (0.04, 5.63) Dong T2014 15 15 15 15 Not estimable U H8 2014 31 33 26 31 1.5% 2.98 (0.53, 16.66) U S 2013 38 50 37 50 8.4% 1.11 (0.45, 2.75) U Z 2004 63 70 45 50 5.0% 1.00 (0.30, 3.35) U C 2021 24 30 28 30 5.3% 0.29 (0.05, 1.55) Wang SL 2016 23 30 22 30 4.8% 1.19 (0.37, 3.85) Wang SL 2018 23 30 22 30 4.8% 1.19 (0.37, 3.85) Wang SL 2018 23 30 22 30 4.8% 1.19 (0.37, 3.85) Wang SL 2018 23 30 22 30 4.8% 1.19 (0.37, 3.85) Wang SL 2018 23 30 22 30 4.8% 1.19 (0.37, 3.85) Wang SL 2018 23 30 32 22 30 4.8% 1.19 (0.37, 3.85) Wang SL 2018 23 30 55 35 0.2% 0.23 (0.72, 7.41) Subtotal (95% C) 30 30 3.6% 2.32 (0.72, 7.41) Total events 24 19 Heterogeneity. Ch ² = 3.81, df = 8 (P = 0.35). ^P = 10% Test for overall effect $Z = 1.42$ (P = 0.16) 1.2.4 Auricular acupressure therapy VS Placebo LL C X 2021 24 30 9 19 30 3.6% 2.32 (0.72, 7.41) Subtotal (95% C) 2 30 19 30 3.6% 2.32 (0.72, 7.41) Subtotal (95% C) 30 30 3.6% 2.32 (0.72, 7.41) Total events 22 5 Heterogeneity. Ch ² = 3.81, df = 8 (P = 0.35). ^P = 10% Test for overall effect $Z = 1.42$ (P = 0.16) 1.2.5 Auricular acupressure therapy VS Non-intervention U S 2013 38 50 0.3 50 0.7% 4.9.61 (12.05, 188.61) Wei B 2017 44 48 2.48 0.2% 52.300 (44.10, 1451.51) Subtotal (95% C) 5 5 Total events 62 5 Heterogeneity. Ch ² = 1.23 (P < 0.0001) Total events 1665 1312 Heterogeneity. Ch ² = 1.23 (P < 0.0001) Total events 1665 1312 Heterogeneity. Ch ² = 1.23 (P < 0.0001)		37						
No HY 2020 29 30 23 30 0.7% 8.83 [101, 76.96] Shabtotal (6% C) 570 622 33.7% 2.92 [2.01, 4.24] Total events 526 503 Heterogeneity, Chrl= 18.63, df = 13 (P = 0.13), P = 30% Test for overall effect $Z = 5.83$ (P < 0.00001) 1.23 Antricular acupressure therapy VS other therapy Cai ZL 2010 88 91 78 90 2.4% 4.51 [1.23, 16.56] Chen WY 2002 70 76 47 50 4.2% 0.74 [0.18, 0.13] Deng X 2015 128 30 29 30 1.6% 0.44 [0.04, 5.63] Dong TT 2014 15 15 15 Not estimable Li H8 2014 31 33 26 31 1.5% 2.29 [0.03, 16.66] Li B 2014 31 33 26 31 1.5% 2.98 [0.03, 16.66] Li B 2013 38 50 37 50 8.4% 1.11 [0.45, 2.76] Li Z 2004 63 70 47 55 05.0% 1.00 [0.30, 3.55] Li Z 2013 30 40 29 40 6.8% 1.14 [0.42, 3.08] Wang SL 2016 33 40 29 40 6.8% 1.14 [0.42, 3.08] Wang SL 2016 33 40 29 40 6.8% 1.14 [0.42, 3.08] Wang SL 2016 30 40 29 40 6.8% 1.14 [0.42, 3.08] Wang SL 2016 33 30 40 29 40 6.8% 1.14 [0.42, 3.08] Wang SL 2016 33 0 40 29 40 6.8% 1.24 [0.63, 1.65] Heterogeneity, Chrl= 31 41, df = 2 (P = 0.35). 1.2.4 Antricular acupressure therapy VS Placebo Lu CX 2021 24 30 19 30 3.6% 2.32 [0.72, 7.41] Total events 410 556 Heterogeneity, Chrl = 30, df = 6 P = 0.35). 1.2.4 Antricular acupressure therapy VS Placebo Lu CX 2021 24 38 50 3 50 0.07% 49.61 [13.05, 188.61] Wei P2 2017 44 48 2 48 0.2% 252.00 [44.10, 14.61.51] Total events 82 5 Total events 82 5 Test for overall effect Z = 0.34 (P = 0.15). P = 57% Test for overall effect Z = 0.33 (P < 0.00001) Total (95% C) 1820 1722 100.0% 3.58 [2.92, 4.39] Total events 82 5 Total events 1665 1312 Heterogeneity, Chrl = 10.47,5, df = 35 (P < 0.00001) Total (95% C) 19 1820 1722 100.0% 3.58 [2.92, 4.39] Total events 1666 1312 Heterogeneity, Chrl = 10.47,5, df = 35 (P < 0.00001)								
Subtotal (95% C) 570 622 33.7% 2.92 [2.01, 4.24] Total events 526 503 Heterogeneity, Ch ²⁺ = 18.68, df = 13 (P = 0.13); P = 30% Test for overall effect Z = 5.63 (P < 0.00001) 1.2.3 Auricular acupressure therapy V Sother therapy Cai ZL 2010 88 91 78 90 2.4% 4.51 [1.23, 16.58] Chen WY 2002 70 76 47 50 4.2% 0.74 [0.18, 3.13] Deng X2015 28 30 29 30 1.8% 0.48 [0.04, 5.68] Dong TT 2014 15 15 15 Not estimable U H8 2014 31 33 26 31 1.5% 2.98 [0.53, 16.66] U S 2013 38 50 37 50 8.4% 1.11 [0.45, 2.75] U ZY 2004 63 70 45 50 5.0% 1.00 [0.30, 3.35] Lu CX 2021 24 30 28 30 5.3% 0.29 [0.05, 155] Wang SL 2016 23 30 22 30 4.8% 1.19 [0.37, 3.85] Wang SL 2016 23 30 22 40 6.6% 1.14 [0.42, 3.08] Subtotal (95% C) 465 416 40.4% 1.21 [0.81, 1.82] Total events 24 19 Heterogeneity: Chi ²⁺ 8.91, df = 8 (P = 0.35); Total events 24 19 Heterogeneity: Not applicable Test for overall effect Z = 1.42 (P = 0.15); Total (95% C) 98 98 0.8% 87.84 [30.63, 221.95] Total events 482 5 Heterogeneity: Not applicable Test for overall effect Z = 1.42 (P = 0.15); Total events 24 19 Heterogeneity: Not applicable Test for overall effect Z = 1.42 (P = 0.15); Total events 24 19 Heterogeneity: Not applicable Test for overall effect Z = 1.42 (P = 0.15); Total events 482 5 Total events 482 5 Heterogeneity: Chi ²⁺ 2.11, df = 1 (P = 0.15); P = 53% Test for overall effect Z = 8.33 (P = 0.00001) Total events 1686 1312 Heterogeneity: Chi ²⁺ 2.12, 9 (P < 0.00001); P = 67% Total events 1686 1312 Heterogeneity: Chi ²⁺ 2.12, 9 (P < 0.00001); P = 67% Test for overall effect Z = 12, 9 (P < 0.00001); P = 67%								
Total events 526 503 Heterogeneity: Ch ²⁺ 18.8, df = 13 (P = 0.13), P = 30% Test for overall effect Z = 5.6 (P < 0.00001) 1.2.3 Auricular acupressure therapy VS other therapy Cai ZL 2010 88 91 78 90 2.4% 4.51 [1.23, 16.58] Chen WY 2002 70 76 47 50 4.2% 0.74 [0.18, 3.13] Deng X 2015 28 30 29 30 1.8% 0.48 [0.04, 5.63] Dong T1 2014 15 15 15 15 15 U B 2014 31 33 26 31 1.5% 2.98 [0.53, 16.66] U H B 2014 31 33 26 31 0.53% 0.048 [0.01, 5.55] U ZY 2004 63 70 45 50 5.0% 1.00 [0.30, 3.35] U ZY 2004 63 70 45 50 5.0% 1.00 [0.30, 3.35] U ZY 2014 63 70 45 50 5.0% 1.00 [0.37, 3.85] Wang SL 2018 23 30 22 30 4.8% 1.19 [0.37, 3.85] Wang SL 2018 23 30 22 40 4.8% 1.19 [0.37, 3.85] Wang SL 2018 23 30 22 40 4.8% 1.21 [0.81, 1.82] Total events 410 356 Heterogeneity: Chi ²⁺ 8.91 df = 8 (P = 0.35); P = 10% Test for overall effect Z = 1.42 (P = 0.15); P = 10% Test for overall effect Z = 1.42 (P = 0.15); P = 10% Test for overall effect Z = 1.42 (P = 0.15); P = 53% Total events 82 5 Total events 82 5 Total events 82 5 Total [95% CL) 1820 1732 100.0% 3.58 [2.92, 4.39] Total events 82 5 Total [95% CL) 1820 1732 100.0% 3.58 [2.92, 4.39] Total events 1666 1312 Heterogeneity, Chi ²⁺ = 11.42 (P = 0.15); P = 53% Test for overall effect Z = 12.29 (P < 0.00001); P = 67% Total (95% CL) 100 100		77		80		3.5%		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			570		622	33.7%	2.92 [2.01, 4.24]	-
Test for overall effect $Z = 5.8$ ($P < 0.0001$) 1.2.3 Auricular acupressure therapy VS other therapy Cai ZL 2010 88 01 78 90 2.4% 4.51 [1.23, 16.58] Chen WY 2002 70 76 47 50 4.2% 0.74 [0.18, 3.13] Deng X 2015 28 30 29 30 1.8% 0.44 [0.04, 5.65] Dong T 2014 15 15 15 15 15 15 15 15 15 15 15 15 15			12 (0.		2004			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Test for overall effect	Z = 5.63 (P	< 0.000	D1)	30%			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1.2.3 Auricular acup	ressure the	erapy VS	other the	erapy			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						2.4%	4.51 [1.23, 16.58]	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		70	76	47	50		0.74 [0.18, 3.13]	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						1.8%		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								
Lu CX 2021 24 30 28 30 5.3% 0.29 [0.05, 1.55] Wang SL 2016 23 30 40 29 40 6.8% 1.19 [0.37, 38.5] Wang SL 2018 30 40 29 40 6.8% 1.14 [0.42, 3.08] Subtotal (95% CI) 465 416 40.4% 1.21 [0.81, 1.82] Total events 410 356 Heterogeneity. Chi ^m = 8.91, df = 8 (P = 0.36); P = 10% Test for overall effect Z = 0.36 (P = 0.36); P = 10% Test for overall effect Z = 0.16) 1.2.4 Auricular acupressure therapy VS Placebo Lu CX 2021 24 30 19 30 3.6% 2.32 [0.72, 7.41] Subtotal (95% CI) 30 50 3.6% 2.32 [0.72, 7.41] Total events 24 19 Heterogeneity. Not applicable Test for overall effect Z = 1.42 (P = 0.16) 1.2.5 Auricular acupressure therapy VS Non-intervention LI S 2013 38 50 3 50 0.7% 49.61 [13.05, 188.61] Wei B 2017 44 48 2 48 0.2% 625.00 (44.10, 1451.51] Subtotal (95% CI) 98 98 0.8% 87.84 [30.63, 251.95] Total events 1666 1312 Heterogeneity. Chi ^m = 104.75, df = 35 (P < 0.00001); P = 67% Test for overall effect Z = 12.29 (P < 0.00001); P = 67% Test for overall effect Z = 12.29 (P < 0.00001); P = 67%								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								
Wang SL 2018 30 40 29 40 6.8% 1.14 [0.42, 3.08] Subtotal [65% C] 465 416 40.4% 1.21 [0.81, 1.82] Total events 410 256 Heterogeneity: Chi ² = 0.91, df = 8 (P = 0.35); P = 10% Test for overall effect Z = 0.94 (P = 0.35) 1.24 Auricular acupressure therapy VS Placebo Lu CX 2021 24 30 19 30 3.6% 2.32 [0.72, 7.41] Subtotal (65% C] 30 30 30 .5% 2.32 [0.72, 7.41] Total events 24 19 Heterogeneity: Not applicable Test for overall effect Z = 1.42 (P = 0.16) 1.25 Auricular acupressure therapy VS Non-intervention Li S 2013 38 50 3 50 0.7% 49.61 [13.05, 188.61] Wei B 2017 44 48 2 48 0.2% 253.0044.10, 1451.51] Subtotal (65% C]) 98 98 0.8% 87.84 [30.63, 251.95] Total events 82 5 Heterogeneity: Chi ² = 2.11, df = 1 (P = 0.15); P = 53% Test for overall effect Z = 8.38 (P < 0.0001); P = 67% Test for overall effect Z = 12.29 (P < 0.00001); P = 67% Test for event 104.75, df = 35 (P < 0.00001); P = 67%								· · · · · · · · · · · · · · · · · · ·
Subical (95% C) 465 416 40.4% 1.21 $(0.81, 1.82)$ Total events 410 356 Heterogeneity, Chi ⁺⁺ 8.91, df = 8 (P = 0.35); P = 10% Test for overall effect Z = 0.94 (P = 0.35); P = 10% Test for overall effect Z = 0.94 (P = 0.35) 1.2.4 Auricular acupressure therapy VS Placebo Lu $(2 \times 2021$ 24 30 19 30 3.6% 2.32 $[0.72, 7.41]$ Subtotal (95% C) 30 30 3.6% 2.32 $[0.72, 7.41]$ Heterogeneity, Not applicable Test for overall effect Z = 1.42 (P = 0.16) 1.2.5 Auricular acupressure therapy VS Non-intervention U S 2013 38 50 3 50 0.7% 49.61 $[13.05, 188.61]$ Wei B 2017 44 48 2 48 0.2% 253 0.044 4.01, 451, 51] Subtotal (95% CI) 98 98 0.8% 87.84 $[30.63, 251.95]$ Total events 22 5 Heterogeneity, Chi ⁺⁺ 2.11, df = 1 (P = 0.15); P = 53% Test for overall effect Z = 1.32 (P = 0.0001) Total (95% CI) 1820 1732 100.0% 3.58 $[2.92, 4.39]$ Total events 1686 1312 Heterogeneity, Chi ⁺⁺ = 104.75, df = 35 (P < 0.00001); P = 67% Test for overall effect Z = 12.29 (P < 0.0001); P = 67%	Wang SL 2018							
Heterogeneity: $Chi^{\mu} = 8.91$, $df = 8 (P = 0.35)$; $P^{\mu} = 10\%$ Test for overall effect $Z = 0.94$ ($P = 0.35$) 1.2.4 Auricular acupressure therapy VS Placebo Lu $CX 2021$ 24 30 19 30 3.6% 2.32 [0.72, 7.41] Subtotal (9% C) 30 30 3.6% 2.32 [0.72, 7.41] Heterogeneity: Not applicable Test for overall effect $Z = 1.42$ ($P = 0.16$) 1.2.5 Auricular acupressure therapy VS Non-intervention Li S 2013 38 50 3 50 0.7% 49.61 [13.05, 188.61] Wei B 2017 44 48 2 48 0.2% 253.00 (144.10, 1451.51] Subtotal (9% C) 98 98 0.8% 87.84 [30.63, 251.95] Total events 1866 1312 Heterogeneity: $Chi^{\mu} = 2.11$, $df = 1$ ($P = 0.15$); $P = 53\%$ Test for overall effect $Z = 12.29$ ($P < 0.00001$); $P = 67\%$ Test for overall effect $Z = 12.29$ ($P < 0.00001$); $P = 67\%$	Subtotal (95% CI)							*
Test for overall effect $Z = 0.94$ (P = 0.35) 1.2.4 Auricular acupressure therapy VS Placebo Lu CX 2021 24 30 19 30 3.6% 2.32 [0.72, 7.41] Subtotal (95% CI) 30 30 30 3.6% 2.32 [0.72, 7.41] Total events 24 19 Heterogeneity. Not applicable Test for overall effect $Z = 1.42$ (P = 0.16) 1.2.5 Auricular acupressure therapy VS Non-intervention Li S 2013 38 50 3 50 0.7% 49.61 [13.05, 188.61] Wei B 2017 44 48 2 48 0.2% 253.00 [44.10, 1451.51] Subtotal (95% CI) 98 98 0.8% 87.84 [30.63, 251.95] Total events 82 5 Heterogeneity. Chi ^m = 2.11, df = 1 (P = 0.15); I ^m = 53% Test for overall effect $Z = 8.33$ (P < 0.0001); I ^m = 67% Total (95% CI) 1820 1732 100.0% 3.58 [2.92, 4.39] Total events 1666 1312 Heterogeneity. Chi ^m = 104.75, df = 35 (P < 0.00001); I ^m = 67% Test for overall effect $Z = 12.29$ (P < 0.00001); I ^m = 67%	Total events		120					
Lu CX 2021 24 30 19 30 3.6% 2.32 [0.72, 7.41] Subtotal [65% C] 30 30 3.6% 2.32 [0.72, 7.41] Total events 24 19 Heterogeneity. Not applicable Test for overall effect 2: 1.42 ($P = 0.16$) 1.2.5 Auricular acupressure therapy VS Non-intervention Li S 2013 38 50 3.50 0.7% 49.61 [13.05, 188.61] Wei B 2017 44 48 2 48 0.2% 625.00 (44.10, 1451.51] Subtotal (65% C] 98 98 0.8% 87.84 [30.63, 251.95] Total events 82 5 Heterogeneity. Chi ^P = 2.11, df = 1 ($P = 0.15$), $P = 53\%$ Test for overall effect Z = 0.33 ($P < 0.00001$), $P = 67\%$ Total (95% CI) 1820 1732 100.0% 3.58 [2.92, 4.39] Total events 1666 1312 Heterogeneity. Chi ^P = 104.75, df = 35 ($P < 0.00001$); $P = 67\%$ Test for overall effect Z = 12.29 ($P < 0.00001$); $P = 67\%$	Heterogeneity: Chi ² = Test for overall effect	8.91, df = 8 Z = 0.94 (P	(P = 0.3 = 0.35)	5); I* = 10	%			
Lu CX 2021 24 30 19 30 3.6% 2.32 [0.72, 7.41] Subtotal [65% C] 30 30 3.6% 2.32 [0.72, 7.41] Total events 24 19 Heterogeneity. Not applicable Test for overall effect 2: 1.42 ($P = 0.16$) 1.2.5 Auricular acupressure therapy VS Non-intervention Li S 2013 38 50 3.50 0.7% 49.61 [13.05, 188.61] Wei B 2017 44 48 2 48 0.2% 625.00 (44.10, 1451.51] Subtotal (65% C] 98 98 0.8% 87.84 [30.63, 251.95] Total events 82 5 Heterogeneity. Chi ^P = 2.11, df = 1 ($P = 0.15$), $P = 53\%$ Test for overall effect Z = 0.33 ($P < 0.00001$), $P = 67\%$ Total (95% CI) 1820 1732 100.0% 3.58 [2.92, 4.39] Total events 1666 1312 Heterogeneity. Chi ^P = 104.75, df = 35 ($P < 0.00001$); $P = 67\%$ Test for overall effect Z = 12.29 ($P < 0.00001$); $P = 67\%$	124 Auricular nous	rassura the	arany Ve	Diacobo				
Subtolal (95% C) 30 30 3.6% 2.32 [0.72, 7.41] Total events 24 19 Test for overall effect Z = 1.42 (P = 0.16) 1.2.5 Autricular acupressure therapy VS Non-intervention Li S 2013 38 50 3 50 0.7% 49.61 [13.05, 189.61] Wel B 2017 44 48 2 48 0.2% 253.00 [44.10, 1451.51] Subtolal (95% C) 82 96 98 0.8% 87.84 [30.63, 251.95] Total events 25 5 Heterogeneity: Chi ^a = 2.11, df = 1 (P = 0.15); f = 53% Test for overall effect Z = 8.3 (P = 0.0001) Total (95% C) 1820 1732 100.0% 3.58 [2.92, 4.39] Total events 1666 1312 Heterogeneity: Chi ^a = 104.75, df = 35 (P < 0.00001); f = 67% Test for overall effect 21 2.29 (P < 0.00001); f = 67%					30	3.6%	2 32 10 72 7 411	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		24		10				-
Heterogeneity: Not applicable Test for overall effect Z = 1.42 (P = 0.16) 1.2.5 Autricular acupressure therapy VS Non-intervention Li S 2013 38 50 3 50 0.7% 49.61 [13.05, 188.61] Wei B 2017 44 48 2 48 0.2% 253.00 [44.10, 1451.51] Subtotal (55% CI) 82 65 98 98 0.8% 87.64 [30.63, 251.95] Total events 25 7 Test for overall effect Z = 8.33 (P = 0.00001) Total [95% CI) 1820 1732 100.0% 3.58 [2.92, 4.39] Total events 1686 1312 Heterogeneity: Chi ² = 104.75, df = 35 (P < 0.00001); P = 67% Test for overall effect Z = 12.29 (P < 0.00001); P = 67%		24		19			(
1.2.5 Auricular acupressure therapy VS Non-intervention U S 2013 38 50 3.50 0.7% 49.61 [13.05, 188.61] Wei B 2017 44 48 2.48 0.2% 253.00 (44.10, 1451.51] Subtotal (95% CI) 98 98 0.8% 87.84 [30.63, 251.95] Total events 82 5 Heterogeneily: Chi ^a = 2.11, d= 1 (P = 0.15); P = 53% Total (95% CI) 1820 1732 Total events 1866 1312 Heterogeneily: Chi ^a = 104.75, d= 35; (P < 0.00001); P = 67%	Heterogeneity: Not a							
LIS 2013 38 50 3 50 0.7% 49.61 [13.05, 188.61] Wei B 2017 44 48 2 48 0.2% 625.00 [44.0, 1451.51] Subtotal (5% C) 98 98 0.8% 87.84 [30.63, 251.95] Total events 92 5 Heterogeneity: Chi ² = 2.11, df = 1 (P = 0.15); i ² = 53% Test for overall effect Z = 0.33 (P < 0.00001); i ² = 63% Total (95% Cl) 1820 1732 100.0% 3.58 [2.92, 4.39] Total events 1666 1312 Heterogeneity: Chi ² = 104.75, df = 35 (P < 0.00001); i ² = 67% Test for overall effect Z = 12.29 (P < 0.00001); i ² = 67% Test for overall effect Z = 12.29 (P < 0.00001); i ² = 67%	Test for overall effect	Z=1.42 (P	= 0.16)					
LIS 2013 38 50 3 50 0.7% 49.61 [13.05, 188.61] Wei B 2017 44 48 2 48 0.2% 625.00 [44.0, 1451.51] Subtotal (5% C) 98 98 0.8% 87.84 [30.63, 251.95] Total events 92 5 Heterogeneity: Chi ² = 2.11, df = 1 (P = 0.15); i ² = 53% Test for overall effect Z = 0.33 (P < 0.00001); i ² = 63% Total (95% Cl) 1820 1732 100.0% 3.58 [2.92, 4.39] Total events 1666 1312 Heterogeneity: Chi ² = 104.75, df = 35 (P < 0.00001); i ² = 67% Test for overall effect Z = 12.29 (P < 0.00001); i ² = 67% Test for overall effect Z = 12.29 (P < 0.00001); i ² = 67%	A 2 E Ausiouls	FOR DUED IT.	FORM LIC	Non inte	nuont's			
Wei B 2017 44 48 2 48 0.2% 263.00 (44.10, 1451.51) Subtotal (95% CI) 98 98 0.8% 87.84 (30.63, 251.95) Image: Comparison of the comparison of t	1.2.5 Auricular acup	ressure the	anapy VS	Non-Inte	se fo	0.7%	40 61 112 05 100 041	
Subtolal (65% CI) 98 98 0.8% 87.84 [30.63, 251.95] Total events 82 5 Heterogeneity: Chi ² = 2.11, df = 1 (P = 0.15); i ² = 53% Test for overall effect Z = 0.33 (P < 0.00001) Total (95% CI) 1820 1732 100.0% 3.58 [2.92, 4.39] Total events 1666 1312 Heterogeneity: Chi ² = 104.75, df = 35 (P < 0.00001); i ² = 67% Test for overall effect Z = 12.29 (P < 0.00001); i ² = 67% Test for overall effect Z = 12.29 (P < 0.00001); i ² = 67%								
Total events 82 5 Heterogeneity: Chi [™] = 2.11, df = 1 (P = 0.15); P = 53% Test for overall effect Z = 8.33 (P < 0.0001)		44		2		0.2%	87.84 [30.63. 251.95]	
Heterogeneity, Chi ^m = 2.11, df = 0.15); i ^m = 53%, Testfor overall effect Z = 8.33 (P < 0.00001) Total (95% Cl) 1820 1732 100.0% 3.58 [2.92, 4.39] Total events 1666 1312 Heterogeneity, Chi ^m = 104.75, df = 35 (P < 0.00001); i ^m = 67%, Testfor overall effect Z = 12.29 (P < 0.00001); i ^m = 67%, Testfor overall effect Z = 12.29 (P < 0.00001); i ^m = 67%, Testfor overall effect Z = 12.29 (P < 0.00001); i ^m = 67%, Testfor overall effect Z = 12.29 (P < 0.00001); i ^m = 67%, Testfor overall effect Z = 12.29 (P < 0.00001); i ^m = 67%, Testfor overall effect Z = 12.29 (P < 0.00001); i ^m = 67%, i ^m = 10, i ^m =	Total events	82		5				
Test for overall effect. Z = 8.33 (P < 0.00001)	Heterogeneity: Chi ² =	2.11, df = 1	(P = 0.1	5); I* = 53	96			
Total events 1666 1312 Heterogeneity: Chi²= 104,75, df = 35 (P < 0.00001); P = 67%	Test for overall effect	Z = 8.33 (P	< 0.000	D1)				
Total events 1666 1312 Heterogeneity: Chi²= 104,75, df = 35 (P < 0.00001); P = 67%			1000	1	700			
Heterogeneity: ChiP = 104,75, df = 35 (P < 0.00001); P = 67% Test for overall effect: Z = 12.29 (P < 0.00001) Test for overall effect: Z = 12.29 (P < 0.00001)			1820		732 1	00.0%	3.58 [2.92, 4.39]	•
Test for overall effect: Z = 12.29 (P < 0.00001)			25 15		17 - 01	704		
Test for subarous differences: ChP = 69.78. df = 4 (P < 0.00001). P = 94.3% Favours [control] Favours [experimental]					, r= 6	1 70		
	Test for subgroup dit	ferences: 0	hi ² = 60	78. df = 4	(P < 0 (00001)	P = 94.3%	Favours [control] Favours [experimental]
	restion suburbub un	iorenices. C		0. ui – 4	a ~ U.U	500013.	- 34.370	

However, there was no significant difference in VAS score when AA alone compared to other therapy (MD = -0.99, 95%CI: [-2.69, 0.72], P=0.26, $I^2 = 92\%$) (Figure 5).

3.4.2 Secondary outcomes

3.4.2.1 Short-form menstrual distress questionnaire

Meta-analysis of two studies regarding MDQs showed that no significant difference in MDQs was found between the experimental group and control group (SMD = -0.58, 95%CI: [-1.26, 0.10], P= 0.10, I^2 = 79%), (Figure 6).

3.4.2.2 Symptom scores

Eleven RCTs investigated the effects of AA on symptom scores. Meta-analysis result revealed that, overall, experimental group presented a greater reduction in symptom scores compared to the control group (SMD = -0.85, 95%CI: [-1.28, -0.43], P<0.0001, I² = 91%). Results of subgroup analysis indicated that AA showed a significant improvement in symptom scores when compared to analgesics (SMD = -0.60, 95%CI: [-0.81, -0.39], P<0.00001, I² = 0%), placebo (SMD = -0.97, 95%CI: [-1.51, -0.43], P=0.0004, I² = not

	Experiment		Control		Mean Difference	Mean Difference	
Study or Subgroup				al Weight	IV, Random, 95% CI	IV, Random, 95% CI	
1.3.1 Auricular acu							
Li YM 2018	3.14 1.94	50 5.04		0 7.3%	-1.90 [-2.60, -1.20]		
Qiao L 2017	3.05 1.01	20 3.75		0 6.6%	-0.73 [-1.52, 0.06]		
Zhang ZY 2017	1.4 0.59	65 3.19		5 13.0%		-	
Subtotal (95% CI) Heterogeneity: Tau ²	- 0.10: Obi2 - 6.7	135 3 df = 2 /P =	13		-1.55 [-2.14, -0.96]	-	
Test for overall effect			0.03),1 = /1	70			
1.3.2 Auricular acu	pressure therapy	+ other ther	apy VS Othe	r therapy			
Xie HY 2020	1.64 0.62	30 3.26			-1.62 [-2.06, -1.18]		
Yu F 2022	3.52 0.74				-1.35 [-1.72, -0.98]	+	
Subtotal (95% CI)		80			-1.46 [-1.75, -1.18]	•	
Heterogeneity: Tau ²			$0.36); ^2 = 0^4$	6			
Test for overall effect	t: Z = 10.03 (P < 0	.00001)					
1.3.3 Auricular acu	pressure therapy	VS Other th	erapy				
Liu HQ 2014	3.56 1.53	60 5.73		0 10.5%	-2.16 [-2.58, -1.74]		
Lu CX 2021	5.13 1.01	30 5.03	2 9.16 3	0 0.7%	0.11 [-3.19, 3.41]		
Mejías-Gil E 2021	3.19 1.18			2 7.7%	-0.21 [-0.88, 0.46]		
Subtotal (95% CI)		111		2 18.9%	-0.99 [-2.69, 0.72]		
Heterogeneity: Tau [*]			< 0.00001);	°= 92%			
Test for overall effect	$T_{\rm c} = 1.13 \ (P = 0.2)$	(6)					
1.3.4 Auricular acu	pressure therapy	VS Placebo					
Lu CX 2021	5.13 1.009	30 6.503	3 1.38 3	0 8.3%	-1.37 [-1.98, -0.76]		
Mejías-Gil E 2021	3.19 1.18	21 4.8	6 0.85	2 8.3%	-1.41 [-2.03, -0.79]		
Yeh ML 2013	2.03 2.02	50 3.36			-1.33 [-2.25, -0.41]		
Subtotal (95% CI)		101			-1.38 [-1.77, -0.99]	•	
Heterogeneity: Tau ²			0.99 ; $ ^2 = 0^9$	6			
Test for overall effect	t: Z = 6.88 (P < 0.0	10001)					
1.3.5 Auricular acu	pressure therapy	VS Non-inte	rvention				
Kim N Y 2015	4.31 2.61	18 6.15		9 3.0%	-1.84 [-3.27, -0.41]		
Mejías-Gil E 2021	3.19 1.18	21 4.63	2 1.02 2	2 7.8%	-1.43 [-2.09, -0.77]		
Subtotal (95% CI)		39	4	1 10.8%	-1.50 [-2.10, -0.90]	•	
Heterogeneity: Tau ²			0.61); 2 = 04	6			
Test for overall effect	t: Z = 4.91 (P < 0.0	10001)					
Total (95% CI)		466	47	0 100.0%	-1.45 [-1.73, -1.17]	•	
Heterogeneity: Tau ²	= 0.14: Chi ² = 36.					- <u>t-</u> t-t-t-t-	
Test for overall effect						 -4 -2 0 2 Favours [experimental] Favours [continued on the second second	4
Test for subaroup d	ifferences: Chi ² = 1	0.55. df = 4 (P = 0.97). I ² =	0%		Favours (experimental) Favours (cont	0I]
t plot for VAS sco	oro						

applicable), and non-intervention (SMD = -2.74, 95%CI: [-3.30, -2.18], P<0.0001, I^2 = not applicable). Moreover, AA plus other therapy significantly improving symptom scores compared to other therapy used alone (SMD = -1.13, 95%CI: [-1.79, -0.47], P=0.0008, I^2 = 90), while no difference in symptom scores between the patients receiving AA and other therapy alone (SMD = 0.21, 95%CI: [-0.63, 1.05], P=0.62, I^2 = 81%) (Figure 7).

3.4.2.3 Serum nitric oxide level

Two RCTs reported the serum NO level. Meta-analysis results suggested no difference in serum NO level was determined in the experimental group than that in the control group (SMD = 0.77, 95%CI: [-0.39, 1.92], P =0.19, I² = 89%) (Figure 8).

3.4.3 Adverse events

One study (20) assessed the safety by laboratory examination, and recorded that there was no adverse event occurred during the treatment courses both in the experimental group and control group. Adverse event was not mentioned in the other studies.

3.4.4 Publication bias

To assess the publication bias for primary and secondary outcomes, Begg's test and Egger's test were applied in this study. As depicted in Supplementary eTable 2, we found that there could be publication bias for total effective rate by using Begg's test (P=0.018). The remain P values calculated by using Begg's test were more than 0.05, which indicated that the publication bias was not evident.

4 Discussions

Despite dysmenorrhea is considered to be a problem that plagues most women and girls, they show resistance and unwillingness to take medications. To resolve this clinical concern, large numbers of studies were conducted in order to explore an effective and simple approach. It has been suggested in previous studies that AA exerts a great impact on improving dysmenorrhea (50), while relevant evidence is still scarce. To the best of our knowledge, this is first systematical review and metaanalysis to determine whether AA was effective for the treatment of dysmenorrhea.

The findings of the present meta-analysis suggested that, overall, AA could significantly increase cured rate and total effective rate, decrease VAS score and symptom scores, which provided evidence that AA would be an effective method to improve symptoms for patients suffered from dysmenorrhea. Nevertheless, patients receiving AA showed no significant

improvement in MDQs and serum NO level compared to those in the control list. Results of subgroup analysis based on different comparators, we found that AA was superior to analgesics, including Indomethacin (19, 28, 32, 35, 41, 42, 49), Ibuprofen (25, 35), Fenbid (42), Atropine (32), and Lumina (32), and non-invention for patients with dysmenorrhea in cured rate, total effective rate, VAS score, and symptom scores. It could be explained that analgesics only showed temporary improvement in pain symptoms, which was not fundamentally beneficial to prevent and treat dysmenorrhea. Meanwhile, AA presented positive effects on dysmenorrhea due to its regulation of qi and blood, and Yin and Yang. However, AA showed no significant improvement in cured rate, total effective rate, VAS score, and symptom scores compared to other therapies, including Chinese herb, acupuncture, external application of Chineseherbal medicine, moxibustion, auricular needle, and health education. Due to the temporary effect of analgesics on pain reduction, it would recur at the next menstrual cycle.

Dissimilarly, AA alleviated pain through adjusting internal pathological state, such as rebalancing Yin and Yang, replenishing qi and blood and so on, to achieve fundamental pain improvement. Therefore, AA presented greater benefits in cured rate, total effective rate, and pain reduction than analgesics, while the other therapies, except for analgesics, also exhibited the same adjustive effects as AA, hence no difference in efficacy and symptomatic improvement was detected between them for dysmenorrhea patients.

Our findings revealed that a significantly higher total effective rate and cured rate were observed, when patients treated with AA combined with other therapy compared to those receiving AA alone. Moreover, the effect size of total effective rate was greater than that of the cured rate. It might be the reason that effective cases were more than cured cases in the two groups, which would result in a more detectable and significant statistical difference in total effective rate than cured rate. Notably, placebo control was set in the 4 studies, of which 2 performed with no seed (15, 17), one conducted with sham-needle (40) and the another used shamacupoint (16). The meta-analysis for VAS scores indicated that patients receiving AA showed a significant lower VAS score than those treated with placebo. However, meta-analysis of two studies (13, 14) demonstrated that AA showed no significant reduction in MDQs scores when compared to placebo, and a similar result of total effective rate between AA and placebo was reported in only one study (40). Among included studies, the number of studies comparing the effects of AA to placebo was smaller, which would lead to a limited result. Additionally, meta-analysis results demonstrated that AA did not significantly adjust serum NO levels so studies on the mechanisms of AA on dysmenorrhea were needed. With respect to safety, it was only reported in one included study and no adverse event was described. Because AA was a non-invasive and non-pharmacological treatment, it caused few adverse events. Additionally, the factors for dysmenorrhea were variable, and the pathologies were also different between primary and secondary dysmenorrhea. In the present study, we included the trials regarding the two types of dysmenorrhea. Hence, it would be better to conduct studies to identify the effects of AA for dysmenorrhea with different pathologies in the future.

There are several limitations. Firstly, the auricular acupoints, times, and courses were selected without a consolidated standard in the included studies, which could cause clinical heterogeneities. Secondly, girls and women of reproductive age were enrolled in the most included studies, so it was difficult to exclude the individual factors at the patient level. Thirdly, random and blind methods were rarely reported in the included studies, which would contribute to risks of bias. Fourthly, there were only 4 trials regarding the comparator between AA and non-intervention, which led to a weak support to AA. Fifthly, most of the included studies reported in Chinese, hence there might be a language bias. Given the limitations of this study, future studies should be carried out strictly based on standard reporting guidelines such as CONSORT and more RCTs should focus on evaluating the therapeutic effects of AA on patients with dysmenorrhea compared to placebo.

5 Conclusions

The encouraging evidence of this study indicates that, overall, AA is an effective and potential safety therapy for the management of dysmenorrhea, including increasing cured rate and total effective rate, and improving VAS, and symptom scores. Nevertheless, AA showed no significant improvement in serum NO and MDQs. After subgroup analysis by different comparators, it is furtherly found that AA used alone is superior to analgesics and non-intervention regarding cured rate, total effective rate, VAS, and symptom scores. Furthermore, the same superiorities are observed when AA serves as an adjunctive strategy to other therapy. However, AA alone has little effect on them compared to other therapies, and there is no definite conclusion on the benefits of AA compared to placebo for patients with dysmenorrhea. Rigorous RCTs designed with blinded and sham-controlled are warranted to confirm these findings.

Data availability statement

The original contributions presented in the study are included in the article/Supplementary Material. Further inquiries can be directed to the corresponding author.

Author contributions

XK and YG designed the study. XK and HF performed the literature searches. XK and HF selected the studies. XK and HF extracted the data. XL and YZ completed the statistical analyses. XL, YZ, and YG revised the manuscript. All authors contributed to the article and approved the submitted version.

Funding

This study was supported by General project of Hangzhou health and family planning science and technology plan (B20200474).

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated

References

1. Gutman G, Nunez AT, Fisher M. Dysmenorrhea in adolescents. Curr Probl Pediatr Adolesc Health Care (2022) 52(5):101186. doi: 10.1016/j.cppeds.2022.101186

2. McKenna KA, Fogleman CD. Dysmenorrhea. Am Fam Physician. (2021) 104 (2):164–70.

3. Kho KA, Shields JK. Diagnosis and management of primary dysmenorrhea. JAMA (2020) 323(3):268-9. doi: 10.1001/jama.2019.16921

4. Cha NH, Sok SR. Effects of auricular acupressure therapy on primary dysmenorrhea for female high school students in south Korea. J Nurs Scholarsh. (2016) 48(5):508–16. doi: 10.1111/jnu.12238

5. Guo Y, Liu FY, Shen Y, Xu JY, Xie LZ, Li SY, et al. Complementary and alternative medicine for dysmenorrhea caused by endometriosis: A review of utilization and mechanism. *Evid Based Complement Alternat Med* (2021) 2021:6663602. doi: 10.1155/2021/6663602

6. Chen L, Wu X, Chen X, Zhou C. Efficacy of auricular acupressure in prevention and treatment of chemotherapy-induced nausea and vomiting in patients with cancer: A systematic review and meta-analysis. *Evid Based Complement Alternat Med* (2021) 2021:8868720. doi: 10.1155/2021/8868720

7. Wang Y, Zhang J, Jin Y, Zhang Q. Auricular acupressure therapy for patients with cancer with sleep disturbance: A systematic review and meta-analysis. *Evid Based Complement Alternat Med* (2021) 2021;3996101. doi: 10.1155/2021/3996101

8. You E, Kim D, Harris R, D'Alonzo K. Effects of auricular acupressure on pain management: A systematic review. *Pain Manag Nurs.* (2019) 20(1):17–24. doi: 10.1016/j.pmn.2018.07.010

9. Liu M, Tong Y, Chai L, Chen S, Xue Z, Chen Y, et al. Effects of auricular point acupressure on pain relief: A systematic review. *Pain Manag Nurs.* (2021) 22 (3):268–80. doi: 10.1016/j.pmn.2020.07.007

10. Page MJ, McKenzie JE, Bossuyt PM, Boutron I., Hoffmann T. C., Mulrow C. D, et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. *BMJ* (2021) 372:n71. doi: 10.1136/bmj.n71

11. Gao X, Zhang Y, Zhang Y, Ku Y, Guo Y. Electroacupuncture for gastrointestinal function recovery after gynecological surgery: A systematic review and meta-analysis. *Evid Based Complement Alternat Med* (2021) 2021:8329366. doi: 10.1155/2021/8329366

12. Moos RH. The development of a menstrual distress questionnaire. Psychosom Med (1968) 30(6):853-67. doi: 10.1097/00006842-196811000-00006

13. Higgins JP, Altman DG, Gøtzsche PC, Jüni P., Moher D., Oxman A. D., et al. The cochrane collaboration's tool for assessing risk of bias in randomised trials. *BMJ* (2011) 343:d5928. doi: 10.1136/bmj.d5928

14. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. *BMJ* (2003) 327(7414):557–60. doi: 10.1136/bmj.327.7414.557

15. Wang MC, Hsu MC, Chien LW, Kao CH, Liu CF. Effects of auricular acupressure on menstrual symptoms and nitric oxide for women with primary dysmenorrhea. *J Altern Complement Med* (2009) 15(3):235–42. doi: 10.1089/acm.2008.0164

16. Yeh ML, Hung YL, Chen HH, Wang YJ. Auricular acupressure for pain relief in adolescents with dysmenorrhea: A placebo-controlled study. *J Altern Complement Med* (2013) 19(4):313–8. doi: 10.1089/acm.2011.0665

17. Mejías-Gil E, Garrido-Ardila EM, Montanero-Fernández J, Jiménez-Palomares M, Rodríguez-Mansilla J, González López-Arza MV. Kinesio taping organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/ fendo.2022.1016222/full#supplementary-material

vs. auricular acupressure for the personalised treatment of primary dysmenorrhoea: A pilot randomized controlled trial. *J Pers Med* (2021) 11 (8):809. doi: 10.3390/jpm11080809

18. Kim NY, Kim MA, Choi SE. Effects of auricular acupressure on menstrual pain, difficulties in daily life, negative feelings and autonomic nervous responses in female college students. *J.jpn.soc.powder Powder Metallurgy* (2015) 17(2):159–68. doi: 10.7586/jkbns.2015.17.2.159

19. Zhang ZY. Analysis of curative efficacy of auricular point sticking on primary dysmenorrhea of college students. *Good Health All* (2017) 11(11):38.

20. Han DM, Lian YL. Clinical efficacy of analgesic prescription combined with auricular plaster therapy for dysmenorrhea. *J Army Med Univ* (2016) 38(14):1698–700. doi: 10.16016/j.1000-5404.201602095

21. Cai ZL. Observation on therapeutic effect of sticking auricular points on 91 cases of primary dysmenorrhea. *Gansu Med J* (2010) 29(01):55–7. doi: 10.15975/j.cnki.gsyy.2010.01.006

22. Xie HY, Zhang ZY. Clinical study on shaofu zhuyu decoction and auricular acupoint pressing pills in treating primary dysmenorrhea of cold coagulation and stasis type. *Guangming J Chin Med* (2020) 35(15):2322–4.

23. Yang XY. Clinical observation on 150 cases of primary dysmenorrhea treated by auricular point sticking and pressing. *J Handan Med Coll* (1996) (02):165-6.

24. Liu YY, Ai Z, Xi YF, et al. Observation on the curative effect of different acupuncture methods on dysmenorrhea of endometriosis. *Hubei J Traditional Chin Med* (2009) 31(07):53–4.

25. Li YM, Liu YC, Zhou CR. Observation on the curative effect of auricular point sticking on female dysmenorrhea, inner Mongolia. *J Traditional Chin Med* (2018) 37(08):94+124. doi: 10.16040/j.cnki.cn15-1101.2018.08.065

26. Li ZY, Li J. 70 cases of dysmenorrhea treated by auricular point sticking and pressing. *Shaanxi J Traditional Chin Med* (2004) (06):546–7.

27. Deng X, Xue X, Peng GR, Chen C, Wang PA, Guo X, et al. Therapeutic observation of acupuncture plus auricular point sticking for primary dysmenorrhea. *Shanghai J Acupuncture Moxibustion* (2015) 34(10):955–7. doi: 10.13460/j.issn.1005-0957.2015.10.0955

28. Wei B, Min W, Dong ZZ, Chen YZ, Zhang BF, Zhi Y. Therapeutic observation of auricular point sticking for primary dysmenorreha in college students. *Shanghai J Acupuncture Moxibustion* (2017) 36(02):167–70. doi: 10.13460/j.issn.1005-0957.2017.02.0167

29. Wang SL. Clinical observation on the treatment of primary dysmenorrhea by pressing beans on ear points and external application of traditional Chinese medicine. *J Pract Traditional Chin Med* (2018) 34(11):1401.

30. Li HB, Zhong Y, Lin XH, Zhou XY, Zhang L. Comparison of therapeutic effects on primary dysmenorrhea treated by auricular point sticking and tianqi tongjing capsules. *J Clin Acupuncture Moxibustion* (2014) 30(12):27–9.

31. Li S, Xu YF, Chen WY, Lin FL. Effect of auricular plaster combined with health education on female college students with primary dysmenorrhea. *Maternal Child Health Care China* (2013) 28(31):5120–2. doi: 10.7620/zgfybj.j.issn.1001-4411.2013.28.08

32. Chen WY. Comparative observation on the curative effect of auricular point sticking and pressing method and Chinese and Western medicine in the treatment of dysmenorrhea. *Chin J Clin* (2002) 2020(02):43.

33. Chen JJ. Clinical analysis of 30 cases of primary dysmenorrhea treated by pressing seeds on ear points and shaofu zhuyu decoction. *China's Naturopathy* (2017) 25(07):68–9. doi: 10.19621/j.cnki.11-3555/r.2017.07.053

34. Dong TT, Cao M, Feng YY, Hu XY, Zheng YF, Wang Y, et al. A comparative study on the efficacy of acupuncture, moxibustion and pressing beans on ear points in the treatment of 45 cases of dysmenorrhea of qi stagnation and blood stasis type. *Chin J Ethnomedicine Ethnopharmacy* (2014) 23(17):30+33.

35. Hu SQ. Observation on the curative effect and mechanism of embedding beans in ear points on patients with primary dysmenorrhea. *Chin Rural Health Service Administration* (2015) 35(05):655–7.

36. Ma XY. Analysis on the improvement of symptoms of primary dysmenorrhea in college students treated with auricular plaster. *Chin Community Doctors* (2019) 35(25):88. doi: 10.3969/j.issn.1007-614x.2019.25.061

37. Liu HQ, Guo XM. Evaluation of clinical curative effect of auricular plaster therapy in treating dysmenorrhea. *Chin Community Doctors* (2014) 30(20):106–7. doi: 10.3969/j.issn.1007-614x.2014.20.64

38. Lu YY. Observation on the curative effect of auricular point embedding technique in primary dysmenorrhea. *Chin Community Doctors* (2012) 14(34):239–40. doi: 10.3969/j.iSSn.l007-6l4x.20l2.34.222

39. Gao GY. 48 cases of primary dysmenorrhea treated with duyiwei capsule combined with auricular plaster. *China Pharm* (2014) 23(08):78–9.

40. Lu CX, Deng XJ, Chen M, Chen M, Xiao CH, Cui J, et al. Different stimulation methods on auricular points for primary dysmenorrhea: A randomized controlled trial. *Chin Acupuncture Moxibustion* (2021) 41(07):737-41. doi: 10.13703/j.0255-2930.20200531-k0002

41. Wu RD, Zhang HD, Lin LF. Observation on ear point taping and pressing therapy for treatment of primary dysmenorrhea. *Chin Acupuncture Moxibustion* (2007) 11):815-7. doi: 10.13703/j.0255-2930.2007.11.00

42. Liu ZP. Observation on curative effect of auricular point pressing therapy on primary dysmenorrhea. J Emergency Traditional Chin Med (2006) 12):1350–1.

43. Zhang L, Wang LX, Wang F. Observations on the therapeutic effect of fenbid curing primary dysmenorrhea combined with ear-point applying and pressing on eighty-one cases. *Chin J Gen Pract* (2012) 10(05):711+732. doi: 10.16766/j.cnki.issn.1674-4152.2012.05.068

44. Yu F, Liang R, Yang J, Shen J. Effect of health education combined with auricular plaster on female college students with primary dysmenorrhea. *Women's Health Res* (2022) 2022(1):62–3.

45. Kong AJ. Curative effect analysis of auricular application pressure combined with Chinese medicine in treatment of 50 cases with dysmenorrhea. *China Foreign Med Treat* (2016) 35(06):148–9. doi: 10.16662/j.cnki.1674-0742.2016.06.148

46. Wang SL, Li SQ, He CH. Clinical observation of ear acupoint bean pressing therapy combined with acupoint sticking therapy in treating primary dysmenorrheal. *Clin J Chin Med* (2016) 8(18):63–4. doi: 10.3969/j.issn.1674-7860.2016.18.029

47. Liu YD, Su LH, Pei GQ, Wang F. Clinical efficacy of luo's dysmenorrhea prescription plus auricular acupoint pressing therapy on primary dysmenorrhea of the qizhi xueyu type. *Clin J Chin Med* (2016) 8(31):63–4. doi: 10.3969/j.issn.1674-7860.2016.31.028

48. Wang XX, Yu LN, Yu BY. Clinical research on danggui shaoyao decoction granule infusion and auricular application treatment of functional dysmenorrhea. *Acta Chin Med* (2014) 29(10):1536-8. doi: 10.16368/j.issn.1674-8999.2014.10.031

49. Qiao L, Qiao YY, Zhang WD, Xue P. Screening of the best scheme of acupuncture and moxibustion for the treatment of primary dysmenorrhea. J External Ther Traditional Chin Med (2017) 26(02):29–31.

50. Wang YJ, Hsu CC, Yeh ML, Lin JG. Auricular acupressure to improve menstrual pain and menstrual distress and heart rate variability for primary dysmenorrhea in youth with stress. *Evid Based Complement Alternat Med* (2013) 2013:138537. doi: 10.1155/2013/138537