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Feeding and growth are two closely related and important physiological processes

in living organisms. Studies in mammals have provided us with a series of

characterizations of neuropeptides and their receptors as well as their roles in

appetite control and growth. The central nervous system, especially the

hypothalamus, plays an important role in the regulation of appetite. Based on

their role in the regulation of feeding, neuropeptides can be classified as orexigenic

peptide and anorexigenic peptide. To date, the regulation mechanism of

neuropeptide on feeding and growth has been explored mainly from

mammalian models, however, as a lower and diverse vertebrate, little is known

in fish regarding the knowledge of regulatory roles of neuropeptides and their

receptors. In recent years, the development of omics and gene editing technology

has accelerated the speed and depth of research on neuropeptides and their

receptors. These powerful techniques and tools allow a more precise and

comprehensive perspective to explore the functional mechanisms of

neuropeptides. This paper reviews the recent advance of omics and gene

editing technologies in neuropeptides and receptors and their progresses in the

regulation of feeding and growth of fish. The purpose of this review is to contribute

to a comparative understanding of the functional mechanisms of neuropeptides in

non-mammalians, especially fish.
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UCN3, urocortin 3; UI, urotensin I.
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1 Introduction

In recent ten years, the rapid development of omics

technology has introduced us to the era of big data. The omics

technology consists of four major groups, namely genomics,

transcriptomics, proteomics and metabolomics (1). Genomics

studies the genetic structure composition of biological systems

(2); transcriptomics is about gene transcription in cells and the

regulation of transcription at the overall level (3); proteomics

investigates the proteins expressed by biological systems and

their differences caused by external stimuli (4); and

metabolomics examines the changes of metabolites produced

by organisms under different conditions (5). Just as in the

functional study of other target genes, the application of omics

technology in the functional study of neuropeptides and their

receptors also provides a large amount of data, opening up new

directions for research in this field.

The establishment of gene editing technology is a landmark

event in the life sciences. The success of specifically targeting

DNA at any given location within the genome has enabled many

interesting possibilities that have inspired scientists for decades.

A variety of methods have been used in genetic engineering to

modify DNA sequences in the genome. Gene targeting and gene

trapping are two techniques for constructing knockout animals

from embryonic stem cells (6). Gene targeting replaces the

endogenous gene by homologous recombination to knock out

the target gene, while gene trapping has two methods, promoter

trapping and polyA trapping (7, 8). With the continuous

development of life science, researchers have successively

developed zinc finger nucleases (ZFNs) (9), transcription

activator-like effector nucleases (TALENs) (10), and clustered

regularly spaced short palindromes Repeat-CRISPR-associated 9

(CRISPR/Cas9) (11), which have provided a broad range of

efficient tools for life and medical research.

Omics and gene editing approaches have been employed in

the study of the mechanisms by which neuropeptides and their

receptors regulate feeding and growth. For vertebrates, the ability

to regulate food intake based on the energy storage status of the

body is essential for growth and even survival. The physiological

mechanisms controlling feeding and growth are relatively

conserved in vertebrates, and many of the neuropeptides that

centrally regulate feeding and growth in mammals have been

identified successively in fish (12, 13). Fish are an extremely

diverse group of species with great differences in their ecological

niches, habitats, life histories and feeding behaviors at different life

stages (14). In fish, many neuropeptides involved in feeding

regulation have been isolated or their protein sequences have

been deduced by cloning their cDNA sequences. Neuropeptide Y

(NPY), isolated firstly from porcine brain, is a strong orexigenic

neuropeptide in the hypothalamus (15), and other feeding-

promoting neuropeptides such as orexin and ghrelin have also

been identified in fish (16, 17). Somatostatin (SS) has been firstly
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known to inhibit the secretion of pituitary growth hormone (GH)

and is later found to have feeding inhibitory effects as well (18).

Other feeding-inhibiting neuropeptides, proopiomelanocortin

(POMC) (19), corticotropin-releasing factor (CRF) (20),

cholecystokinin (CCK) (21), and etc., have also been identified

in fish. These neuropeptides act as feeding regulators by binding

to the corresponding receptors and activating downstream

signaling pathways, and the interactions between these

neuropeptides have also been shown to regulate feeding in fish

(22, 23).

Our objectives are firstly, to review the application and

development of omics and gene editing technologies in the

field of functional studies of neuropeptides and their receptors;

secondly, to summarize the research progress of neuropeptides

involved in fish feeding and growth regulation, focusing on their

different types, distribution patterns and functional effects

mediated by different receptors.
2 Neuropeptidomics and
gene editing

2.1 Neuropeptidomics related to
neuropeptides and relevant receptors

Neuropeptide research has been greatly promoted in recent

years, due to the rapid emergence of omics technologies.

Neuropeptides are mainly dependent on the corresponding

receptors for executing their function. Therefore, the next

section will explore the recent advances in the omics of

neuropeptide and its receptors (Table 1 for detail).

2.1.1 Transcriptomics
Since the 1990s, transcriptomics technology has entered a

period of vigorous development and has undergone Generation 1,

2 and 3 sequencing technologies, which have been widely used in

biological, medical and clinical research as well as drug development

(83). This technology has also been widely used in the study of

neuropeptides, especially playing an important role in exploring the

functions andmechanisms. Neuropeptides have been shown to play

an important role in the regulation of physiological activities (84).

The introduction of transcriptomics has helped the mechanistic

exploration of neuropeptides at the RNA level and the network of

interactions. NPY, SS, and CCK have been found to influence

feeding behavior, and in recent years new evidence has been found

in mammalian (24), avian (85), and fish species (27, 29, 53, 65)

using transcriptomics. Among them, NPY is involved in promoting

feeding, and analysis of the hypothalamus transcriptome of mice

subjected to a daily 2-h heat treatment (36°C) for 14 d suggested

that up-regulated neuropeptide Y acted to attenuate reduced food

intake (24). It has been reported that in broiler chickens, dietary

stevioside (STE) supplementation promoted feed intake, and the
frontiersin.org
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TABLE 1 Recent advances in the omics of neuropeptide and its receptors.

Omics Species Physiological functions References

Neuropeptides NPY

Transcriptome Mice (Mus musculus) Food intake and stress (24–26)

Giant grouper (Epinephelus lanceolatus) Appetite and digestion (27)

Chicks (Pullus) Food intake (28)

orange-spotted grouper (Epinephelus coioides) Food intake (29)

juvenile yellow catfish (Tachysurus fulvidraco) Feeding and growth (30)

Kuruma Prawn (Marsupenaeus japonicus) Reproduction (31)

Brahman heifers (Bos indicus) Reproduction (32)

Proteomics Mice (Mus musculus) Neurotransmitter secretion, neurodegenerative disorder (33–35)

Pig (Susscrofa domestica) Neuroinflammation (36)

metabolomics Human (Homo sapiens) Tumors growth (37)

Neuropeptides POMC

Transcriptome Mice (Mus musculus) Food intake (38)

Siberian hamster (Phodopus sungorus) Seasonal plasticity in energy balance (39)

zebra finch (Taeniopygia guttata) Parental care (40)

Goat (Capra hircus) Analgesia (41)

Blackheaded buntings (Emberiza melanocephala) Seasonal life-history (42)

Human (Homo sapiens) Hair follicle regeneration, insulin sensitivity (43, 44)

Takifugu rubripes Hypoxia stress (45)

Proteomics Rat (Sprague-Dawley) Stress (42)

Mice (Mus musculus) Insulin response (46)

single-cell transcriptomics Mice (Mus musculus) Development (47, 48)

Neuropeptides CCK

Transcriptome Mice (Mus musculus) burn-induced pain, food intake, (49, 50)

Fruit fly (Drosophila melanogaster) Social isolation (51)

Nile tilapia (Oreochromis niloticus) Reproduction (52)

Pelteobagrus vachellii Food intake (53)

orange-spotted grouper (Epinephelus coioides) Food intake (29)

Proteomics Mice (Mus musculus) Food intake (54)

Cell line (from mice, Mus musculus) Digestion (55)

metabolomics Mice (Mus musculus) Cold stress (56)

Neuropeptides SS

Transcriptome Mice (Mus musculus) Food intake, Depression, Nerve excitation (57–59)

Human (Homo sapiens) Bipolar disorder, Pituitary adenomas (60, 61)

Spotted scat (Scatophagus Argus) Growth (62)

Channel Catfish (Ictalurus punctatus) Vaccines to protect fish (63)

Yellow catfish (Tachysurus fulvidraco) Environmental influences on feeding (30)

Nile tilapia (Oreochromis niloticus) Salinity affects growth (64)

Coilia nasus Food intake (65)

Zebrafish (Danio rerio) Glucose metabolism (66)

Proteomics silver carp (Hypophthalmichthys molitrix) Hypoxia (67)

Mice (Mus musculus) Alzheimer’s disease, enteropancreatic neuroendocrine tumors (35, 68)

metabolomics Mice (Mus musculus) Ischemia-induced retinal cell death, Atractylodis Rhizoma (69, 70)

Neuropeptides CRF

Transcriptome Mice (Mus musculus) Learning Behavior, Neurotransmission, (71, 72)

Human (Homo sapiens) Pregnancy (73)

Atlantic salmon (Salmo salar) Feeding and Stress (74)

Pig (Susscrofa domestica) Ammonia poisoning (75)

(Continued)
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analysis of RNA-Seq in the hypothalamus of the STE-supplemented

group compared with the control group showed that several

appetite-related genes, such as NPY and NPY5R, were

differentially expressed, and it was suggested that dietary STE

supplementation promoted feed intake through the regulation of

the hypothalamic neuroactive ligand-receptor interaction pathway

and the alteration of intestinal microbiota composition (85). On the

contrary, SS is involved in suppressing feeding, especially important

in studying the mechanism of feed additives (28) and

environmental influences on feeding (30). In yellow catfish

(Tachysurus fulvidraco), it has been reported that sertraline (SER)

increased shoaling, decreased food consumption, higher

cannibalism rate and RNA-seq results showed that transcript

levels of SS reduced in the brain following SER exposure,

indicating that SER disturbs neuropeptides which may be

unrelated to its antidepressant effects in vertebrates (30).

Reproductive activity is endocrinologically regulated by many

peptide hormones, and a more detailed transcriptome of the

process of reproduction has been made in mammals (79, 80).

Orexin is involved in the regulation of the reproductive system

through the hypothalamic-pituitary-ovarian axis (79), and the

transcriptome profile of the endometrium during early pregnancy

in pigs has revealed that orexin affected the expression of a large

number of genes differentially (79) while transcriptome of

myometrial explants during the early implantation period

suggested that orexin influenced the process involved in

quiescence, proliferartion, remodeling and angiogenesis in

myometrial explants during the peri-implantation period in the

pig (80). NPY has also been found to be involved in gonadal

development in crustaceans (31) and mammals (32). CCK receptor

(CCKAR and CCKBR) deletion leads to abnormal cortical

development, and using comparative transcriptomic analysis,

transcripts of CXCL12, BMP7 are downregulated and may be

target genes for abnormal cortical development (86).

Neuropeptides are also involved in mood management, stress

regulation. Transcriptome analysis of somatostatin interneurons

in nucleus accumbens after cocaine exposure identified JUND

transcription factor as a key regulator of cocaine (57) and CRF2

is also involved in cocaine-induced neuroexcitation (71).

Somatostatin interneurons are involved in emotion regulation,
Frontiers in Endocrinology 04
and transcriptome analysis of somatostatin interneurons in male

and female mice under chronic stress conditions separately revealed

that chronic stress leads to gene dysregulation in several key

pathways, including sex-specific differences in somatostatin

interneuron profiles (87). These changes occurred mainly in the

reduced expression of elongation initiation factor 2 (EIF2) signaling,

suggesting that dysfunction of the translational machinery of

somatostatin interneurons may be critical for the development of

depressive behavior in males (87). In addition, somatostatin

receptor (SSTR2) is also involved in neuro-emotional regulation

(60). And, SSTR4 has a modulatory role in Alzheimer’s disease (88).

CCK is involved in nociceptive perception, as the CCK2 receptor

(CCKbR) was found to be a pain target in burn-induced

nociception and is involved in reducing the effectiveness of

opioids (49).

2.1.2 Proteomics
A wealth of functional genomic technologies has emerged as

the focus of research has shifted to the gene specific function and

understanding the regulation of each identified gene product.

The goal of these efforts is to better understand how the

information stored in the genome encodes all of the

complexity required to sustain complex multicellular

organisms (89). Despite the impressive advances made by

these technologies, the interpretation of their results is limited

without corresponding data on proteins (90). Neuropeptides

have also been studied using proteomics and showing that they

play an important role in the nervous system. In Parkinson’s

disease, a disease of aging associated with vesicular transport

dysfunction and neurotransmitter secretion, proteomic

sequencing of secretory granules revealed reduced levels of

NPY (33). In studies related to depression, NPY and NPY2R

protein expression was downregulated in hippocampal proteins

of mice in a model of social failure versus control mice (34). SST

has been reported to be associated with Alzheimer’s disease, and

identified by LC-MS/MS analysis, somatostatin-related

amyloidosis is a novel restricted human amyloid type

associated with somatostatin -producing enteropancreatic

neuroendocrine tumors (36). LC-MS analysis using SST

peptide (SST-scFv8D3) injected into the hippocampus of mice
TABLE 1 Continued

Omics Species Physiological functions References

Proteomics silver carp (Hypophthalmichthys molitrix) Hypoxia (67)

Human (Homo sapiens) Dry eye syndrome (76)

metabolomics Human (Homo sapiens) Air Pollution (77)

Pig (Susscrofa domestica) Reproduction (78)

Neuropeptides OREXIN A

Transcriptome Pig (Susscrofa domestica)
Mongolian sheep (Ovis aries)

Reproduction
Reproduction

(79, 80)
(81)

Pinto abalone (Haliotis kamtschatkana) Feeding and digestion (82)
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revealed the elevated degradation of NPY (35). Using proteomic

analysis in renal failure studies, NPY-NPY2R system was found

to predict nephrotoxicity and pathogenic effects in the

glomerulus (91). Based on the brain proteomic analysis in

silver carp (Hypophthalmichthys molitrix), it was revealed that

hypoxia affected significantly the biochemical indices and

neurotransmitter contents in the brain, and SST1A was

upregulated as well (67).

2.1.3 Metabolomics
Metabolites represent both downstream outputs from the

genome and upstream ones from the environment. Thus,

the study of metabolomics allows scientists to explore the

relationships of gene-environment interactions. In comparison

with genetic and genetic risk scores that can be used to indicate

what is likely to happen, metabolic analysis and metabolic

phenotyping indicate what is currently happening and what has

already happened. In this regard, metabolomics is able to take a

look at not only endogenous metabolites (gene-derived

metabolites) and exogenous metabolites (environmentally

derived metabolites) in the form of disease biomarkers, but also

provides unique insights into the underlying causes of disease (92,

93). Retinal ischemia mouse cells treated with neuropeptide

PACAP and the somatostatin analog octreotide and tested for

anti-ischemic ability, metabolome results show reduced

intravascular epidermal growth factor overexpression and

glutamate release (69). Using metabolomics analysis, when NPY

receptor Y2R activated by NPY, glycolysis is observed to increase

while intracellular nutrients are depleted, which may be due to

high rates of conversion of glucose to lactate, glycine and alanine.

When the Y2R activation is blocked by BIIE0246, the metabolic

responses reversed (37). To date, relatively few studies have been

conducted on neuropeptides in metabolomics, and more studies

are yet to be explored.
2.2 Gene editing regarding to ligands and
related receptors

Genetic engineering has led to a better understanding of the

genetic functions of neuropeptides and related receptors. Gene

knockout technology is an irreplaceable part of transgenic

technology, and conditional gene knockout technology, as a

new generation gene knockout technology, has obvious

advantages and wider application compared with the first-

generation gene knockout technology (94). Next, advances in

the study of neuropeptides and their receptors function using

gene editing will be presented (Table 2 for detail).

2.2.1 Whole body gene knockout
Gene targeting technology is usually used to knock out the

target gene, and its essence is to replace the endogenous gene
Frontiers in Endocrinology 05
through homologous recombination (172). Using the powerful

technology, researchers constructed gene knockout models to

explore the function of neuropeptides or their corresponding

receptor. It has been reported that transgenic mice deleting NPY

were used to investigate albuminuric kidney disease (91). And Y1R

knockout mice have been reported to explore the role of Y1R in the

regulation of bone and energy homeostasis (97). Ablating orexin in

mice have been reported in the fields of sleep regulation, social fear,

cataplexy and lipid metabolism (112, 113, 115, 118). Orexin

receptor-deficient mice have been used to support the unique role

of orexin receptors 1 and 2 in long-term energymetabolism (173). It

has been reported that mice lacking SST were used to study the

effect of SST in depression (87). In addition, mice deficient in the

SST receptor, SSTR2, or SSTR4, have been reported to be models

for studying behavioral changes induced by chronic stress (154–

156). CCK knockout mice were reported to study the role of CCK in

the lipid transport, gallbladder contractile and small intestinal

motility (168, 169). Mouse with CCKAR knockout or CCKBR

knockout or double knockout were used to study the role of CCK

receptors in taste, fear, feeding and bone homeostasis (170, 171).

Also, corticotropin-releasing hormone knockout (CRH-KO) mice

have been reported to be used in the study of inflammatory bowel

disease and stress (174, 175). It has been reported that CRF receptor

1 knockout mice were used in the study of cognitive and anxiety-

like states and social behavior (160, 166), while CRF receptor 2

knockout mice were used in the study of inflammation, recognition

memory and glucose metabolism (163, 164, 176).

CRISPR/Cas9 is a powerful gene editing tool with the

advantages of being efficient, easy, fast and cheap (173). The

CRISPR/Cas9 system consists of two components, Cas9, a

signature nucleic acid endonuclease, and a guide RNA (gRNA)

molecule. Cas9 cleaves the target sequence under the guidance of

gRNA, resulting in DNA double-strand breaks. The broken

double strand is repaired by homologous recombination, non-

homologous end joining and other mechanisms, and abnormal

bases are inserted or made absent at the break, resulting in code-

shifting mutations, and finally the target gene is knocked out

(173). It has been reported that the CRISPR/Cas9 system has

been used for the construction of knockout models of

neuropeptides and their receptors. In mammals, orexin 2

receptor knockout mice generated by CRISPR/Cas9 system

were applied to investigate its role in the regulation of sleep/

wake states (117). In zebrafish, CRISPR/Cas9 system was used to

knock out NPY to study its effect on emotional behaviors (95,

96). Also, SS receptor 1 and 4 were reported to be knocked out

using CRISPR/Cas9 to study their roles in growth and

reproduction, respectively (152, 153).

2.2.2 Conditional gene knockout
Conditional gene knockout, an upgraded version of gene

knockout, is a very powerful technique for studying the function

of neuropeptides and their receptors in the nervous system.
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TABLE 2 Gene editing applied to the study of neuropeptide and its receptor function.

Species & Gene Edited Animals Gene editing technology Physiological functions References

Neuropeptides NPY

Z: (NPY-KO) zebrafish crispr/cas9 Emotional behaviors (95, 96)

M:Male NPY knockout mice Gene targeting (homologous
recombination)

kidney disease (91)

M: Y1R knockout mice Gene targeting (homologous
recombination)

Bone matrix (97)

M: Npy1rrfb mice Gene targeting (homologous
recombination), Cre/loxP system

Metabolic and behavioral dimorphism (98)

M: (npy1r-/-), (npy2r-/-) mice Cre-loxp system Taste responses (99)

M: Male NPY knockout mice Cre-loxp system Bone metabolism (100)

M: IRlox/lox;NPYcre/+ mice Cre-loxp system Cognitive function (101)

M: IRlox/lox; NPYcre/+ mice Cre-loxp system Cognitive Functioning (102)

M: Agrp cre/+; NPY lox/lox mice Cre-loxp system Food intake (103)

M: Male NPY knockout mice Cre-loxp system Rapid feeding and glucose metabolism (104)

M: Npy1rrfb mice, Gene targeting (homologous
recombination), Cre/loxP system

Obesity (105)

M: NPY knockout mice Cre-loxp system Skeleton and adiposity (106)

M: NPYcre/+; RANKlox/lox mice Cre-loxp system Bone loss (107)

M: NPYcre/+; RANKlox/+mice Cre-loxp system Bone mass (108)

M: NPYcreERT2/+; Leprlox/lox mice Cre-loxp system Energy homeostatic (109)

M: Y1lox/lox; INS2cre/+ mice Cre-loxp system Glucose metabolism (110)

R: NPY knockout rats ZFN Myocardial infarction (111)

Neuropeptides OREXIN

M: orexin knockout mice Gene targeting (homologous
recombination)

Sleep regulation (112)

M: ORX-/-; ORX-tTA mice;ORX-/-; ORX-tTA;TetO-GCaMP6
mice

Gene targeting (homologous
recombination)

Cataplexy (113)

M: Orexin knockout mice Gene targeting (homologous
recombination)

Arousal and reward circuits (114)

M: Orexin knockout mice Gene targeting (homologous
recombination)

Social fear (115)

M: Ox1r-deficient mice, Ox2r-deficient mice Gene targeting (homologous
recombination)

Long-term energy metabolism (116)

M: OX1r knockout mice, OX2r knockout mice crispr/cas9 Sleep/wake states (117)

M:Orexin knockout mice Gene targeting (homologous
recombination)

Lipid metabolism (118)

M: ORX;vGT2-KO mice, ORX-KO mice Gene targeting (homologous
recombination), Cre/loxP system

Body temperature and heart rate (119)

M: Orexin knockout mice Gene targeting (homologous
recombination)

Wake-promoting (120)

M: Orexin knockout mice Gene targeting (homologous
recombination)

Sleep breathing (121)

M: Orexin knockout mice Gene targeting (homologous
recombination)

Fear and anxiety (122)

M: Orexin knockout mice tet-off system Narcolepsy and Orexin system function (123)

M: Orexin knockout mice Gene targeting (homologous
recombination)

Cocaine-related behaviors (124)

M: Orexin knockout mice, serotonin knockout mice, Orexin
and serotonin double knockout mice

Cre/loxP system REM sleep and cataplexy (125)

M: Orexin neuron-ablated mice tet-off system Hypothermia (126)

M: melanin-concentrating hormone-Cre::Orexin-KO mice Gene targeting (homologous
recombination)

Narcolepsy (127)

(Continued)
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TABLE 2 Continued

Species & Gene Edited Animals Gene editing technology Physiological functions References

M: Orexin knockout mice Gene targeting (homologous
recombination)

Rapid eye movement sleep (128)

M: Hcrtr1Dbh-CKO mice Gene targeting (homologous
recombination), Cre/loxP system

Sleep (129)

Neuropeptides POMC

M: POMC GHR KO mice, POMC STAT5 KO mice Cre/loxP system Hyperphagia (130)

M: Pomc promoter-driven Gpr17 knockout (PGKO) mice Cre/loxP system Metabolism (131)

M: POMC-specific protein kinase R-like ER kinase (PERK)
deficiency mice

Cre/loxP system Metabolism (132)

M: pomc neuronal enhancer (nPE1 and nPE2) knockout mice Gene targeting (homologous
recombination)

Alcohol drinking (133)

M: Neuronal POMC enhancer knockout (nPE-/-) mice with
hypothalamic-specific deficiency of POMC mice

Gene targeting (homologous
recombination)

Alcohol drinking (134)

M: nPE1-/-mice Gene targeting (homologous
recombination)

Alcohol drinking (135)

M: nPE1-/-mice Gene targeting (homologous
recombination)

Pregnancy and lactation (136)

M: Pomc conditional knockout mice Cre/loxP system Painful neuropathy (137)

M: miR-17-92 KO mice, miR-7-sp mice Cre/loxP system Sex-specific diet-induced obesity (138)

M: HIF2a knockout in POMC neurons mice Cre/loxP system Age-associated metabolic disorders (139)

M: lacking FKBP51 in Pomc-expressing cells mice Cre/loxP system Stress response (140)

M: deletion of rptor in POMC neurons mice Cre/loxP system Oxidative metabolism (141)

M: Knockdown of the Trpv1 gene in ARC POMC neurons
mice

Gene targeting (homologous
recombination), Cre/loxP system

Food intake (142)

M: Bbs1 gene deletion POMC neurons mice Cre/loxP system Cardiovascular regulation (143)

M: POMC neuron-specific deletion of nicotinamide
mononucleotide adenylyltransferase 2 (Nmnat2) mice

Cre/loxP system Lipid and glucose metabolism (144)

M: selective deletion of the Bbs1 gene in POMC neurons mice Cre/loxP system Body weight regulation (145)

M: Rax-CreERT2:Arc Pomc loxTB/loxTB mice Cre/loxP system Metabolism (146)

M: SOCS3flox/flox/POMC-Cre mice Cre/loxP system Metabolic and cardio-vascular regulation (147)

M:POMC-specific AIF-deficient mice Cre/loxP system Metabolism (148)

M: PTP1Bflox/flox/POMC-Cre mice Cre/loxP system Liver lipids and glucose tolerance (149)

M: POMC-SRC-2-KO mice Cre/loxP system Metabolism (150)

M: Pomc-Cre; Atg7loxP/loxP mice Cre/loxP system Energy balance regulation (151)

Neuropeptides SS/SST

Z: SST1 knockout zebrafish CRISPR/Cas9 Growth and metabolism (152)

Z: SST 4 knockout zebrafish CRISPR/Cas9 Growth and reproduction (153)

M: SST knockout mice Gene targeting (homologous
recombination)

Mood symptoms (87)

M: SST 4 receptor knockout mice Gene targeting (homologous
recombination)

Chronic stress, inflammation, hyperalgesia,
and airway hyperreactivity

(154)

M: SST receptor subtype 2 knockout mice, ss receptor subtype 4
knockout mice

Gene targeting (homologous
recombination)

Stress response and behavioral emotionality (154–156)

M: SST receptor subtype 2 knockout mice Gene targeting (homologous
recombination)

Emotional and cognitive ageing (154–156)

M: SST 2 receptor knockout mice Gene targeting (homologous
recombination)

Regulation of growth hormone secretion (157)

M: (GHR/IGF1R) SST-specific double knockout (KO) mice Cre/loxP system Homeostatic control of GH secretion (58)

Neuropeptides CRF

M: GrC-CRFR1cKO mice Gene targeting, Cre/loxP system Cerebellar learning (158)

M: CRF2 receptor knockout mice Gene targeting (homologous
recombination)

Stress-induced mast cell degranulation and
associated disease pathophysiology

(159)

(Continued)
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Particularly, condition-specific knockout mice based on the Cre-

loxP system have been favored by many studies because of their

good experimental results. Cre (Cre recombinase) is a protein

with a relative molecular mass of 38000 Dalton composed of 343

amino acids encoded and expressed by the cre gene in

bacteriophage P1 (177). The loxP (locus of x-over, P1) is a 34

bp sequence found from bacteriophage P1, consisting of two 13

bp inverted repeat sequences and an 8 bp spacer sequence in the

middle (178). Cre recombinase can specifically recognize loxP

sequences on intracellular genes or DNA, and mediate different

specific recombination reactions according to the position of

loxP sequences and the relationship between loxP sequences

(179). Conditional knockout mice are usually generated by

breeding the loxp mice in which loxp flanked alleles of interest

gene with Cre mice expressing Cre recombinase under the

control of a selected promoter that specifically targets the

tissue or cell of interest. Tissue- or cell-specific expression

promoters determine the location of Cre expression resulting

in conditional gene knockout (180). The Cre-loxp system was

first used to specifically knock out the DNA polymerase gene in

T lymphocytes (181). Some studies have reported that

neuropeptides such as NPY, orexin and their receptors have

been conditional knockout in mice based on the Cre-lox system.

The effect of NPY on feeding was investigated in mice with

specific knockout of NPY on AGRP neurons (103). Male mice
Frontiers in Endocrinology 08
targeted disruption of the Npy1r gene in limbic areas were used

to study the effect of NPY-Y1R system in energy balance and

emotional behavior as well as diet-induced obesity (105).

Another study applied mice with b-cell specific ablation of the

Y1 receptor to investigate the effect of Y1 receptor on the glucose

metabolism (110). Also, mice selectively disrupted the orexin

receptor in noradrenaline neurons were generated to study the

effect of orexin-to-noradrenaline signaling on the sleep behavior

(129). Owing to the Cre-loxp system, researchers could perform

specific knockout in the specific neurons of their interest. It has

been reported that growth hormone receptor (GHR) or IGF-1

receptor (IGF1R) were ablated in SST neurons specifically to

investigate whether GHR or IGF1R is required for the

homeostatic control of GH secretion (58). And transgenic

mice in which the vesicular glutamate transporter 2 gene was

disrupted selectively in orexin-producing neurons were used to

s tudy the ro l e s o f orex in neurons in med ia t ing

methamphetamine-induced changes in body temperature and

heart rate (119). It is well known that in the neuropeptide and

receptor family, there are usually several receptors

corresponding to one ligand, neuropeptides, such as NPY and

somatostatin (182, 183). Therefore, the Cre-loxP conditional

knockout system is very useful and efficient for identifying

specific receptor types that mediate ligand function in

specific tissues.
TABLE 2 Continued

Species & Gene Edited Animals Gene editing technology Physiological functions References

M: CRFR1-Deficient Mice Gene targeting (homologous
recombination)

Cognitive dysfunction and anxiety-like states
induced by cocaine

(160)

M: CRF1 receptor knockout mice and CRF2 receptor knockout
mice

Gene targeting (homologous
recombination)

Anxiety-like behavior (161)

M: The medial amygdala specific knockdown of CRFr2 mice Cre/loxP system Social behavior (162)

M:CRFR2 knockout mice Gene targeting (homologous
recombination)

Sexually dimorphic metabolic responses (163)

M: CRFR2 knockout mice Gene targeting (homologous
recombination)

Cognitive dysfunction (164)

M: CRF1 receptor knockout mice Gene targeting (homologous
recombination)

Pain perception (165)

M: CRFR2 knockout mice Gene targeting (homologous
recombination)

Social behavior deficits (166)

Neuropeptides CCK

M: CCK1 receptor KO, CCK2 receptor KO, and CCK1 receptor
and CCK2 receptor double KO mice

Gene targeting (homologous
recombination)

Anti-inflammatory actions (167)

M: CCK knockout mice Gene targeting (homologous
recombination)

Lipid transport (168)

M: CCK knockout mice Gene targeting (homologous
recombination)

Cholesterol crystallization and gallstone
formation

(169)

M: CCKAR knockout mice; CCKBR knockout mice; CCKAR
and CCKBR double knockout mice

Gene targeting (homologous
recombination)

Taste signaling in the peripheral taste organ (170)

M: CCK 1R knockout mice Gene targeting (homologous
recombination)

Functional coupling of CCKAR and CCKBR (171)
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3 Neuropeptide Y and somatostatin
in food intake and growth of fish

3.1 Neuropeptide Y family

3.1.1 Peptides and receptors of NPY family
The ligands of the NPY system, also known as NPY family

peptides, are highly conserved in vertebrates in terms of their

amino acid sequences and protein structures. PP, PYY and NPY

are all composed of 36 amino acids with amidated C-terminus,

classified into NPY family (184). In lower vertebrates, the

discovery of NPY family polypeptides was mainly achieved

through gene cloning. Only NPY and PYY have been cloned

or isolated from both jawless and jawed cartilaginous fish,

however, PP has not been found yet (185, 186). Among

tetrapods, the presence of PP is found exclusively in Latimeria

chalumnae (187). In summary, there are four NPY family

peptides in teleost, namely NPYa, NPYb, PYYa and PYYb

(Table 3). NPY of teleost is mainly expressed in the central

nervous system (217, 229). In addition to the CNS, NPY mRNA

levels has been detected in some peripheral tissues such as

kidney, intestine, eye and pituitary (206, 210, 215). Studies

have shown that PYYa of zebrafish (Danio rerio) (229),

goldfish (197), grass carp (Ctenopharyngodon idellus) (193)

and tilapia (220) is mainly expressed in the brain and spinal

cord, while PYYb of grass carp (194), Japanese Flounder

(Para l i chthys o l ivaceus ) (204) , ye l lowta i l (Ser io la

quinqueradiata) (230) and red-bellied piranha (Pygocentrus

nattereri) (200) is mainly expressed in the foregut and midgut,

and also expressed to a certain extent in the brain.

NPY family peptides exert their physiological functions by

binding to their receptors, which are referred to as NPY family

receptors. NPY family receptors are G protein-coupled receptors

that consist of multiple members. In teleost, there are seven types

of NPY receptors, which belong to Y1 family, Y1, Y4, Y8a and

Y8b, and Y2 family, Y2, Y2-2, Y7, respectively (187). The y1 gene

is only found in the zebrafish genome (189), speculating that

most teleost lost Y1. Studies have revealed that Y4, Y8a, Y8b, Y2

and Y7 are all highly expressed in the brains (190, 218), eyes,

heart, kidney, liver, intestine and gonads (182, 220). Research on

the distribution of teleost NPY family receptors in brain regions,

especially in various sub-regions other than the hypothalamus,

remains to be studied.
3.1.2 NPY family in the regulation of fish
feeding and growth

The binding activity of NPY family receptors to ligands has

been studied extensively in mammals, and a variety of receptor-

specific agonists and antagonists have been screened, providing a

basis for studying receptor-mediated physiological functions

(231). However, knowledge about the ligand-binding activity

of NPY family receptors is rare in teleost fish, and mainly
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focused on zebrafish and rainbow trout (Oncorhynchus mykiss)

(190, 207). In zebrafish, Y4, Y8a, Y8b, and Y2-2 all have similar

binding activities with NPY, PYYa, and PYYb (190, 191). While

the affinity of Y2 with PYYb is about 50 times higher than that of

PYYa and the affinity of Y7 with PYYa is about three times lower

than that of NPY and PYYb (190, 191). In addition, unlike

mammalian Y2, the two Y2 family receptors in rainbow trout,

Y2 and Y7, are both sensitive to NPY with N-terminal deletion

and have minimal binding capacity to NPY (13–24, 27–29, 31,

53, 65, 79, 80, 83–85) and NPY (18–24, 27–29, 31, 53, 65, 79, 80,

83–85), and neither binds to the mammalian Y2-specific

antagonist BIIE0246 (207).

Research on the role of NPY in the regulation of bony fish

feeding is mainly focused on NPYa. In the available literature,

the orexigenic effects of NPY can be triggered by injection,

feeding and immersion. Intracerebroventricular (icv) injection of

NPYa in grass carp (195) and zebrafish (192), as well as

intraperitoneal (ip) injection of NPYa in red tilapia

(Oreochromis sp.) (232) and orange-spotted grouper

(Epinephelus coioides) (223) stimulate food intake. Oral

administration of synthetic NPYa significantly increased the

growth rate, body weight gain and feed conversion ratio of

orange-spotted grouper after feeding for 50 days (223), as well as

in tilapia (233). In addition, immersing catfish (Clarias

gariepinus) fry with recombinant NPYa can also increase their

growth rate (234). There are relatively few reports on the

regulation of feeding by PYY in teleost fish. In goldfish, PYYa

ip (10 ng/g BW) or PYYa icv (5 ng/g BW) significantly reduced

the food intake (197). Also, in Siberian sturgeon (Acipenser

baerii), PYYa ip (10, 100 and 200 ng/g BW) significantly

decreased food intake, while low dose of PYYa (1 ng/g BW)

has no significant effect on feeding (227). Moreover, in tilapia,

PYYa (50 ng/g BW) has no effect on food intake but PYYb icv

(50 ng/g BW) significantly decreased feeding (220).

The role of NPY receptors in mediating NPY regulation in

bony fish feeding is mainly verified based on the agonists and

antagonists of mammalian NPY receptors. In goldfish and

zebrafish, Y1 antagonist BIBP3226 icv inhibits the orexigenic

effects of NPY (16, 192). ICV injection of Y1 agonist (Leu31,

Pro34)-NPY and Y5 agonist (D-32Trp)-NPY promoted the food

intake in goldfish, but neither the Y2 agonist NPY (2–24, 27–29,

31, 53, 65, 79, 80, 83–85) nor the (Pro13, Tyr36)-NPY (13–24,

27–29, 31, 53, 65, 79, 80, 83–85) has significant effect on feeding

behaviors, suggesting that NPY receptors similar to mammalian

Y1 and Y5 may be involved in feeding regulation in teleost (235,

236). On the other hand, in rainbow trout, ICV injection of both

the Y1 agonist (Leu31, Pro34)-NPY and the Y2 agonist NPY (3–

24, 27–29, 31, 53, 65, 79, 80, 83–85) stimulated food intake (208).

Recently, it is reported that ICV injection of Y1 agonist (Leu31,

Pro34)-NPY and Y2 agonist NPY (13–24, 27–29, 31, 53, 65, 79,

80, 83–85) both increased the appetite of Siberian sturgeon

within 30 min (228). Unexpectedly, (Leu31, Pro34)-NPY does

not specifically recognize NPY receptors in teleost (237), while
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TABLE 3 Neuropeptide Y and its receptors on growth and food intake in fish.

Species Neuropeptides Receptors Physiological functions Major
references

Estuarine tapertail anchovy
(Coilia nasus)

PYYb Food intake (188)

Zebrafish
(Danio rerio)

NPYa, PYYa, PYYb Y1,Y2, Y2-2, Y4, Y7, Y8a, Y8b Food intake (189–192)

Grass carp
(Ctenopharyngodon idellus)

NPY, PYYa, PYYb Y8a, Y8b Food intake, energy metabolism (193–195)

Indian Major
(CarpCirrhinus cirrhosus)

NPY Y2 Regulation of LH secretion (196)

Goldfish
(Carassius auratus)

NPY, PYYa Food intake (197, 198)

Ya fish
(Schizothorax prenanti)

NPY Late embryonic development, food intake (199)

Red-bellied piranha
(Pygocentrus nattereri)

PYY Food intake (200)

Cavefish
(Astyanax fasciatus mexicanus)

PYYb Food intake (201)

Glass catfish
(Kryptopterus vitreolus)

NPY Food intake (202)

Yellow catfish
(Pelteobagrus fulvidraco)

NPY Food intake (203)

Yellowtail
(Seriola quinqueradiata)

NPY Digestion, food intake (204, 205)

Atlantic salmon
(Salmo salar)

NPY, PYYa ? (13, 206)

rainbow trout
(Oncorhynchus mykiss)

NPY, PYY Y2, Y2-2, Y4, Y7, Y8a, Y8b Food intake, fatty acid sensing and metabolism. (207–209)

Atlantic cod
(Gadus morhua)

NPY Y8b Food intake, growth (210–212)

Winter flounder
(Pseudopleuronectes americanus)

NPY ? (12)

olive flounder
(Paralichthys olivaceus)

NPY, PYYa, PYYb Growth hormone expression, food intake, growth (204, 213, 214)

Medaka
(Oryzias latipes)

NPYa, NPYb, PYYa Y2, Y2-2, Y4, Y7, Y8a, Y8b ? (215, 216)

Tiger puffer
(Takifugu rubripes)

NPYa, NPYb, PYYa, PYYb Y2, Y4, Y7, Y8a, Y8b Food intake (215, 217, 218)

Spotted green pufferfish
(Tetraodon nigroviridis)

NPYa, NPYb, PYYa, PYYb Y2, Y4, Y7, Y8a, Y8b ? (218, 219)

Nile tilapia
(Oreochromis niloticus)

NPYa, NPYb, PYYa, PYYb Y2, Y2-2, Y4, Y7, Y8a, Y8b Food intake (220)

African cichlid fish
(Astatotilapia burtoni)

NPY Y8a, Y8b Food intake, reproduction (221)

Cunner
(Tautogolabrus adspersus)

NPY Food intake (222)

Orange-spotted grouper
(Epinephelus coioides)

NPY Y2, Y8b Food intake, development (182, 223, 224)

Cobia
(Rachycentron canadum)

NPY Food intake (225)

Snakeskin gourami
(Trichogaster pectoralis)

NPY Food intake (226)

(Continued)
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BIBP3226 has an extremely low binding capacity with Y4, Y8a

and Y8b in zebrafish (237). In addition, NPY (3–24, 27–29, 31,

53, 65, 79, 80, 83–85) and (13–24, 27–29, 31, 53, 65, 79, 80, 83–

85) cannot specifically recognize Y2 of teleost and have poor

binding capacity to Y2 in both rainbow trout and zebrafish (207)

but have good binding capacity to Y4 of zebrafish (237).

Therefore, the above studies can only infer the potential role

of NPY receptors in teleost feeding by the performance of these

agonists. The specific types of NPY family receptors involved in

the regulation of teleost feeding remain to be studied.

In recent years, researchers have begun to use powerful gene

editing techniques to study the function of NPY and its

receptors. It has been reported that specific knockout of NPY

in AGRP neurons reduced locomotion and energy expenditure

and accelerated feeding and respiratory quotient in mice, and the

study suggested that NPY originating from AGRP neurons is

critical for initiating and sustaining feeding (103). Targeted

disruption of the Npy1r gene in limbic areas revealed that

limbic NPY-Y1R system was involved in energy balance and

emotional behavior, and selective inactivation of limbic Npy1r

gene increased susceptibility to diet-induced obesity in male

mice (230). Another study showed that mice with b-cell specific
ablation of the Y1 exhibit significantly upregulated serum insulin

levels associated with increased body weight and adiposity (110).

Zebrafish with global knockout of NPY have been found to

exhibit some anxiety-like behaviors, indicating an important role

of NPY in the regulation of emotional behaviors (95, 96).
3.2 Somatostatin and its receptors

Somatostatin (SS or SST), also known as somatotropin

release-inhibiting factor (SRIF), is a cyclic polypeptide

consisting of 14 amino acids. It was originally isolated from

the hypothalamus of sheep and was named for its ability to

inhibit the secretion of pituitary GH (18). SS is conservative and

widespread in vertebrates, from fish to mammals, and it is also a

multifunctional tetradecapeptide involved in a variety of

physiological processes such as growth, development,

metabolism, reproduction and immunity mediated by specific

G protein-coupled receptors (238). Like other polypeptide

hormones, SS is a mature peptide produced by tissue-

specific enzymatic processing of its precursor protein
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(preprosomatostatin, PSS). In teleost, SS peptides were firstly

identified from anglerfish (Lophius litulon) and spotted catfish

(Anarrhichas minor), and subsequently their cDNAs were

cloned (239, 240). Since then, multiple forms of SS peptides

and their PSS cDNAs have been identified in different fish

species (Table 4 for detail). Up to date, PSS is a recognized

polygene family consisting of six homologous genes, namely

pss1, pss2, pss3, pss4, pss5, and pss6 (270, 271). A comparative

genomic approach reveals that pss1, pss2, and pss5 emerged from

the second round of genome duplication early in vertebrate

evolution; pss4 was a homolog of pss1 from the third round of

genome doubling (3R) in most teleost; pss3 and pss6 arised from

tandem duplication of pss1 and pss2, respectively (270, 271).

The function of SS is mediated by its seven transmembrane

G protein-coupled receptors. Two members of the SSTR family,

SSTR1 and SSTR2, were characterized from mice and human

(272). SSTR3 was first reported in electric fish (Apteronotus

albifrons) (273). It has been well reported that there are some

receptor subtypes of SSTR in teleost. (For detail, Table 4). For

example, the full-length cDNA sequences of four SS receptors

(SSTR1, SSTR2, SSTR3 and SSTR5) were cloned from orange-

spotted grouper (183). There were five SS receptors, SSTR2a

(MW848786), SSTR2b (MW848787), SSTR3a (MW848788),

SSTR3b (MW848789) and SSTR5 (MW848790), in Nile tilapia,

which were highly homologous to the corresponding receptors

of other known vertebrates.

Although SS is involved in a variety of physiological

processes, its vital function is to inhibit the basal and induced

GH secretion in the pituitary. Related research on SS function in

teleost fish has mainly focused on the regulation of pituitary GH

secretion. In vitro and in vivo studies in various teleost, including

goldfish (244), tilapia (262), catfish (252) and rainbow trout

(241), SS has been demonstrated to inhibit GH secretion. In

goldfish, three precursor genes encoding SS (pss-Ⅰ, pss-Ⅱ and

pss-III) showed different distribution patterns in regions of the

hypothalamus associated with feeding and olfaction, hinting that

SS may control food intake in fish (274). Treatment with SS14

has been observed to reduce food conversion, plasma IGF-I and

INS levels, and further to causes growth retardation in rainbow

trout (275, 276). In addition, SS may also indirectly influence

feeding behavior. Reported as a major inhibitor of GH secretion,

SS was ultimately found to increase food consumption due to its

feeding-prolonging effect (277), which resulted from the direct
TABLE 3 Continued

Species Neuropeptides Receptors Physiological functions Major
references

Three-spined stickleback
(Gasterosteus aculeatus)

NPYa, NPYb, PYYa, PYYb ? (215)

Siberian sturgeon
(Acipenser baerii)

NPY Y1, Y4, Y5, Y6 Food intake (189, 227, 228)
f

?, unknown yet.
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function of SS to inhibit GH secretion (278). RNA-seq analysis

of feeding and non-feeding anadromous fish (Coilia nasus)

suggests that SS may be involved in the regulation of food

intake and metabolic state (65).

Regarding the mechanism of SS on inhibiting growth, it has

been revealed that SS inhibited GH secretion with the

involvement of cAMP, protein kinase C (PKC), and Ca2+ in

goldfish (279). Similarly, blockade using the PLC/IP/PKC

pathway reversed SRIF-inhibited of GH release without

affecting GHRH-stimulated of GH release in grouper (252).

These studies suggest that SS inhibited GH secretion through

the PKC pathway (280). However, in halibut (Psetta maxima),

the PKC agonist TPA had no effect on GH secretion, and TPA

promoted GH secretion only in the presence of SS (281). SS was

found to have no effect on GH secretion induced by PKC

agonists in chickens (282), and SS did not inhibit TPA-

induced GH secretion in bovine pituitary cells (283). These

results show a distinct species specific role for the PKC pathway,

which is or is not involved in the process by which SS inhibits

GH secretion. Generally, SS is considered as an inhibitor of GH

secretion, however, studies in pigs and baboons have found that

low concentrations of SS can also promote GH secretion (284,
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285). In addition, studies in pigs found that the phospholipase C

(PLC) inhibitor U73122 did not block SS-induced GH secretion

(286). Similarly, in baboons, both U73122 and the PKC inhibitor

Go6983 failed to block SS-induced GH secretion (284).

Studies in mammals have confirmed that activation of SSTRs

inhibits cAMP levels and that the AC/cAMP/PKA pathway is

involved in the physiological function of SS (287, 288). In

goldfish, SS blocked GH secretion induced by the AC agonist

forskolin and the cAMP analogue 8-Br-cAMP, suggesting that

SS may inhibit GH secretion through the cAMP pathway (279).

However, in halibut forskolin had no effect on GH secretion, and

forskolin promoted GH secretion only in the presence of SS

(281). In contrast, in pigs, SS increased cAMP levels and the AC/

cAMP pathway mediated SS-induced GH secretion (286).

Identically, SS promoted GH secretion via the AC/cAMP/PKA

pathway in baboons (284). Taken together, the role of SS in

regulating GH secretion differs among species, the AC/cAMP/

PKA pathway (238) or the PLC/IP3/PKC pathway (240) is

involved in SS-regulated GH secretion.

Nitric oxide (NO) is now recognized as an important

signaling molecule involved in the regulation of SS function.

NO is produced by NO synthase (NOS) in a reaction that
TABLE 4 Somatostatin and its receptors have been identified in fish.

Species Prepro-
somatostatin

Somatostatin
(SS)

Receptors
(SSTR)

Physiological functions Major
references

Orange-spotted grouper
(Epinephelus coioides)

PSSI,PSSII, PSSIII SS14, SS28 SSTR1;SSTR2;
SSTR3;SSTR5

Growth regulation (241–243)

Goldfish (Carasius auratus) PSSI,PSSII, PSSIII SS14, SS26, SS28 SSTR1A, B;SSTR2;
SSTR3A, B;SSTR5A, B, C

Growth regulation (244–246)

Anglerfish (Lophius piscatorius) PSSI, PSSII SS14, SS28 ? Growth regulation (239, 247)

Rainbow trout (Oncorhynchus
mykiss)

PSSII, PSSII’ SS14, SS25 SSTR1A, B;SSTR2 Growth regulation, carbohydrate
metabolism, food intake

(248, 249)

Zebrafish (Danio rerio) PSSI, PSSII, PSSIII SS14, SS22 *SSTR1A, B;*SSTR2A, B;
*SSTR3;*SSTR5

Growth regulation (153, 250)

Carp (Cyprinus carpio) PSSIa,b*PSSIIa,
b*PSSIIIa,b

SS14, *SSTR1;*SSTR2;
*SSTR3;*SSTR5

Growth regulation (251)

Catfish (Ictalurus punctata) PSSI, PSSII SS14, SS22 *SSTR1A, B;*SSTR2A, B;
*SSTR3;*SSTR5

Growth regulation, carbohydrate
metabolism

(252, 253)

Cichild fish (Astatotilapia
Haplochromis)

PSSI SS14 SSTR2; SSTR3 Growth regulation, social behavior (254–256)

Topmouth culter (Erythroculter
ilishaeformis)

SS14 SSTR6; SSTR7 Selenium metabolism (257, 258)

Siniperca chuatsi PSSI, PSSII, PSSIII SS14 SSTR2; SSTR3 *Digestion regulation, *reproductive
regulation

(259)

Coris julis SSTR2; SSTR5 Neural regulation (260, 261)

Nile Tilapia (Oreochromis
niloticus)

#PSSI, PSSII,
#PSSIII

SS14, SS28 #SSTR2A、B;#SSTR3A、B;
#SSTR5

Growth regulation, social behavior,
reproductive regulation

(262–264)

Flounder (Platichthys flesus) PSSI, PSSII SS14, SS28 *SSTR2; *SSTR5 Osmoregulation (265)

European eel (Anguilla anguilla) PSSI, PSSII SS14, SS25 *SSTR1A, B;*SSTR2A, B;
*SSTR3;*SSTR5

Growth regulation, osmoregulation (266, 267)

Sea lamprey (Petromyzon
marinus)

PSSa, PSSb, PSSc SS14, SS34, SS37 *SSTR1;*SSTR4*SSTR5 Growth regulation, neural Regulation (268, 269)
fro
*, Sequences or functions are predicted from cDNA. #,WS Li’s lab cloned, unpublished.?, unknown yet
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catalyzes the conversion of arginine to citrulline (289). Typically,

NO activates downstream ornithine cyclase (OC), which

catalyzes the production of cGMP from GTP (290). NO

promotes basal GH secretion in rat (291), pig (292), dog (293),

and human (294). Conversely, NO was found to inhibit basal

GH secretion in the mouse (295) and in the murine pituitary

tumor cell line GH3 (296). In addition, it has also been reported

that NO is not involved in basal GH secretion (297, 298).

Interestingly, in human pituitary tumor cells, depending on its

concentration, NO either promotes or inhibits basal GH

secretion (299). There is abundant evidence confirming the

involvement of NO in basal GH secretion, but its precise role

and its mechanism remain highly controversial.
3.3 Interaction between neuropeptides

The regulation of feeding is a very complex process involving

the modulation of various neuropeptides in the central nervous

system. These neuropeptides are inextricably linked to each other.

NPY, SS, orexin, etc. have been shown to be involved in feeding

regulation, and whether there is a regulatory relationship between

these neuropeptides has been a matter of interest to researchers. It

is interesting to note that some functionally similar neuropeptides

co-localize in brain regions. It has been reported that SS co-

localizes with NPY in the mammalian amygdala (300). A double

label in situ hybridization histochemistry has shown that NPY and

SSTR1 are co-expressed in the arcuate nucleus (301). It has been

shown that treatment of NPY and SS in the prepyramidal cortex

alters the intake of essential amino acid deficient diets in rats, and

the cytoarchitecture suggests that NPY and SS-containing neurons

in the prepyramidal cortex may be synaptically or polysynaptically

associated with local circuit. It is suggested a possible association

between these two neuropeptides during electrical activity,

olfactory information regulation and neural perception of

essential amino acids (302, 303). Pharmacological evidence

suggested a role for NPY in the feeding regulation of SS. An

agonist of SS, ODT8-SST icv injection increased food intake in

non-fasted rats during both the light and dark phases, whereas

both the SSTR2 antagonist and the Y1 antagonist BIBP-3226

blocked the orexigenic effect of ODT8-SST (304), suggesting that

ODT8-SST enhances feeding behavior through SSTR2 involving

the activation of Y1. Similar to NPY, orexin is also involved in the

feeding regulation of SS. It was found that the antagonist of the

orexin receptor, SB-334867, completely blocked the orexigenic

phenomenon induced by ODT8-SST (305). In contrast,

pretreatment with the SSTR2 antagonist S-406-028 did not

affect the orexigenic effect of orexin, indicating that the orexin

system is part of the neural circuitry in the brain regions of the

orexigenic response induced by icv injection of ODT8-SST, and

that the orexigenic effect of orexin is independent of SSTR2 (305).

In neonatal chicken, SS icv injection was shown to significantly

increase food intake, and the Y1 antagonist B5063 and Y5
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antagonist SML0891 alone showed a dose-dependent decrease

in feeding, while the Y2 antagonist SF22 treatment showed a dose-

dependent increase (306). The researchers found that co-injection

of SS and Y1 antagonist B5063 significantly reduced food intake,

however, Y2 antagonist SF22 and Y5 antagonist SML0891 had no

significant effect on the feeding behavior induced by SS, these

results suggest that the NPY-Y1 system is involved in the feeding

regulation of SS (306).

There is no direct evidence in fish to suggest that there is a

correlation between NPY and SS in feeding regulation. However,

some indirect evidence in fish indicate that NPY and SS are

interrelated. In green molly (Poecilia latipinna), SS-

immunopositive neurons were also found to express NPY

(307). In goldfish, NPY and SS were found to be highly

co-localized in neurons in the ventrolateral telencephalon (VI),

the entopenduncular nucleus (NE) and, to a lesser extent, the

dorsocentral nucleus (Dc) of the telencephalon, and in the

brainstem (308). Incubation of Spotted Sea Bass (Lateolabrax

maculatus) brain cells with neuropeptide FF (NPFF)

significantly upregulated orexin and npy mRNA levels and

significantly downregulated ss mRNA levels (309).

Antidepressant Sertraline (SER) stress in juvenile yellow

catfish (Tachysurus fulvidraco) was found to affect feeding and

growth by regulating transcript levels of npy, ss and gh (30).
4 Other neuropeptides related to
fish feeding and growth

Feeding and growth is regulated not only by the influence

from complicated external environment, but also the integrate

regulations at the intrinsic molecular level. In addition to the

above-mentioned NPY family and SS family, there are other

neuropeptides involved in fish feeding and growth regulation.

Cholecystokinin (CCK) is a brain-gut peptide secreted by

both small intestinal mucosal I cell and central nervous cells.

There are some forms of CCK precursor mRNA found in fish,

which can be divided into two clusters by performing

evolutionary tree analysis, so called CCK-1 and CCK-2 (310).

CCK is an important peripheral inhibitor of feeding, and it may

also be one of the factors that integrally regulate feeding and

growth hormone release (311–313). CCK inhibited gastric

emptying and promoted gallbladder contraction in rainbow

trout and other salmonids (311, 312). The mRNA expression

of cck was reduced during starvation and significantly increased

after feeding in Atlantic salmon (Salmo salar) (311), Japanese

flounder (314), winter skate (Raja ocellata) (315) and yellowtail

(230). The mRNA expression of CCK in the pyloric caecum of

goldfish and yellowtail was also elevated after feeding, and

further research revealed that intraventricular and IP injection

of CCK into goldfish could inhibit food intake (313). Oral

ingestion of CCK reduced dietary intake in European sea bass

(Dicentrarchus labrax), whereas CCK antagonists administered
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enhanced dietary intake in sea bass and rainbow trout (316). IP

injections of CCK8 with 100 and 200 ng/g BW in Siberian

sturgeon (Acipenser baerii Brandt) showed that CCK8 inhibited

ingestion from 0-1 h and cumulative ingestion at 3 h. Chronic

injections of 100 and 200 ng/g BW CCK8 at 7 d resulted in a

significant reduction in daily and cumulative ingestion (317).

These results suggest that CCK also acts as a satiety signal in fish

and is one of the factors that integrally regulate fish food intake.

The corticotropin-releasing factor (CRF) system consists of

four homologous lineages, two major receptors (CRF-R1 and

CRF-R2) and a binding protein CRF-BP. The homologous gene

lineages are corticotropin-releasing factor (CRF), urotensin I

(UI)/sauvagine (SVG)/urocortin 1 (UCN1), urocortin 2 (UCN2)

and urocortin 3 (UCN3), with UI, SVG and UCN1 as homologs

(20, 318). It has been found that the CRF system is associated

with fish feeding. The mRNA expression of crf was significantly

down-regulated by fasting goldfish for 7 days and up-regulated

by overfeeding (319). Pre- and post-prandial, fasting and

refeeding researches on Dabry’s sturgeon (Acipenser dabryanus

Dumeril) showed that crfmRNA elevated significantly at 1 h and

3 h after feeding, crf and crf -Rs transcripts significantly reduced

at 10 d of fasting but elevated at day 10 of refeeding (320). ICV of

CRF or UI treatment were found to reduce the feeding quantity

in rainbow trout (321). On the other hand, the mRNA

expression of crf decreased significantly when Schizothorax

prenanti fasting for 7 days but increased significantly after re-

feeding (322). IP injection of different doses of UCN3 into

Siberian sturgeon showed a reduction in feeding from 0 to 6

hours, and with 7 days of injection, the cumulative amount of

feeding reduced significantly compared to the control group

(323). The above findings suggest that the CRF system may act

as a feeding inhibitor in fish.

Two orexins (also known as hypothalamus), orexin-A

(OXA) and -B (OXB), were first characterized from rat

hypothalamus almost simultaneously by two teams (324, 325).

Subsequently, orexin cDNA sequences have also been cloned

successively from, zebrafish (326), Atlantic Cod (Gadus morhua)

(327) and Winter Flounder (Pleuronectes americanus) (328).

Fish orexin neurons concentrate in the hypothalamus and

extend to other brain regions such as the ventral medial

hypothalamus and dorsal mesencephalon (329). In zebrafish

and goldfish, prolonged starvation significantly upregulated

brain orexin mRNA expression (330). Goldfish ICV injections

of either OXA or OXB can dose-dependently promote feeding,

and the effect of OXA is stronger than that of OXB (17). IP

injection of OXA in Thalassoma pavo also significantly

stimulated feeding and locomotion (331). In Atlantic cod,

orexin mRNA expression levels in the hypothalamus were

significantly higher during ingestion than before and after

ingestion (327). Orexin also interacts with other appetite-

regulating peptides to regulate feeding. Blocking the orexin

receptor pathway would decrease the NPY-induced pro-

appetitive effect (22), in the same way, blocking the NPY
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receptor signaling pathway reduced the orexin-triggered pro-

feeding effect (332). It suggests that orexin synergizes with NPY

to promote feeding in fish.

POMC is a common precursor of adrenocorticotropic

hormone (ATCH), melanocyte-stimulating hormones (including

g-MSHs,a-MSHs, b-MSHs, and d-MSHs), b-endorphin (b-END)
(19). POMC is mainly expressed in the pituitary gland and,

together with its derived peptides, i.e., ATCH, MSHs and MSHs

receptors such as MC4R, forms the melanocortin system, which is

involved in food intake and energy balance (333). When POMC

neurons receive stimulation, they release MSHs, which act with

melanocortin receptors in the hypothalamus and other brain

regions to reduce food intake and increase basal metabolic rate

(334). In grass carp feeding experiment, feeding and weight gain

rates increased significantly with enhancing levels of the diets,

whereas restricted diets significantly reduced the transcript levels

of hypothalamic POMC (335). Overfeeding of zebrafish larvae

reduced POMC levels and declined activation of MC4R (336).

Short-term fasting of snakeskin gourami (Trichopodus pectoralis)

resulted in the lowest levels of POMC mRNAs in the

telencephalon and mesencephalon as well as the pituitary gland

at 12 h of fasting, while POMC transcripts reached their lowest

point at 6 h of fasting (337). In addition, POMC as feeding-

inhibiting neuropeptide in fish, displays a potential antagonistic

relationship with other neuropeptides such as AgRP (Agouti

Related protein) and NPY. Results from snakeskin gourami

indicated that a decrease in MC4R expression was observed 1 h

before the last meal of the day, while no such decrease was shown

1 h before the first meal of the day. Postprandial NPY expression

decreases, with peak NPY expression occurring 1 hour before the

first meal of the day (226). It has been reported that a unique

mouse model (Pomc tm1Kgm) which was unable to generate

desacetyl-a-MSH and a-MSH from ACTH 1-39 developed the

characteristic melanocortin obesity phenotype, and desacetyl-a-
MSH and a-MSH were found to regulate body weight and energy

balance inmouse (213). Risperidone treatment was found to cause

hyperphagia and induce weight gain, and transcriptomic analyses

in the hypothalamus of risperidone-fed mice revealed that

risperidone treatment reduced the expression of mc4r, and

MC4R-specific agonist experiments indicated that the atypical

antipsychotic risperidone targets hypothalamic MC4R to cause

weight gain (338).
5 Summary and outlook

Food intake and growth are two physiological processes that

are directly related and affect each other. NPY is an important

orexigenic factor in the hypothalamus and has been shown to

increase appetite, promote GH secretion and increase growth

rate in fish (219, 223). SS is widely known for inhibiting the

growth of animals earlier, but later studies show that SS also

takes part in the regulation of feeding in fish (65, 274). Similar to
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SS, neuropeptides initially identified for other functions are later

shown to be involved in feeding regulation in fish, such as CRF,

which are originally known to regulate reproduction and

promote corticotropin secretion, respectively (339).

Currently, studies on the regulation of feeding mechanisms

in fish are still at infancy, and most of them are limited to the

analysis of neuropeptides and receptors at the mRNA level,

including the molecular cloning and tissue distribution

characterization of neuropeptides and their receptors, but

lacking the exploration of its feeding regulation mechanism.

Moreover, the analysis of the tissue distribution of neuropeptides

and receptors is relatively shallow. In the brain area, there are

many feeding-related neuropeptides and receptors. However,

most studies do not accurately delineate brain regions, but use

the entire brain or the entire hypothalamus for tissue

distribution analysis.

Although the basic mechanisms of food intake regulation in

mammals and fish are relatively conserved, there are still huge

physiological differences. In addition, teleost have also

undergone the 3R (340). Compared with other groups, fish

have more types of neuropeptides and receptors related to

feeding. What’s more complicated is that multiple protein

subtypes may have different physiological functions, which

makes the study of their feeding regulation mechanism more

challenging. There are still many gaps to be filled in

understanding the regulation mechanism of fish ingestion.

Advances in omics and gene editing technologies have

allowed us to study the function of neuropeptides and their

receptors in greater depth. At present, the most used omics

technology in the study of neuropeptide and its receptor

function is transcriptomic technology, which mainly focuses

on mammals. It is expected that researchers can focus more

on non-mammals and use proteome or metabolome to explore

the field of neuropeptides from multiple dimensions. Currently,

both systemic knockout and conditional knockout transgenic

animals are available for the study of neuropeptides and their

receptors. Conditional knockout can be more targeted to study

the function of neuropeptides and their receptors in a certain
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tissue or type of cells, but unfortunately, conditional knockout

has only been reported in mice applying cre/loxp system. In the

future, researchers may try to apply CRISP/Cas9 to perform

tissue/cell-specific knockout of neuropeptides or their receptors

in non-mammalian animals.
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